UNIVERSIDAD NACIONAL JOSÉ FAUSTINO SÁNCHEZ CARRIÓN

FACULTAD DE INGENIERÍA CIVIL ESCUELA ACADÉMICO PROFESIONAL DE INGENIERIA CIVIL

TESIS

DISEÑO DE AULA Y CENTRO DE COMPUTO PARA MEJORAR LA CALIDAD EDUCATIVA DE LA INSTITUCION EDUCATIVA N° 20517, SUPE, BARRANCA, LIMA, 2022

PRESENTADO POR:

Bachiller: OSCO MAMANI LUIS ABEL

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

ASESOR:

Mg. DE LA CRUZ VEGA SLEYTHER ARTURO

HUACHO, PERÚ

2022

DISEÑO DE AULA Y CENTRO DE COMPUTO PARA MEJORAR LA CALIDAD EDUCATIVA DE LA INSTITUCION EDUCATIVA 20517, SUPE, BARRANCA, LIMA, 2022

INICODIME	DE ODIC	INALIDAD
		INALIDAD

1 INDICE	9% 18% 2% 13¢ trabajo estudian	S DEL
FUENTE	S PRIMARIAS	
1	Submitted to Universidad Nacional Jose Faustino Sanchez Carrion Trabajo del estudiante	7%
2	repositorio.unjfsc.edu.pe Fuente de Internet	3%
3	repositorio.ucv.edu.pe Fuente de Internet	2%
4	repositorio.urp.edu.pe Fuente de Internet	<1%
5	Submitted to Universidad de Monterrey Trabajo del estudiante	<1%
6	Submitted to Universidad Cesar Vallejo Trabajo del estudiante	<1%
7	www.slideshare.net Fuente de Internet	<1%
8	Submitted to Pontificia Universidad Catolica del Ecuador - PUCE	<1%

DEDICATORIA

Mi trabajo va dedicado a mis padres, quienes con gran esfuerzo alcanzaron a guiarme por el camino a ser profesional y más aún, a continuar hasta culminar este trabajo de investigación y alcanzar un peldaño más en mi carrera.

AGRADECIMIENTO

Mis agradecimientos al personal profesional y técnico a cargo del proyecto desarrollado en la Institución Educativa N° 20517 de Supe quienes me apoyaron en todo momento para tener acceso a la información necesaria, así como al sitio mismo de la edificación para realizar las mediciones correspondientes.

Además, deseo agradecer la labor realizada por mi asesor, quien me permitió las correcciones necesarias para culminar esta investigación según todas las exigencias de la Universidad.

ÍNDICE

	DEDI	ICATORIA	ii
	AGR	ADECIMIENTO	iii
	ÍNDI	CE	iv
	LIST	'A DE FIGURAS	vii
	LIST	A DE TABLAS	viii
	LIST	'A DE ANEXOS	ix
		UMEN	
		TRACT	
		RODUCCION	
		ITULO I: PLANTEAMIENTO DEL PROBLEMA	
	-	oción de la realidad problemática	
1.2.	Forr	mulación del problema	3
1.	2.1.	Problema general	3
1.	2.2.	Problemas Específicos	4
1.	2.3.	Objetivo general	4
1.	2.4.	Objetivos específicos	4
1.3.	Just	tificación de la investigación	5
1.	3.1.	Justificación teórica.	6
1.	3.2.	Justificación Práctica	6
1.	3.3.	Justificación Social	6
1.	3.4.	Justificación técnica	6
1.4.	Deli	imitación del estudio	7
1.5.	Viak	bilidad del estudio	7
	CAPI	ITULO II: MARCO TEORICO	8
2.1	Ante	ecedentes de la investigación	8
2.	1.1. Ar	ntecedentes Internacionales	8
2.	1.2. Ar	ntecedentes nacionales	12
2.2.	Base	es Teóricas	15
2.	2.1.	Diseño de aulas	15
2.	2.2.	Calidad educativa	23
2 2 5	lacac fi	ilosóficas	29

2.4. De	efinic	iones de términos básicos	31
2.5.	For	mulación de la hipótesis	32
2.5.	.1.	Hipótesis general	32
2.5.	.2.	Hipótesis específicas	32
2.6.	Ope	racionalización de variable e indicadores	33
(CAPI	TULO III: METODOLOGIA	35
3.1 Dis	seño	Metodológico	35
3.1.	.1. Di	seño	35
3.1.	.2.	Tipo de investigación	35
3.1.	.3.	Nivel de la investigación	36
3.1.	.4.	Enfoque	36
3.2.	Pob	lación y Muestra	37
3.2.	.2. Po	oblación	37
3.2.	.3. M	uestra	37
3.3.	Técr	nicas e instrumentos de información	38
3.4.	Técr	nicas para el procesamiento de la información	38
3.5.	Mat	riz de consistencia	39
(CAPI	TULO IV: RESULTADOS DE LA INVESTIGACIÓN	41
4.1.	Dise	ño de aula y centro de cómputo	41
4.1.	.1.	Diagnóstico situacional de la infraestructura	41
4.1.	.2.	Diseño de infraestructura	47
4.1.	.3.	Costos y presupuestos	51
4.1.	.4.	Procesos constructivos	57
4.2.	Cali	dad educativa	62
4.2.	.1.	Habitabilidad	62
4.2.	.2.	Seguridad	63
4.3.	Resi	ultados metodológicos	66
4.1.	.1.	Validez del instrumento	66
4.1.	.2.	Confiabilidad del instrumento	67
4.1.	.3.	Contrastación de hipótesis	69
(CAPI	TULO V: DISCUSION	88
5.1.	Disc	usión de resultados	88
5.2	Con	clusión	. 91

5.3.	Recomendación	96
	CAPITULO VII: FUENTES DE INFORMACION	96
	5.1 Fuentes bibliográficas	96
	5.2. Fuentes hemerográficas	98
	5.3. Fuentes electrónicas	99
	ANEXOS	100

LISTA DE FIGURAS

Figura 1. Diseño de un aula escolar	16
Figura 2. Diseño en 3d de un aula con las condiciones básicas	17
Figura 3. Diseño de un centro de computo	17
Figura 4. Esquema de diagnóstico situación de la infraestructura	19
Figura 5. Inadecuado confort de los estudiantes	19
Figura 6. Procesos constructivos (etapas)	23
Figura 7. Calidad educativa (organigrama)	24
Figura 8. Esquema de habitabilidad	25
Figura 9. Confort de habitabilidad en infraestructuras de edificaciones	26
Figura 10. Triangulo de infraestructura segura	28
Figura 11. Evaluaciones de riesgos a nivel nacional 2020	28
Figura 12. Diseño relacional de la investigación	36
Figura 13. Fases del tiempo técnico de preparación del trabajo	41
Figura 14. Plano de ubicación del lugar a intervenir	45
Figura 15. Curvas de nivel, relleno topográfico	46
Figura 16. Primer nivel (sala de cómputo)	47
Figura 17. Segundo nivel (primaria)	47
Figura 18. Cuadro de vanos	48
Figura 19. Plano para visualizar los cortes A-A, B-B.	48
Figura 20. Elevación fachada principal aula tipo	49
Figura 21. Corte A – A	49
Figura 22. Elevación fachada lateral aula tipo	50
Figura 23. Corte B – B	50
Figura 24. Presupuesto global del proyecto	56
Figura 25. Cronograma de avance de obra	60
Figura 26. Tabla de niveles de iluminación para tareas visuales y áreas de trabajo	62
Figura 27. Matriz de peligro	
Figura 28. Mapa de riesgo	
Figura 29. Cuencas hidrográficas	
Figura 30. Identificación y características de las amenazas	
Figura 31.Mapa de riesgo según SIGRID	
Figura 32. Resumen de procesamiento de casos, estadística de fiabilidad	
Figura 33. Grafica de Barras para las variables (X-Y)	
Figura 34. Gráfico de dispersión de las variables basado en función lineal (X-Y)	
Figura 35. Gráfico de ubicación de los resultados obtenidos	
Figura 36. Grafica de Barras para las variables (D1-Y)	
Figura 37. Grafica de Barras para las variables (D3-Y)	
Figura 38. Grafica de Barras para las variables (D3-Y)	
Figura 39. Grafica de Barras para las variables (D4-Y)	
Figura 40. Resumen de prueba de hipótesis	87

LISTA DE TABLAS

Tabla 1. Matriz de operacionalización de variables	33
Tabla 2. Tiempo técnico de preparación de trabajo	42
Tabla 3. Metrado de obras provisionales	51
Tabla 4. Metrado de arquitectura	52
Tabla 5. Metrado de estructura	54
Tabla 6. Metrado de instalaciones eléctricas	56
Tabla 7. Cronograma de desembolso	61
Tabla 8 . Lista de expertos y calificaciones	66
Tabla 9. Escala de validación	67
Tabla 10. Procesamiento en SPSS para la confiabilidad (Alfa de Cronbach)	67
Tabla 11. Escala de confiabilidad	68
Tabla 12. Escala de correlación.	69
Tabla 13. Correlación con tau-b de Kendal y Rho de Spearman de las variables (Di	iseño
de un aula y centro de cómputo – calidad educativa)	70
Tabla 14. Correlación R Pearson (diseño de un aula y centro de cómputo - Ca	lidad
educativa)	70
Tabla 15. Tabla de contingencia y frecuencia esperada (Diseño de un aula y centr	ro de
cómputo – calidad educativa)	71
Tabla 16: Chi cuadrada (Diseño de un aula y centro de cómputo – calidad educativa	ı)71
Tabla 17. Correlación R Pearson (diagnóstico situacional – Calidad educativa)	75
Tabla 18. Tabla de contingencia y frecuencia esperada (diagnóstico situacional – ca	lidad
educativa)	76
Tabla 19. Chi cuadrada (Diagnóstico situacional – calidad educativa)	76
Tabla 20. Correlación con tau-b de Kendal y Rho de Spearman de las variables (di	iseño
de infraestructura – calidad educativa)	78
Tabla 21. Tabla de contingencia y frecuencia esperada (diseño de infraestructura – ca	lidad
educativa)	79
Tabla 22. Chi cuadrada (Diseño de infraestructura – calidad educativa)	79
Tabla 23. Correlación con tau-b de Kendal y Rho de Spearman de las variables (co	sto y
presupuesto – calidad educativa)	
Tabla 24. Tabla de contingencia y frecuencia esperada (costo y presupuesto – ca	lidad
educativa)	82
Tabla 25. Chi cuadrada (costo y presupuesto – calidad educativa)	82
Tabla 26. Correlación con tau-b de Kendal y Rho de Spearman de las variables (Pro	oceso
constructivo – calidad educativa)	84
Tabla 27. Correlación con tau-b de Kendal y Rho de Spearman de las variables (pro	oceso
constructivo – calidad educativa	
Tabla 28. Chi cuadrada (Proceso constructivo – calidad educativa)	85

LISTA DE ANEXOS

Anexo 1. Instrumento de investigación	¡Error! Marcador no definido.
Anexo 2. Juicio de expertos	Error! Marcador no definido.
Anexo 3. Tabla de chi - cuadrada	¡Error! Marcador no definido.
Anexo 4. Panel fotográfico de los resultados estadísticos	¡Error! Marcador no definido.

RESUMEN

Objetivo: Determinar la relación existente entre el diseño de aula y centro de cómputo con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022. Método: el diseño es correlacional de tipo cualitativo, transversal con una la muestra fue censal 100 usuarios igual la población. Resultados: luego de cuantificar los resultados del cuestionario aplicado, rescatamos los resultados totales el cual deriva en: la variable diseño de un aula y centro de cómputo fueron: "En desacuerdo" respondieron 1 persona, 3 respuestas fueron "Ni de acuerdo no en desacuerdo", 96 respuestas fueron "De acuerdo", 0 respuestas fueron "Muy de acuerdo"; y para la calidad educativa fueron; 1 respuesta de "En desacuerdo", 1 respuestas fueron "Ni de acuerdo no en desacuerdo", 97 respuestas fueron "De acuerdo", 1 respuestas fueron "Muy de acuerdo"; Conclusión: Luego de analizar los resultados y contrastar la información procesa con apoyo del software SPSS v 25, consolidamos información y concluimos que las variables diseño de un aula y centro de cómputo se relaciona significativamente con la variable calidad educativa la cual respalda la infraestructura ejecutada brindando mayor comodidad y confort en el ambiente laboral y educativo de las personas que lo habitan por el espacio de tiempo estimado. La correlación obtenida mediante los estadísticos de Tau-b Kendal es de 58.4% y Rho de Spearman es de 58.6% es por ello que podemos referenciar que la correlación es moderada, además se realizó la contrastaciones de las hipótesis mediante estadísticos donde se referencia que X² calculado es 132,668 resulta mayor al X² critico es 12,592 siendo así que se posiciona en la zona de rechazo, siendo motivo principal que se rechace la hipótesis nula H_0 y se acepe la hipótesis alternativa H₁, todo ello con un nivel de confianza del 5%, siendo así: El diseño de aula y centro de cómputo se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

Palabras claves: Diseño de infraestructura, costos y presupuesto, procesos constructivos, diagnóstico situacional, calidad educativa.

ABSTRACT

Objective: To determine the relationship between the design of the classroom and the computer center with the educational quality of the Educational Institution No. 20517 Supe, Barranca, Lima, 2022. Method: the design is qualitative correlational, crosssectional with a sample was census 100 users equal the population. Results: after quantifying the results of the applied questionnaire, we rescued the total results which derives in: the design variable of a classroom and computer center were: "Disagree" 1 person answered, 3 responses were "Neither agree nor disagree", 96 answers were "Agree", 0 answers were "Strongly agree"; and for educational quality they were; 1 response "Disagree", 1 responses were "Neither agree nor disagree", 97 responses were "Agree", 1 responses were "Strongly agree"; Conclusion: After analyzing the results and contrasting the information processed with the support of the SPSS v 25 software, we consolidate information and conclude that the design variables of a classroom and computer center are significantly related to the educational quality variable which supports the executed infrastructure providing greater convenience and comfort in the work and educational environment of the people who inhabit it for the estimated period of time. The correlation obtained through the Tau-b Kendal statistics is 58.4% and Spearman's Rho is 58.6%, which is why we can refer that the correlation is moderate, in addition, the contrasts of the hypotheses were carried out through statistics where it is referenced that X2 calculated is 132.668 it is greater than the critical X2 is 12.592 being so that it is positioned in the rejection zone, being the main reason that the null hypothesis H0 is rejected and the alternative hypothesis H1 is accepted, all with a confidence level of 5%, being so: The design of the classroom and computer center is significantly related to the educational quality of the Educational Institution No. 20517 Supe, Barranca, Lima, 2022.

Keywords: infrastructure design, costs and budget, construction processes, situational diagnosis, educational quality.

INTRODUCCION

Basado en la masificación de la tecnología al elevado contenido de diversos softwares donde el desarrollo de la industria de construcción se ha visto revolucionada con grandes avistamientos de mejora durante el desarrollo tecnológico, los diseños de las obras estructurales han sido realizadas con la finalidad de viviendas y algunas oficinas o centros educativos los cuales dependiendo el uso son distribuidos y realizados los cálculos de materiales, basado en la actividad se infiere que la calidad educativa respecto a la parte de su estructura se ha mejorado tanto en habitabilidad con el confort lumínico y también basado en la perspectiva condicional propio estructural. En el capítulo 1, referente al planteamiento del problema, la cual describirá la existencia de los problemas existentes en la empresa, teniendo como pilares el problema principal y los problemas específicos para asegurar la suficiente sustentabilidad del trabajo. Los objetivos a alcanzar y la justificación de los proyectos a desarrollar serán claros. En el capítulo 2, el marco teórico, basado sobre la justificación del estudio, combinado con el desarrollo de antecedentes nacionales y extranjeros, el segundo capítulo proporciona la base teórica para definir las variables del estudio. Pasando al capítulo 3, se detalla la secuencia metodológica, tipos y niveles de la investigación, se define el conjunto y muestra del problema dueño, dando lugar a la matriz operativa de variables e indicadores y las herramientas recolectadas y métodos de procesamiento de datos de sustentabilidad. Finalmente, el cuarto capítulo describe los medios necesarios para la ejecución del trabajo y el cronograma de actividades para poder desarrollar el estudio de manera oportuna y económica.

CAPITULO I: PLANTEAMIENTO DEL PROBLEMA

1.1 Descripción de la realidad problemática

En todo el mundo, debido por la masificación de la tecnología y la diversificación del software de desarrollo y soporte, la industria de la construcción ha visto un aumento en la mejora del proceso de construcción la cual están inmersos en el avance y al corriente del aprovechamiento de la tecnología siendo así que los diseños y las ejecuciones de infraestructura de edificaciones y viviendas en un 75% se ha mejorado y continua el proceso, podemos rescatar de ello que la mejora fue tanto en los materiales, diseños, técnicas constructivas y optimización de tiempo, de tal manera que el diseñar un aula y centro de cómputo para mejorar la calidad educativa del estudiantes y docentes brindando mayor seguridad ante la vulnerabilidad adversa de la naturaleza se prioriza en función a que la infraestructura se convierte en la protección y confort de mantener a los que conviven dentro con el mejor entusiasmo el cual le permita transmitir sus ideales, sentirse satisfecho el tan solo ingresar al aula, prestar atención optima al aprendizaje y/o enseñanza evitando distracciones de sonidos adversos producto de actividades en alrededores, actualmente en lugares apropiados del mundo, por las autoridades y falsías en las propuestas de gobierno no cuentan con los servicios educativos básicos y los fondos son desviados a otros monumentos paisajísticos, también se reconoce que en los países subdesarrollados o tercermundistas no cuentan con la suficiente economía el cual les permita brindar a la población un servicio educativo con las condiciones básicas donde se respalden las enseñanzas (Alfaro, 2019, p. 24).

A nivel nacional, en caso cierto se cuenta con un fondo económico el cual se encuentra destinado a la educación pero no siempre enfatiza en la infraestructura, si bien es cierto se debe tener en cuenta que para mejorar la calidad es necesario también contar con espacios renovados los cuales posibiliten a los estudiantes y docentes convivir en el espacio de confort mejorando así el interés de prestar la atención posible a las indicaciones de aprendizaje, en varias regiones los gobernantes no toman en cuenta los mantenimientos, renovaciones o creaciones de espacios estructurales para llevar una asistencia de clases donde las personas se encuentren seguros de las desavenencias de la naturaleza, en los lugares oriundos del Perú sea, Huancayo, Pasco, Puno, zona de la selva no cuentan con servicios básicos ni infraestructuras educativas donde los estudiantes y docentes puedan impartir las clases y así mantener la calidad educativa a flote, el 60% de las regiones se encuentran en completo estado de abandono en referencia a las condiciones de infraestructura, muchos d ellos estudios tanto como perfiles y expedientes quedan en el olvido siendo así que aquellas inversiones en los diseños de las aulas y centro de cómputos en ocasiones no se concretan por factores económicos o acuerdos de los conciudadanos, motivo por el cual la calidad educativa no se imparte con la facilidad ni aspectos remotos que faciliten el aprendizaje; las autoridades que se encuentran representando a las instituciones educativas en estado de deterioro no cursan documentos al estado referente a su situación actual y hacerle seguimiento de gestión motivo por el cual no se cuenta con la estadística exacta de cuantas atenciones y cuáles son las prioridades para destinar el fondos económicos con fines de mejoramiento (OMS, 2015) (p. 32).

A nivel local, en el norte chico se han ejecutado proyectos de envergaduras el 40% son infraestructuras educativas entre colegios y universidades, los cuales reflejan que se encuentran inmersos en algunos planes de gobiernos y otros lo realizan con fondos propios de la institución dependiendo de la necesidad, el diseño de aulas y centro de cómputo se realizan con la finalidad de brindar una mejor calidad educativa y es aplicado para mejorar el servicio básico escolar, Es bien sabido que la educación contribuye a la salud, calidad de vida y también a la organización social de las personas. También es un factor que tiene un gran impacto en la economía y el empleo. Así mismo la institución educativa N° 20517 Campiña de supe actualmente requiere de la construcción de un aula de sexto grado y una sala de cómputo adecuada de forma que haga el cierre de brecha de su oferta actual de 172 alumnos, el estudio propuesto planteado en el colegio I.E 20517 Campiña de Supe, Distrito de Supe – Provincia de Barranca – Departamento de Lima, Sabiendo que con educación creamos oportunidades para un mejor futuro (Barriento, 2018, p. 8).

1.2. Formulación del problema

1.2.1. Problema general

¿En qué medida el diseño de aula y centro de cómputo se relaciona con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022?

1.2.2. Problemas Específicos

- ∠ En qué medida el diagnóstico situacional de la infraestructura está relacionado
 con la calidad educativa de la Institución Educativa N° 20517 Supe,
 Barranca, Lima, 2022?
- ¿En qué medida el diseño de infraestructura se relaciona con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022?
- ¿En qué medida los costos y presupuestos se relaciona con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022?
- ¿En qué medida los procesos constructivos se relacionan con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022?

1.2.3. Objetivo general

Determinar la relación existente entre el diseño de aula y centro de cómputo con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

1.2.4. Objetivos específicos

- Determinar la relación existente entre el diagnóstico situacional de la infraestructura con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.
- ✓ Determinar la relación existente entre el diseño de infraestructura con la

calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

- ✓ Determinar la relación existente entre los costos y presupuestos con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.
- ✓ Determinar la relación existente entre los procesos constructivos con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

1.3. Justificación de la investigación

La tesis tiene por objetivo mejorar la calidad educativa mediante el diseño de aula y centro de cómputo debido a que se encuentra en estado de deterioro y carencia existencial del centro de cómputo, motivo por el cual los estudiante y profesores podrán impartir enseñanzas y aprendizajes en el lapso de periodo correspondiente siendo un derecho de cada uno de ellos el recibir las clases en un ambiente adecuado donde el confort se encuentre estable y ayude a mantenerse concentrado en las explicaciones referenciadas por el instructor, sin embargo en la fase de infraestructura se plantea realizar las actividades de acuerdo a los diseños arquitectónicos y estructurales dando fiabilidad al sistema constructivo el cual les brinda seguridad ante cualquier fenómeno natural adverso y disminuyendo las vulnerabilidades, en tal sentido se desarrolla el estudio en base a la carencia y desarrollo educativo afianzando así la particularidad de la educación desde una vista estructural, por ello planteamos un estudio de relación causal debido a

una de la variables afectará a la otra para obtener una óptima mejora, seguidamente se detalla las justificaciones de acuerdo al ámbito de desarrollo a abarcar.

1.3.1. Justificación teórica.

La presente investigación se basa en información formal, teorica y científica, como estudios, informes, artículos, revistas, libros, sitios web, etc., que son necesarios para preparar y diseñar el estudio de manera efectiva y útil. Este estudio será una herramienta muy útil para ampliar el conocimiento de los profesionales de la industria de la construcción y profundizar sus investigaciones sobre temas emergentes en las instituciones educativas.

1.3.2. Justificación Práctica

Esta investigación permitirá a los ingenieros civiles emplear los conocimientos alcanzados durante sus carreras. Conceptualizando Ideas para Beneficio de los Estudiantes de la Institución Educativa N° 20517, Supe, Barranca, Lima

1.3.3. Justificación Social

Serán beneficiados los estudiantes de la I.E N° 20517, Supe, Barranca, Lima, quienes podrán contar con un proyecto que beneficié sus necesidades de adecuada infraestructura educativa.

1.3.4. Justificación técnica

Este proyecto ayudará mucho para el beneficio y desarrollo de la Institución Educativa N° 20517, Supe, Barranca, Lima, ya que contaran con un buen diseño de las aulas y centro de cómputo la cual esto mejorará la

infraestructura, teniendo en consideración los parámetros definidos por el R.N.E,

(E020, E030, E070) para el correcto diseño.

1.4. Delimitación del estudio

✓ Delimitación espacial

El actual trabajo de investigación tiene como ubicación para su realización en la I.E N° 20517 Supe, Barranca, Lima.

✓ Delimitación temporal

El presente trabajo de investigación se ejecutará entre junio y noviembre del 2022. Se tuvo en cuenta los registros de varios eventos desde junio de 2022 hasta el mes en curso; y encuestas para padres.

✓ Delimitación social

Loa que intervinieron en la investigación son:

- El tesista: Osco Mamani Luis Abel

- Asesor de tesis: Mg. De La Cruz Vega Sleyther Arturo

1.5. Viabilidad del estudio

La accesibilidad de información no fue un factor limitante para realizar la investigación ya que la documentación estaba disponible. Asimismo, no se realizaron experimentos que requirieran materiales técnicos especiales, por lo que los recursos de investigación anteriores no son un factor limitante.

7

✓ Viabilidad ecológica

Es estudio es viable porque no afectara la disposición d ellos residuos sólidos al ambiente debido a que se encuentra dentro del estudio disponer de un relleno sanitario el cual expida un certificado donde garantice la mitigación de la contaminación, tampoco se dañarán áreas verdes los cuales se protegerán desde el momento que se inicia la construcción porque se respalda con la partida de costos unitarios.

✓ Viabilidad económica

Nuestro proyecto posee un potencial determinante el cual precede de un presupuesto asignado motivo por el cual se analiza aspectos técnicos, comerciales y económicos con la finalidad de valorar el retorno preciso de la inversión.

✓ Viabilidad tecnológica

Basado en un propósito técnico es desarrollado por profesionales con ventajas competitivas y asignadas de acuerdo a la especialidad que se requiere porque se encuentran familiarizados ampliamente con los diseños actuales usando instrumentos tecnológicos a manera de apoyo, motivo por el cual el diseño de la infraestructura y el equipamiento completo se encuentra a la vanguardia.

CAPITULO II: MARCO TEORICO

2.1 Antecedentes de la investigación

2.1.1. Antecedentes Internacionales

Zorrilla (2018), en su tesis la cual fué desarrollada en la Universidad de Guayaquil la cual tiene como objetivo dando respuesta al problema abordado

motivo por el cual se resalta la aplicación del diseño óptimo para las aulas analizando las zonas asignadas y establecer así una recomendación de diseño que acepte < la posible relación con la calidad educativa, la metodología a utilizar durante la investigación es relacional causal, de tiempo transeccional, la recopilación de datos fue cuestionario el cual se aplicó en campo y del diseño se plasmó en planos los cuales orientan el proceso estructural global, se concluye la investigación aplicando el diseño propuesto para dar posible solución mitigando los problemas futuros brindando seguridad y confort para los estudiantes el cual no se torne aburrida el recibir las instrucciones del docente ni desanimó de continuar con el aprendizaje.

Ceballos (2021) plantea la tesis titulada "Diseño de un proyecto de aula que contribuya a potenciar la calidad educativa a través del manejo de residuos sólidos" presentada a la Universidad Pontificia Bolivariana la cual tiene como objetivo general de la investigación con la finalidad de diseñar un proyecto ambicioso de aulas contribuyendo así al potenciamiento científico e intelectual de los estudiante porque la calidad educativa en referencia a la estructura mejora y brinda seguridad a los que lo habitan, la metodología utilizada es no experimental de nivel relacional causal porque una de las variables va depender de los resultados para incrementar la óptima solución, es de tipo cuantitativo y se realiza en un periodo de tiempo corto motivo por el cual es llamado transversal, se concluye la investigación afirmando que el diseño del aula se relaciona significativamente con la calidad de servicio y en referencia a los residuos sólidos son derivados a los rellenos sanitarios básicos, también referencia que la ejecución del diseño

propuesto para el aula promueve el mejoramiento optimo estructural donde el mismo tesista lo encuentre atractiva en un futuro permitiendo así el desarrollo natural del practica pedagógica incrementando la mejora continua.

Salas & Lucín (2019), planteó la tesis la cual tiene por objetivo de evaluar la calidad educativo basado en gestión para mejorar las repercusiones o alguna incidencias en los servicios educativos realizado a lo largo de los periodos, se utiliza una metodología de investigación básica el cual consta de un nivel relacional descriptivo porque no se pretender demostrar cuantitativamente los resultado debido a que la calidad educativa maneja parámetros los rigurosamente es abordado en los rangos óptimos, el tipo de investigación es transversal según el periodo de tiempo y se trabaja con una población y muestra finita, concluye la investigación logrando determinar aquellos factores sumamente importantes y principales del orden positivo y también negativo para la entidad en la cual refiere algunos cambios necesarios para la realización de los parámetros idóneos garantizándola eficiente forma de trabajo competitivo y la calidad educativo se incremente de la mejor manera hacia la población involucrada.

Marín (2019), con su tesis el cual es abordado por el investigador en referencia a la temática se titula "Calidad educativa bajo condiciones de infraestructura en el fortalecimiento del desempeño académico del estudiante" presentada en la Universidad de la Costa la cual tiene como objetivo general donde pretende analizar las dimensiones que definen las variables infraestructurales tales como la condición de calidad educativo el cual fortalece los desempeños académicos de los estudiantes los cuales se reflejan en el rendimiento académico

regular en el periodo del estudio cursado tomando como prueba para mejorar ambientes o conforte para cada uno de ellos, la metodología de investigación que se toma en consideración es básica descriptiva correlacional la cual tiene como finalidad medir la significativa relación entre las variables, el tipo de investigación es transversal y según carácter de medida es cualitativa, concluye la investigación basado en la percepción de los estudiantes donde la dimensión confort es aquella que tiene mayor influencia debido que al sentirse bien y con muchos ánimos en el lugar pues permite la mayor atracción a entender e interpretar lo que el instructor explica sin embargo la metódica de enseñanza no se descarta y también la dinaminas para mejor y adecuada interpretación.

Radic (2019) nos dice en su tesis la cual tiene como objetivo de responder al problema general planteado, donde se pretende diseñar un adecuado sistema de mejora y evaluación donde la calidad de educación para los colegios donde se plantea el estudio porque permite calcule la calidad de aquellos centros escolares y acompañamiento durante los procesos de mejora continua, la metodología de investigación es de nivel relacional de tipo transversal ya que se desarrolla durante un tiempo corto, concluye la investigación con un resultado de síntesis básica luego de la obtención de las cuantificaciones y contrastación de resultados porque lo conocimientos se encuentran subjetivamente en las personas el cual difiere en cuantificarlas pero si se pudo parámetros en rangos y en base a ello distinguir la interpretación de los resultados respondiendo así al objetivo planteado, el análisis de datos los niveles resaltantes fueron políticas educativas, la escuela y formación de docentes debido a la conexión directa con el mundo académico.

2.1.2. Antecedentes nacionales

Lorrén (2018) en su tesis la cual tiene como objetivo principal elaborar el diseño definitivo de la infraestructura inicial en tal sentido mejora la calidad de servicio brindando un resultado óptimo para el desarrollo secuencial del aprendizaje, la metodología de investigación utilizada opta por la relación correspondiente, el periodo de tiempo para procesar la información luego de la recolección armoniza en transversal con paradigma deductivo, el instrumento usado es el cuestionario y análisis de contenido para tomar la base de todo el desarrollo estadístico, concluye la investigación realizando estudios básicos para el diseño del ambiente en tal sentido es necesario contar con un levantamiento topográfico para definir relieves donde a su vez las pendientes del terreno se encuentran por debajo de 3%, s diseño 3 módulos educativos el cual se encuentra diseñado con el procedimiento combinado compuesto ya sean mediante pórticos basados en muros de albañilería y/o concreto armado por lo tanto se cumple con el Reglamento Nacional de Edificaciones.

Huaytan (2021), en su tesis la cual tiene como objetivo para dar solución al problema principal abordado en tal sentido pretende determinar la relación causal de la implementación del aula virtual conlleva a un desarrollo adecuado para la enseñanza en los estudiante seminaristas de la Diocesis de Chosica, para ellos se optó por la metodología de la investigación para poner en práctica colocando el diseño relacional causal con la finalidad de obtener el resultado significativo para implementar todo los ámbitos posibles, el proyecto se realizó en un periodo de tiempo donde era necesario de obtención de datos posibilitando así

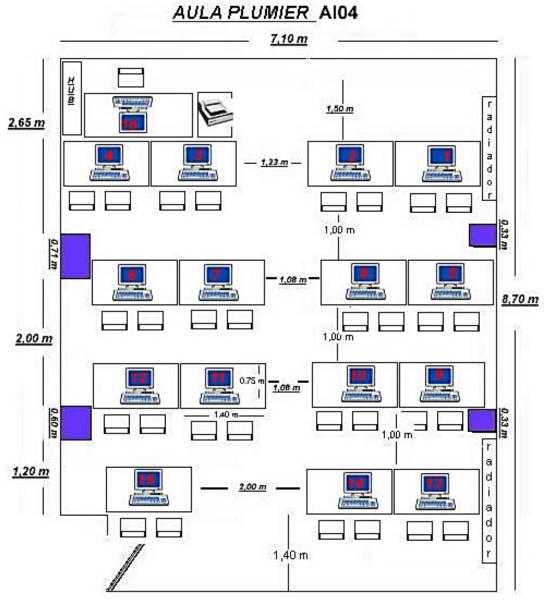
el diseño, la investigación es concluida luego de haber cuantificado la relación del 70% entre las variables y poniendo en práctica el diseño de implementación con la finalidad de optimizar los momentos de aprendizaje y conllevando a un confort adecuado para los habitantes, en la prueba de significancia resulta 0.000 el cual está por debajo de 5% referenciando que rechazan la hipótesis nula y opta por la alternativa la cual afirma que la implementación si mejora el desarrollo de la enseñanza.

Retamozo (2019) en su tesis la cual tiene como objetivo general el cual pretende realizar un diseño adecuado del aula y centro de cómputo el cual brinde el servicio de calidad elevada e innovación de acuerdo a la demanda educativa satisfaciendo así a la población objetivo, se aplica la metodología de investigación no experimental de nivel correlacional causal debido a que una de las variables causa efecto sobre otra para mejorar o incrementar, el periodo de tiempo se encuentra inmerso en la cantidad de días que conllevar el realizar la propuesta de diseño el cual se considera como transversal, de tipo de medida cualitativa porque se aplica instrumento (cuestionario) para la recolección de datos, la conclusión de la investigación está inmerso al resultado obtenido luego del procesamiento estadístico para contrastar hipótesis, es un aporte sumamente innovador debido a que la metodología de enseñanza se va reflejando las dinámicas de los cursos porque cuentan con los recursos básicos desde donde se van formando los técnicos en el campo competitivo laboral.

Verastegui (2021), en su tesis la cual tiene por objetivo conocer el tipo de relación causal existente entre la calidad educativa desde el punto de vista de infraestructura con el perfeccionamiento profesional de aquellos estudiantes en el periodo del 2018, en tal sentido se plantea la metodología de la investigación aplicada es no experimental de nivel correlacional el cual se encuentra detallado para la recolección de la información en un periodo de tiempo es considerado transversal porque no es un periodo extenso con carácter de medida cualitativa debido a que se procesan los estadísticos basadas en respuestas subjetivas, concluye la investigación referenciando que se llegó a incrementar la calidad educativa basado en la infraestructura y el desarrollo de aprendizaje de los estudiantes se tornó mucho más didáctica motivo por el cual se volvió a tomar el cuestionario y las expectativas cambiaron es así que resulta en un 80% de correlación significando moderada para nuestro estudio.

Espíritu (2022) en su tesis la cual tiene como objetivo general analizar los niveles de calidad educativa basado en la infraestructura es de suma importancia debido a la acreditación bajo los lineamientos del SINEACE debido a que es la única institución encargada de regular el mencionado proceso, en este proceso se opta la metodología de investigación donde el nivel es correlacional causal porque una de las variables causa efecto en la otra y de ello resulta un estadístico el cual referencia la correlación significativa, debido a que el periodo de tiempo es corto entonces se dice que es de tipo transversal, la investigación concluye basado en las percepciones de los encuestados que existe un mediado nivel de calidad educativa que se viabiliza para la acreditación sin embargo el proceso de

acreditación abarca otros campos los cuales complementan con la finalidad de garantizar el servicio educativo.


2.2. Bases Teóricas

2.2.1. Diseño de aulas

Según Barriento (2018) nos comenta; que el diseño es aquella actividad que se realiza luego de los estudios básicos debido a que esto facilita la información para algunos cálculos específicos de estructurales motivo por el cual se afirma que estos estudios se consideran los cimientos de un diseño específico y acompañado de otras normativas vigentes para cada uso del espacio se concreta un adecuado diseño y óptimo para el uso. El diseño de las aulas educativas se rigen por un conjunto de normativas las cuales se encuentran actualmente en el R.N.E en tal sentido se busca transformar un espacio en un modelo óptimo para una óptima recepción del servicio contando con todos los cálculos y cuantificación estructural evitando así posteriores desaveneniencias, para ello fluye la creatividad, del responsable del diseño con la finalidad de ejecutar un proyecto con un diseño apropiado y resistente en caso de presencia de fenómenos fortuitos de la naturaleza.

Según Alfaro (2019), nos comenta que; es diseño de un aula y centro de cómputo en una institución educativa son actividades de remodela miento o ampliaciones de acuerdo a las necesidad e incremento d ellos estudiantes para ello el proye3ctistran debe tener el cuanta algunos datos cualitativos y cuantitativos los cuales le servirán de base para el desarrollo de sus cálculos estructurales, así mismo mantener las proyecciones para una segunda etapa de ejecución del

proyecto, en ocasiones los proyectistas no consideran segunda etapa y el diseño solo presta para la primera ejecución entonces la inversión de los costos y presupuestos están inmersos a ello pero a posterior se pretende continuar y es ahí donde las estructuras al no encontrarse diseñada no presta las condiciones e inician las fallas típicas conocidas.

Figura 1. Diseño de un aula escolar Fuente: Google

Figura 2. Diseño en 3d de un aula con las condiciones básicas

Fuente: Google



Figura 3. Diseño de un centro de computo

Fuente: Google

2.2.1.1. Diagnóstico situacional de la infraestructura

Según Climaco (2019) menciona que; el diagnóstico situacional de la infraestructura es la etapa principal luego de una visión general superficial debido a que se identifican de manera clara los detalles, además se va clasificando los factores de riesgo y vulnerabilidad a los cuales se expone, varios de los centros educativos rurales se exponen con mayor frecuencia a iniciar el año escolar en condiciones paupérrimas porque no se interviene a tiempo con el mejoramiento, los habitantes en las condiciones poco seguras se encuentran a un alto riesgo de daño en su integridad física, es así que antes del inicio del año escolar se da un reporte de la situación actual al Ministerio de educación para viabilizar continuar en las condiciones o no para ello se adjunta evidencias y de ser posible se pide apoyo al Defensa civil de la entidad que lo regula.

Para Burkān (2013) dice que el diagnóstico de situación es la evaluación inicial ante cualquier acción relacionada con costo, mano de obra u otra, para que todo esté en orden y sin errores durante la ejecución o mientras se lleva a cabo la actividad planificada. en el exterior, procurar que todo funcione correctamente, evitando en lo posible la perfección o el tabú, ya que se realiza una recuperación completa in situ, teniendo en cuenta la situación actual de la sala. Cada proyecto comienza con un diagnóstico, seguido de una predicción. Allí se definen las actividades realizadas en un período de tiempo, se justifica el proceso de implementación con perspectivas previas y se refuerza el proceso de implementación con referencias y menciones. Cada actividad debe estar diseñada

para organizar y planificar adecuadamente los proyectos y proporcionar los recursos necesarios en los tiempos esperados y/o planificados.

CARENCIA DE AULA: ell ultimo grado del nievl primario no cuenta con el servicio motivo por el cual se convierte en priooritario la realizacion del diseño. CARENCIA DE UN CENTRO DE COMPUTO: en tal sentido se tiene que crear undiseño optimo para colocar en el expediente y generar prespuesto para ejecución.

DIAGNOSTICO SITUACIONAL DE LA INFRAESTRUCTURA

CUANTIFICAR EL CALCULO DE MATERIALES: motivo por el cual se debe considerar un metrado optimo.

COSTOS Y PRESUPUESTOS (VIABILIDAD): en base a los metrados considerar que los costos de materiales se encuentren acorde al mercado e incrementar un 5% para el colchon de seguridad.

Figura 4. Esquema de diagnóstico situación de la infraestructura.

Fuente: elaboración propia

Figura 5. Inadecuado confort de los estudiantes

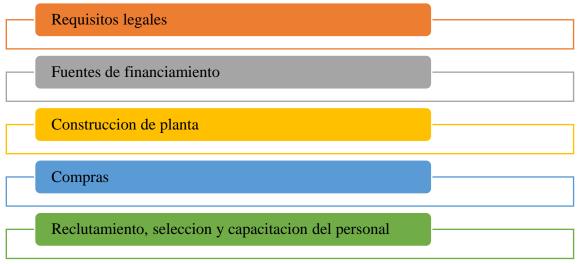
Fuente: Google

2.2.1.2. Diseño de la infraestructura

Para Prada, (2020), menciona lo siguiente; el diseño de la infraestructura está basada en los cálculos estructurales donde los resultados diversifiquen la resistencia estructural con cargas vivas y muertas de acuerdo a los dimensionamiento de los materiales a utilizar. La estructura es un conjunto de elementos que caracterizan un área o sistema real determinado. Los elementos estructurales son permanentes y fundamentales, no se rigen por las circunstancias y condiciones, sino que forman la naturaleza y el sentido de la existencia del sistema mismo. Los elementos que componen la estructura se definen por los rasgos principales o características que los distinguen o personalizan, las denominadas características principales. Habrá características específicas que nos permitan distinguir grupos, grupos dentro de grupos e individuos dentro de grupos. Este concepto se aplica a todas las ciencias, incluidas las ciencias sociales, lo que permite un análisis de los grupos de componentes y la dinámica que crean.

Según Casalino (2019), nos dice que; las acotaciones de los planos de acuerdo al diseño es la pieza clave para la entrega del producto porque con ellos de guía se realizan las ejecuciones de las obras, los replanteos y trazos están inmersos en estos planos y se contrasta con la realizada el cual no difiere en metros pero si en algunos milímetros sin embargo se encuentra plasmado todo los detalles los cuales abordada la infraestructura.

2.2.1.3. Costos y presupuestos


Según Zuñiga, (2016), menciona que: "El costo total es la suma de los costos relacionados con la función de producción unitaria, el departamento de distribución y la gestión, es decir, el costo total de producción; costos de distribución, costos administrativos y financieros de desarrollo. Durante la implementación, los cálculos basados en costos tienen en cuenta las tasas de finalización y los cronogramas de entrega en relación con los cronogramas de inspección de campo.

Según OSCE 2020, nos dice que las mediciones se realizan durante un período de tiempo debido al progreso acumulado y reciben una recompensa monetaria, llamada evaluación, de manera prorrateada hasta el final del contrato; además, "En el avalúo primario, el avalúo del mayor Metrado reportado de la unidad es el total de Metrados efectivamente realizados 2, teniendo en cuenta que la normativa no especifica cómo se debe presentar el avalúo si existen Metrados mayores; o si la evaluación primaria debe realizar una evaluación independiente", de este En el sentido de que los montos realizados se comparan y pagan al precio unitario, estos montos totales deben ser pagados al órgano de contratación. "(..) el El aumento de Metrados previsto en el presupuesto de obra del proyecto específico no estuvo relacionado con cambios en el expediente técnico. El importe máximo del precio unitario en el contrato de ingeniería no se considerará como una modificación de la documentación técnica.

2.2.1.4. Procesos constructivos

Según Becker (2019), nos dice que; dentro de los procesos constructivos se encuentran varias actividades las cuales complementan los procesos paralelos y secuenciales sin embargo va de la mano con el aprovisionamiento de materiales con la finalidad de optimizar tiempos y recursos puesto que se rige para un programación cronogramada en tiempos los cuales no deben desplazarse porque aquellas actividades u operaciones necesitan terminarse y continuar con el proceso, con la finalidad de hacer o realizar adecuadamente las actividades te tiene en cuenta los aspectos de mano de obra y constante supervisión.

Según Cruz (2020), nos comenta que; los procesos constructivos se encuentran detallado en un tiempo de ejecución para saber cuántos días dura el proyecto y que penalidades se aplican si esto no se cumple, por otras actividades también se priorizan los tiempos de aprovisionamiento como mano de obra, recursos materiales, otros recursos complementarios los cuales suman de manera positiva para concretar el proceso de construcción en la infraestructura.

Figura 6. Procesos constructivos (etapas)

Fuente: elaboración propia

2.2.2. Calidad educativa

Según Tapia (2020), nos dice que es un proceso de formación el cual avala un indicador de mejora del estudiante basado en factores que influyen el bienestar debido a que estos factores califican las sujeciones que se aparenta todo con el hecho de manifestaciones propias de los estudiantes donde las evaluaciones son dignas de reportar la mejoría estas se basan en aprendizaje y enseñanza o también en el espacio donde se brinda el servicio, es por ello cuando se habla de educación es referida desde la infancia hasta la adultez con el único propósito que se preparen para el adecuado desempeño ante la sociedad. Mediante la calidad educativa se ha mejorado en cuanto a los objetivos propuestos siendo el caso de entender que es un trabajo iniciado por organizaciones y políticos del país con la finalidad de obtener mejoras en las condiciones actuales en las diferentes entidades educativas las cuales aún se encuentran con actividad de servicio.

GESTIÓN DE LA CALIDAD EDUCATIVA

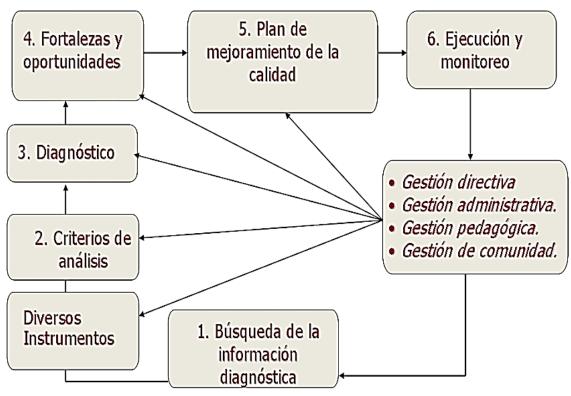


Figura 7. Calidad educativa (organigrama)

Fuente: Calidad educativa

Se muestra en el organigrama todos los pasos para una adecuada gestión con resultados bastos, dentro de las cuales se afirma que es una educación multi determinada, con gran poder adquisitivo de competencias con conocimiento necesarios para un reconocimiento optimo basado en permanencia, también se dice que es aquella cualidad que se obtiene como resultado de una serie de integraciones de dimensiones con gran relevancia el cual impacta en la sociedad con eficiencia y eficacia optima.

2.2.2.1. Habitabilidad

Según (Perez, 2020) nos dice que; la habitabilidad es aquel ámbito donde la arquitectura de la infraestructura se encuentra en la parte disciplinaria el cual se dedica a asegurar las mínimas condiciones de confort y salud en las edificaciones los cuales son abordados a diarios por personas que requieren una tranquilidad para el cual se encuentra construido, específicamente la habitabilidad se ocupa de mantener un ambiente estable con aislamiento térmico, de salubridad y acústico también mantener una luminosidad acorde al desarrollo de la actividad.

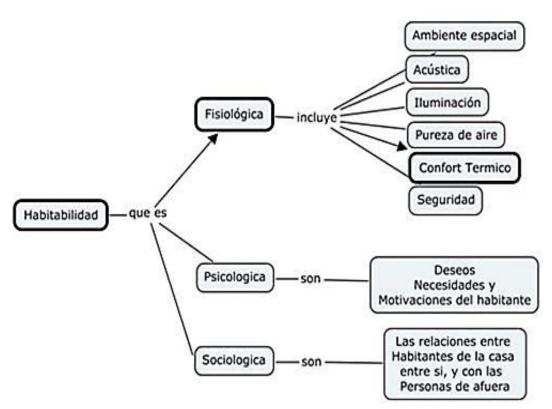
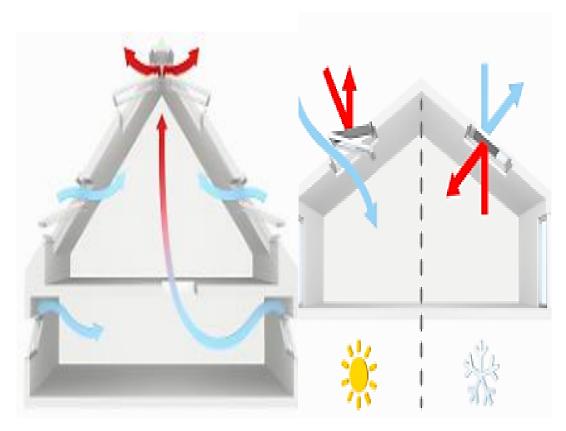



Figura 8. Esquema de habitabilidad

Fuente: La habitabilidad en la infraestructura.

Figura 9. Confort de habitabilidad en infraestructuras de edificaciones Fuente: La habitabilidad en la infraestructura.

Según Leal (2020), nos dice que; la habitabilidad es aquel espacio ocupado por personas que en base a su confort y salubridad prestando las condiciones se podrá adaptar, sin olvidar que hablamos de una vivienda por lo tanto para la veracidad de la habitabilidad se debe de habituarse a la necesidad humana e identificar para que actividad lo requiere. Todo se encuentra referida a las normas legales de edificaciones siendo las autónomas de mostrar un punto específico para alguna toma de decisión en base a la infraestructura y/o arquitectura.

2.2.2.2. Seguridad

Según INDECI (2018) en los referidos que basa el criterio menciona; que la seguridad de la infraestructura se basa en los cálculos estructurales de cada vivienda dependiendo de la proyección y necesidad para la cual se está realizando, sin embargo al basarse en evaluación de riesgos y daños se revela la vulnerabilidad de las afectaciones sísmicas para posteriormente levantar un informe respaldando las fichas de evaluación detallada y especifica. Cuando se especificada la seguridad en infraestructura se identifica el peligro y riesgo es así que se habla de estimación del riesgo el cual mediante un conjunto de especialistas bajo procedimientos "insitu" realizan la evaluación colocando fichas de identificación y detalle, esto se realiza en función a la identificación del peligro debido a que enraíza a la vulnerabilidad general de la estructura. Es así que para el respaldo de una adecuada seguridad el área encargada de defensa civil en todos los comercios obliga a brindar el certificado ITSE con el cual respalda que cumple con todo el sistema de seguridad infraestructural y además cuenta con accesorios preventivos y de identificación para las terceras personas que ingresen al establecimiento.

En el cálculo de riesgo toda estimación matemática está basado en pérdidas económicas, materiales y de vidas humanas debido a los daños provocado por la propiedad todo ello en un periodo especifico del área familiar, también está basado en función al peligro y la vulnerabilidad., porque define exactamente las consecuencias de mucha potencia cuando se suscite el desastre

P=V*R

Donde:

P= peligro

V= vulnerabilidad

R= Riesgo

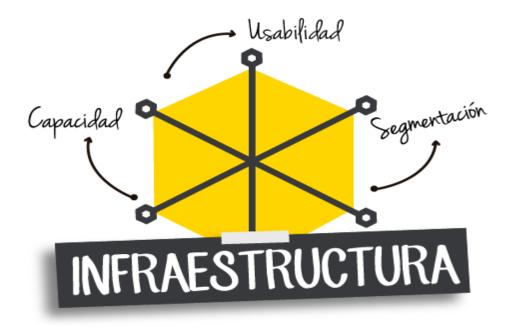


Figura 10. Triángulo de infraestructura segura

Fuente: estimación de riesgo

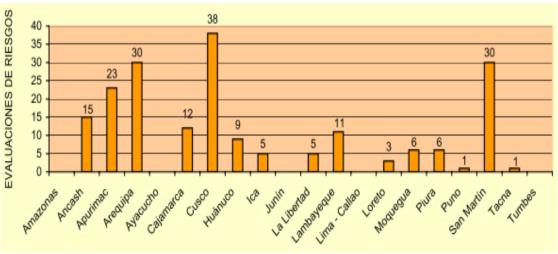


Figura 11. Evaluaciones de riesgos a nivel nacional 2020

Fuente. INDECI

2.3 Bases filosóficas

Diseño de aula y centro de computo

Según Silva (2018) nos dice que; el diseño de una determinada infraestructura está basado en varios acontecimientos previos al desarrollo general de toda la dimensión a plasmar en un plano de detalle donde se identifiquen los accesorios, antiguamente se realizaba en papiros y a mano alzada debido a que no se contaba con instrumentos avanzados tales como hardware y software complicando más aun los detalles en 3 dimensiones sin embargos los proyectistas tenían tal imaginación que ellos entendían con bastante precisión los puntos a tener en cuenta, los materiales eran más rústicos pero con larga duración de vida útil, los diseños de centros educativos con frecuencia fueron los más comunes en realizar, catedrales, casas de alojamientos entre otros que hasta la actualidad perduran como reliquia o lugares atractivos, no existían centros de cómputos pero si espacios recreacionales donde aprendían actividades cotidianas del hogar y del campo con la finalidad de desempeñar en algunos proyectos que les agrade cuando crezcan o alguna inclinación ardua por estos detalles.

Según Salomón (2019) nos comenta que; el diseño de una aula y centro de cómputos son proyectos netamente del estado porque de acuerdo a las partidas presupuestales para cada institución es asignada de acuerdo a un diagnóstico solicitado por el gobierno local al Minst. De Economiía y Finanzas todo ello enlazado al plan anual de desarrollo los cuales son fiscalizables y ejecutados en el periodo indicado de tal manera que no se incurra en malversación de fondos llevar procesos legales de funcionarios que no accionan los detalles.

Calidad educativa

Según Zarzosa (2019) nos dice que; en años remotos varios de los eruditos en las materia filosófica tomaban reportes estadísticos de aprendizajes sin referirse a la calidad es así que cada estudiante desempeñaba sus habilidades porque el estudio era netamente una obligación de encontrarse en un lugar de aprendizajes y a la vez se impartía conocimientos en los lugares públicos muchos de los maestros eran tildados de herejes y asesinados porque no se quería reflejar que las personas despierten sus conocimientos porque la alta burocracia dominaba todo el poder, actualmente la educación es un derecho y no muchos valoran este anhelado obsequio y esfuerzo que realizan los padres para que sus hijos sean cada día mejor para brindar los servicios que la competencia laboral y las empresas requieren mejorando así la calidad de prestaciones de servicio de toda índole profesional es necesaria.

Según Parra (2020) nos dice que; es un pilar fundamental la calidad educativa para el progreso y mejora de la calidad es así que se desplaza a lo largo de los años en varias necesidades complementarias para alcanzar el objetivo de toda institución educativa en ello se encuentra inmerso el aprendizajes, la manera y metodología de enseñanza, la infraestructura en la cual se desarrolla la actividad, las condiciones en las cuales se lleva a cabo esta operación, aquellos estándares subliminales y habilidades blandas que se practican reflejan en los resultados estadísticos de cada reporte asignado en las diferentes áreas y motivo por el cual se basan todas aquellas actividades las cuales son fiscalizadas por entidades reguladores los cuales incurren en presupuestos asignados para la mejora y remodelamiento de las instalaciones cuando sea necesario de acuerdo a los diagnósticos de los representantes de cada institución en tal manera que se desarrolló de forma anual.

2.4. Definiciones de términos básicos

- ➤ Horas.hombre: Viene a ser las horas dedicadas a realizar determinadas actividades para lograr objetivos (Ortega, 2015).
- ➤ Horas maquina: El tiempo dedicado a una actividad, pero es el tiempo que transcurre desde que se enciende la máquina al momento que se el motor se apague. (Isamitt, 2016).
- ➤ Rendimiento: Viene a ser el porcentaje de progreso de actividad durante un determinado período para alcanzar la meta de fecha esperada (Isamitt, 2016).
- Avance: Traza del tiempo transcurrido de una actividad trazada a lo largo de un periodo o periodo de tiempo (Peréz, 2016).
- Planificación: Son actividades detalladas en un período de tiempo con fechas de entrega esperadas que también describen la forma de ejecución (Peréz, 2016).
- ➤ Control: Se verifica el progreso a través de grabaciones o inspecciones visuales y se optimiza el tiempo para que el tiempo de inactividad no reduzca el progreso real (Peréz, 2016).
- ➤ Registro: Es una herramienta de apoyo a través de la cual se puede registrar diariamente lo que sucede durante las actividades de ejecución, por parte de los responsables de seguimiento o supervisión (Ortega, 2015).
- Diseño: Conjunto de características visuales y/o funcionales que componen un determinado objeto animado o no animado.

- Enseñanza: Transferir conocimientos, ideas, experiencia, habilidades o hábitos a quienes no tienen tales conocimientos, ideas, experiencia, habilidades o hábitos.
- Estructura: Viene a ser la distribución y disposición de varias partes de un todo, la secuencia y las interrelaciones entre ellas aseguran el desempeño de un determinado sistema.
- ➤ Infraestructura: El conjunto de medios tecnológicos, servicios y equipos necesarios para realizar una actividad o utilizar un lugar.

2.5. Formulación de la hipótesis

2.5.1. Hipótesis general

El diseño de aula y centro de cómputo se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

2.5.2. Hipótesis específicas

- ✓ El diagnóstico situacional de la infraestructura se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.
- ✓ El diseño de infraestructura se relaciona significativamente con la calidad educativa de la Institucion Educativa N° 20517 Supe, Barranca, Lima, 2022.
- ✓ Los costos y presupuestos se relacionan significativamente con la calidad educativa de la Institucion Educativa N° 20517 Supe, Barranca, Lima, 2022.
- ✓ Los procesos constructivos se relaciona significativamente con la calidad educativa de la Institucion Educativa N° 20517 Supe, Barranca, Lima, 2022.

2.6. Operacionalización de variable e indicadores Tabla 1.

Matriz de operacionalización de variables

Variables	Definición conceptual.	Definición operacional	Dimensiones	Indicadores	Técnicas e instrumentos
Variable independiente (X): DISEÑO DE AULA Y CENTRO DE COMPUTO	El diseño de un aula y centro de cómputo es aquella actividad que se realiza luego de los estudios básicos debido a que esto facilita la información para algunos cálculos específicos de estructurales motivo por el cual se afirma que estos estudios se consideran los cimientos de un diseño específico y acompañado de otras normativas vigentes para cada uso del espacio se concreta un adecuado diseño y óptimo para el uso (Barriento, 2018)	El diseño de un aula y centro de cómputo es una actividad primordial previo a la ejecución del proyecto motivo por el cual se inicia por el diagnóstico situacional de la infraestructura para posteriormente realizar el diseño con sus respectivos costos y presupuestos dando pie así al proceso constructivo acorde al diseño realizado. Sin embargo, para comparar los resultados, se completó un cuestionario utilizando una escala de Likert. (Osco Mamani Luis Abel, 2021)	D1: Diagnóstico situacional de la infraestructura D2: Diseño de infraestructura D3: Costos y presupuestos D4: Procesos constructivos	D1.1. tiempo técnico de preparación de trabajo D1.2. Estudios básicos (lev. Topográficos, mecánica de suelos) D2.1. Diseño de planos acotados en metros. D3.1. Metrados, partidas presupuestales. D4.1. Tiempo de ejecución, Tiempo de aprovisionamiento de materiales)	T: Encuesta I: Cuestionario
Variable independiente (Y): CALIDAD	Es un proceso de formación el cual avala un indicador de mejora del estudiante basado en factores que influyen el bienestar debido a que	La calidad educativa es un proceso de formación personal para el oportuno desenvolvimiento ante la	d1. Habitabilidad	d1.1. Confort lumínico y técnico.	

EDUCATIVA	estos factores califican las sujeciones	sociedad sin embargo en	d2. Seguridad	d2.1. Estimación de	
(infraestructura)	que se aparenta todo con el hecho de manifestaciones propias de los estudiantes donde las evaluaciones son dignas de reportar la mejoría estas se basan en aprendizaje y enseñanza o también en el espacio donde se brinda el servicio, es por ello cuando se habla de educación es referida a todo el conjunto que implica la formación del ser humano desde la infancia hasta la adultes con el único propósito que se preparen para el adecuado desempeño ante la sociedad (Tapia, 2020).	nuestro proyecto se basa en la infraestructura buscando la relación de mejora para ello contrarrestamos con la habitabilidad debido al confort lumínico y técnico que brinda, así mismo la seguridad porque se realizara la estimación de los riesgos basados en la identificación de peligro y vulnerabilidad. Sin embargo, para comparar los resultados, se completó un cuestionario utilizando una escala de Likert. (Osco Mamani Luis Abel, 2021)		riesgos (peligro y vulnerabilidad)	T: Encuesta I: Cuestionario

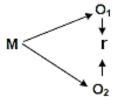
Fuente: elaboración propia

CAPITULO III: METODOLOGIA

3.1 Diseño Metodológico

3.1.1. **Diseño**

Los diseños utilizados en el desarrollo de la investigación son diseños no experimentales relacional causal porque una de las variables causa efecto sobre otra debido a los factores planteados en los enunciados del problema y objetivo, es así que la variable DISEÑO DE UN AULA Y CENTRO DE COMPUTO (X) causa soluciones a la variable CALIDAD EDUCATIVA (Y) desde el punto de vista infraestructural.


3.1.2. Tipo de investigación

La tesis esta definida para el tipo de investigación por varios aspectos cada uno de ellos los detallamos dependiendo del motivo y la necesidad de nuestro proyecto;

Según la finalidad es decir porque aplicamos referenciamos que es investigación de relación con causa efecto porque las variables influirán una sobre la otra, según el alcance temporal, es decir el periodo de tiempo que demora el proyecto es transversal porque solo se realizara en un periodo corto de 3 meses, la profundidad que aborda el proyecto es No experimental pero en carácter de medida enfatizamos que será mixta porque recopilaremos dados numéricos de campo y también aplicaremos un cuestionario usado como instrumento (Córdova, 2013).

3.1.3. Nivel de la investigación

La tesis es no experimental porque no se realizaran proyectos de ensayos ni recopilación de datos de laboratorios son embargo de acuerdo al diseño de investigación (relacional causal) podremos el procedimiento que pretendemos desarrollar, porque una variable influirá en otra de manera particular con la finalidad de mejorar satisfaciendo las necesidades para las cuales están detalladas, el tratamiento no se manipularan datos porque se realizara un diseño original para el proyecto y solo se pretenderá medir la relación con los datos obtenidos. (Sampieri, 2014, p.119).

Donde:

M = Muestra

O₁ = Observación de la V.1.

O₂ = Observación de la V.2.

r = Correlación entre dichas variables.

Figura 12. Diseño relacional de la investigación

Fuente: Proyecto de investigación cualitativa

3.1.4. Enfoque

Este estudio será de medidas mixtas, ya que se procesarán datos estadísticos junto con datos recogidos en campo a través de cuestionarios y datos cuantitativos durante el diseño del propio proyecto, que será digital.

3.2. Población y Muestra

3.2.2. Población

La población a estudiar está limitada y se encuentra detallada pro los N=100 padres de familia que apoyan nuestra propuesta de diseño del aula y centro de cómputo debido a que los beneficiarios son directamente sus hijos de la Institución Educativa N° 20517.

3.2.3. Muestra

La muestra es un censo, como la población es limitada, la muestra es (n=100) padres de familia que apoyan a que el proyecto se realice basado en nuestra propuesta de diseño.

.

3.3. Técnicas e instrumentos de información

3.3.1. Técnica a emplear

Loa siguientes metodos se utilizará para la evaluación de la informacion:

> Encuesta

3.3.2. Descripción de los instrumentos

El dato requerido para realizar esta investigación se obtendrá de las siguientes herramientas de recopilación:

Cuestionario: Este es el nombre de los documentos que contienen un conjunto de afirmaciones o preguntas que se validarán contra una escala de aprobación de estudio o puntuación utilizada para una prueba de estudio.

3.4. Técnicas para el procesamiento de la información

Los siguientes métodos y/o tecnicas se utilizará:

Para la realización de los cálculos se utilizará los siguientes Sofware Microsoft Excel 2019, SPSS 25, Word 2019.

El procesamiento de los datos será el siguiente: a partir del cuestionario se creará la base de datos en Excel, luego se procederá a utilizar SPSS versión 25. La minería de datos y correlación, medición y finalmente medir variables, indicadores resumen descriptivo se realizará externamente. Se utilizarán tablas estadísticas y tablas de variables categóricas para medir medidas, variables de medición e investigación, gráficos de barras de variables categóricas y algunos resúmenes descriptivos como media, varianza, desviación estándar, etc.

3.5. Matriz de consistencia

	Problema principal	Objetivo principal	Hipótesis principal	Variable	Indicador	Metodología
	¿En qué medida el diseño de aula y centro de cómputo se relaciona con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022?	Determinar la relación existente entre el diseño de aula y centro de computo con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.	cómputo se relaciona significativamente con la calidad educativa de la	independiente "X": DISEÑO DE AULA Y CENTRO DE	trabajo	TIPO, según su: Finalidad, aplicada Alcance temporal, longitudinal Profundidad, relacional causal Carácter de medida, cuantitativa.
1	Problemas específicos	Objetivos específicos	Hipótesis específicas	situacional de la infraestructura	D2.1. Diseño de planos acotados en metros.	Diseño: es NO experimental - relacional causal
1	¿En qué medida el diagnóstico situacional de la infraestructura se relaciona con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022?	Determinar la relación existente entre el diagnóstico situacional de la infraestructura con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca,	El diagnóstico situacional de la infraestructura se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.	D2: Diseño de infraestructura D3: Costos y presupuestos D4: Procesos constructivos	D3.1. Metrados, partidas presupuestales. D4.1. Tiempo de ejecución, Tiempo de	M O ₁ r h O ₂ Donde: M = Muestra
	¿En qué medida el diseño de infraestructura se relaciona con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022?	Lima, 2022. Determinar la relación existente entre el diseño de infraestructura con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.	El diseño de infraestructura se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.	Variable dependiente	aprovisionamiento de materiales) d1.1. Confort lumínico y técnico.	O ₁ = Observación de la V.1. O ₂ = Observación de la V.2. r = Correlación entre dichas variables. Enfoque: cuantitativa Población: La población será los padres de familia de los alumnos que

	¿En qué medida los costos y presupuestos se relaciona con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022?	Determinar la relación existente entre los costos y presupuestos con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.	Los costos y presupuestos se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.	d1. Habitabilidad d2. Seguridad	d2.1. Estimación de riesgos (peligro y vulnerabilidad)	integraran los ambientes a diseñar. (100 Personas) de la Institución Educativa N° 20517. Muestra: Se tomará el total de la población por ser número bajo para encuestar
2	¿En qué medida los procesos constructivos se relaciona con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022?	Determinar la relación existente entre los procesos constructivos con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.	Los procesos constructivos se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.			por ser numero sujo para enedestar

CAPITULO IV: RESULTADOS DE LA INVESTIGACIÓN

4.1. Diseño de aula y centro de cómputo

4.1.1. Diagnóstico situacional de la infraestructura

Tiempo técnico de preparación de trabajo

Se continúa con el trabajo de terreno para relevar el sitio y determinar cuántas superficies de trabajo se utilizarán, en este caso por tratarse de la construcción del Centro de Aula 01 y Centro de Cómputo 01, se trabajó con una superficie de trabajo y una malla con dos prismas. El desarrollo de este plan de trabajo incluirá actividades adicionales de la fase introductoria, la fase de trabajo de campo y la fase de trabajo de oficina.

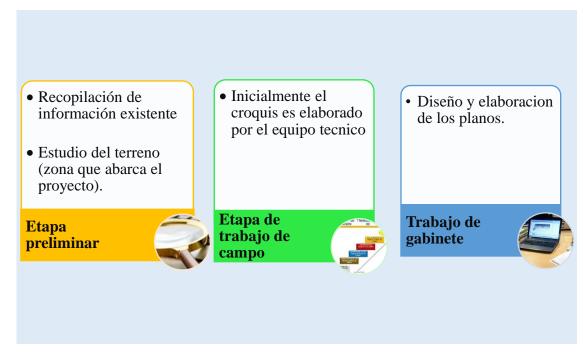


Figura 13. Fases del tiempo técnico de preparación del trabajo

Tabla 2.Tiempo técnico de preparación de trabajo

Item	Descripción
01	Obras temporales, trabajos de preparación, salud, seguridad y transporte
01.01	Construcciones temporales
01.01.01	Construcciones temporales
01.01.01.01	Cartel con el nombre de la obra 3, 6 por 2,4 M
01.01.01.02	Alquiler de bodega de obra
01.01.01.03	Cerco temporales del sitio de construccion
01.01.02	Transporte de materiales, equipos y herramientas
01.01.02.01	Transporte de materiales, equipo y herramientas
01.01.03	Seguridad, salud en el lugar de obra
01.01.03.01	Equipos de protección individual
01.01.03.02	Seguridad y salud en obra
01.01.03.03	Profesional de salud
01.01.03.04	Limpieza y desinfección en obra

Para realizar la ejecución del proyecto primero es necesario contar con un staff de especialistas los cuales realizan tareas de gabinete tales como:

Elaboración de documentaciones

- Plan de salud y también seguridad dentro del trabajo
- Replanteo
- Aprobación de inicio de obra
- Recolección de personal (mano de obra no calificada)
- Documentaciones externas (seguros SCTR, ATS, Check list, Inspecciones,
 - PETAR, PTS y otros exigibles)
- Implementación de todo lo referenciado en la documentación previa.

Estudios básicos (lev. Topográficos, mecánica de suelos)

LEVANTAMIENTO TOPOGRÁFICO

Para realizar este trabajo se utilizó la Estación Total TOPCON (GPT-

3103W) precisión 3" Segundos, dos (02) prisma con su jalón y un GPS marca

Garmin Montana 650 para tener las coordenadas UTM del punto de cada

estación. Cabe mencionar que se usó el sistema de coordenadas WGS84.

En lo que respecta a los trabajos con la estación total, se tomaron

coordenadas UTM con la finalidad de saber la orientación del levantamiento

con respecto al norte. Es de mencionar que se puso especial énfasis en la toma

de puntos dentro de todo el terreno involucrado. Posteriormente se levantaron

detalles como las estructuras existentes, etc.

EQUIPO UTILIZADO

01 estación Total TOPCON (GPT-3103W) precisión 3" Segundos

Tiempo para la medicion en distancias: 1,2 seg.

Puntos de coordenadas en la memoria interior: 24.000

Puntos topográficos en la memoria interior: 12.000

La precision es de: 3 seg.

02 prisma

: de 2.60 m de altura máxima.

Imagen: directa.

Aumentos: 30x.

Minima lectura: 1 segundo.

43

- 2 pantallas LCD.
- 02 prisma : de 2.60 m de altura máxima.
- 01 wincha de mano : Wincha de 5 m marca Stanley
- 01 cámara digital Sony (Cyber-shot) de 14.1 Megapixeles
- 01 GPS Garmin Montana 650

PERSONAL

- > 01 topógrafo (Estación Total).
- > 02 ayudantes de Topografía para el prisma.
- > 01 camioneta 4x4 Marca Toyota (Para transporte) de equipo y personal a tiempo completo.

CONFECCIÓN DEL PLANO A CURVAS DE NIVEL

Después de medir el terreno y utilizar AutoCAD Civil 3D, los datos se procesan para desarrollar un "Mapa de curvas", adaptado a las necesidades del proyecto. Entonces, los planos se hicieron en lo que consideramos una plataforma estándar como AUTOCAD. Se presta especial atención a la recopilación de información del terreno para obtener un módulo que mejor represente la topografía actual para su diseño estructural. Los puntos recopilados crean una especie de cuadrícula, por lo que las curvas reflejan con precisión la configuración del terreno existente. Para estudiar la zona y su posterior uso durante la construcción, se estableció un punto de control (CP), monumental y representado en el mapa.

> UBICACION Y LOCALIZACION (UL-01)

Ubicación Distrital Escala: 1/1000

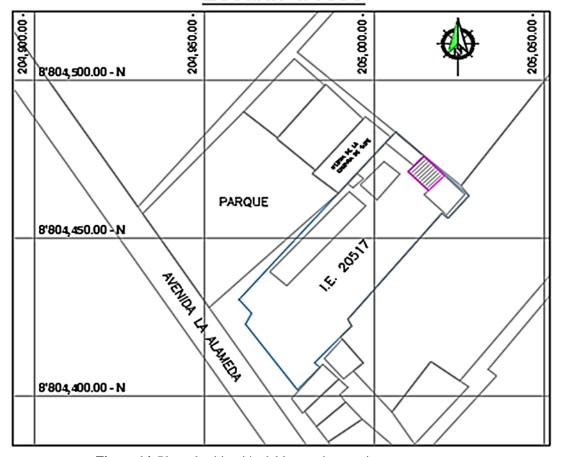


Figura 14. Plano de ubicación del lugar a intervenir

> CURVAS DE NIVEL, RELLENO TOPOGRAFICO (PT-01)

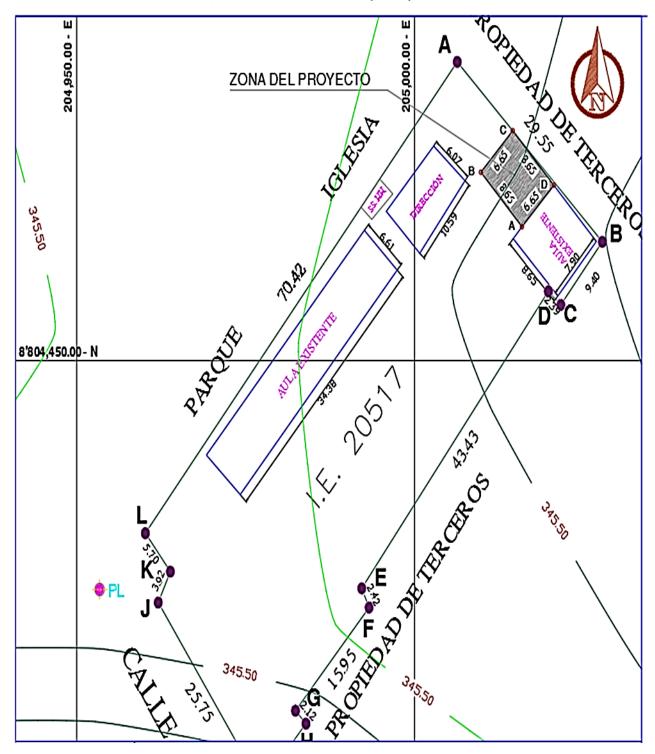


Figura 15. Curvas de nivel, relleno topográfico

4.1.2. Diseño de infraestructura

Diseño de planos acotados en metros.

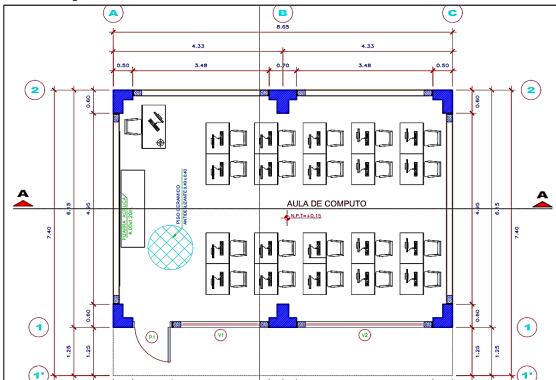


Figura 16. Primer nivel (sala de cómputo)

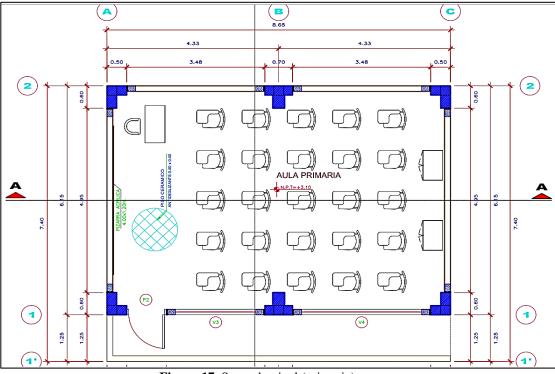


Figura 17. Segundo nivel (primaria)

CUADRO DE VANOS

VENTANAS					
CODIGO	V1	V2	V3	V4	
ALF.	1.20	1.20	1.20	1.20	
ANCHO	2.48	3.48	2.48	3.48	
ALTO	1.50	1.50	1.20	1.20	

CUADRO DE VANOS

PUERTAS					
CODIGO	P1	P2			
ANCHO	1.00	1.00			
ALTO	2.70	2.40			

Figura 18. Cuadro de vanos

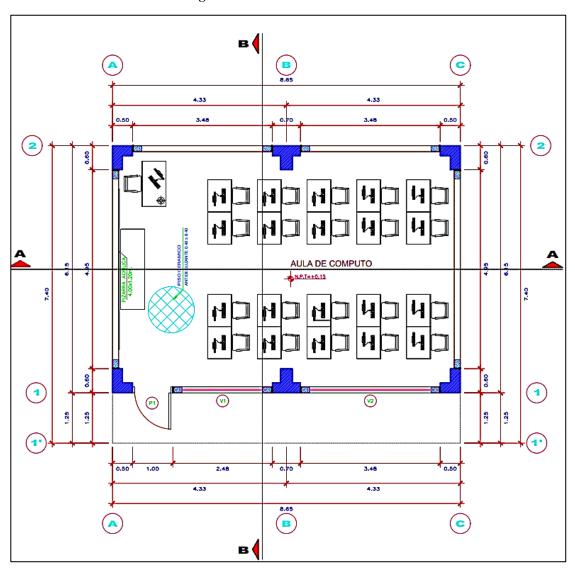


Figura 19. Plano para visualizar los cortes A-A, B-B.

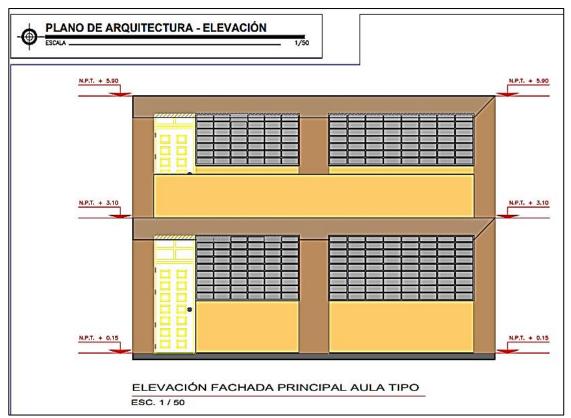


Figura 20. Elevación fachada principal aula tipo

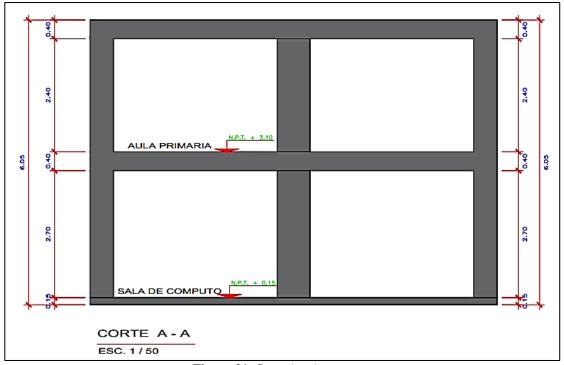


Figura 21. Corte A – A

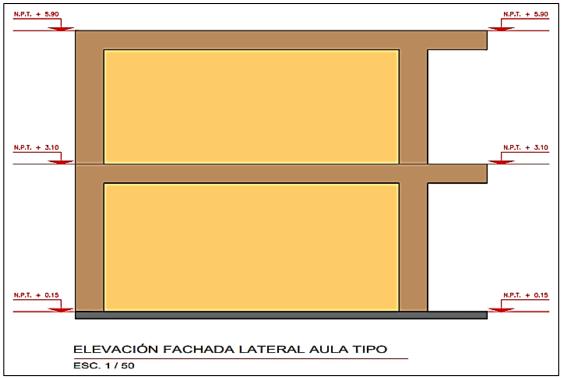


Figura 22. Elevación fachada lateral aula tipo

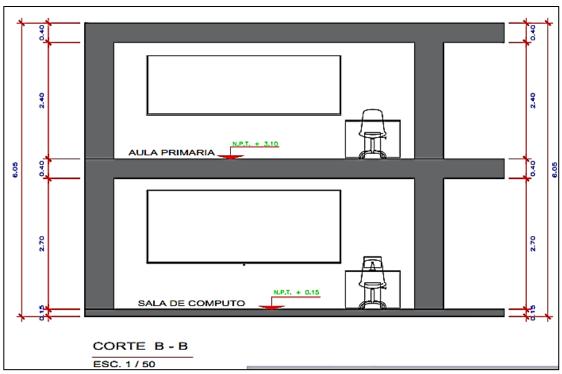


Figura 23. Corte B – B

4.1.3. Costos y presupuestos

Metrados, partidas presupuestales

En este apartado se evidencia las partidas y las cantidades de materiales a requerir con la finalidad de obtener el global de todo lo requerido.

Metrado de obras provisionales

Tabla 3.Metrado de obras provisionales

ITEM	DESCRIPCION	TOTAL
01	OBRAS TEMPORALES, TRABAJOS PRELIMINARES, SALUD, SEGURIDAD Y TRANSPORTE	
01,01	CONSTRUCCION TEMPORAL	
01,01,01	CONSTRUCCION TEMPORAL	
01,01,01,01	CARTEL CON EL NOMBRE DE LA OBRA 3,60 POR 2,40 m	1
01,01,01,02	ALQUILER DE BODEGA DE OBRA	1
01,01,01,03	CERCO TEMPORALES DEL SITIO DE CONSTRUCCION	40,1
01.01.02	MOVILIDAD DE MATERIALES	
01,01,02,01	MOVILIDAD DE MATERIALES, EQUIPO, HERRAMIENTAS	1
01,01,03	SALUD Y SEGURIDAD EN EL LUGAR DE TRABAJO	
01,01,03,01	EQUIPOS PARA LA PROTECCION DE FORMA INDIVIDUAL	1
01.01.03.02	SALUD Y SEGURIDAD EN EL LUGAR DE TRABAJO	1
01.01.03.03	PROFESIONAL SALUD	2,5
01.01.03.04	LIMPIEZA Y DESINFECCION EN OBRA	1

Tabla 4.Metrado de arquitectura

ITEM	DESCRIPCION	TOTAL
03	Arquitectura	
03.01	Muro y tabique	
03.01.01	MURO DE UNIDAD DE ALBAÑILERIA K.K DE ARCILLA	89.56
03.02	Revoque y enlucido	
03.02.01	Enlucido en muros interiores	92.58
03.02.02	Enlucido en muros exteriores	92.58
03.02.03	Enlucido en columnas	39.53
03.02.04	Enlucido en columnas de arriostre	21.10
03.02.05	Enlucido en placas.	23.46
03.02.06	Enlucido de vigas.	59.79
03.02.07	Enlucido de viga de arriostre	12.06
03.02.08	Vestidura en derrames	45.00
03.02.09	Enlucido FROTACHADO DE CIELORRASO de MEZCLA	110.90
03.03	Piso y contrapisos	
03.03.01	CONTRA-PISO E=4cm MEZCLA 1:6, FROTACHADO	106.09
03.03.02	PISO PORCELANATO ANTIDESLIZANTE DE ALTO TRANSITO 40cm x 40cm	96.74
03.04	Contrazocalos	
03.04.01	CONTRAZÓCALO con PORCELANATO H=0.20m	61.00
03.05	Carpintería de madera	
03.05.01	PUERTA MADERA CONTRAPLACA	1.00
03.05.02	PUERTA MADERA TORNILLO CONTRAPLACA	1.00
03.06	Carpintería metálica	
03.06.01	VENTANA METALICA DE 2.48 x 1.50	1.00
03.06.02	VENTANA METALICA DE 3.48 x 1.50	1.00
03.06.03	VENTANA METALICA DE 2.48 x 1.20	1.00
03.06.04	VENTANA METALICA DE 3.48 x 1.20	1.00
03.07	Vidrios	
03.07.01	Vidrio semi templado de 6mm.	17.88
03.08	Pintura	
03.08.01	Pintura de oleo mate en el muro interno (inc. Imprimante)	92.58
03.08.02	Pintura de oleo mate en el muro externo (inc. Imprimante)	92.58
03.08.03	Pintura de oleo mate en las columnas (inc. Imprimante)	39.53
03.08.04	Pintura de oleo mate en las columnas de arriostre (inc. Imprimante)	21.10

03.08.05	Pintura de oleo mate en las placas (inc. Imprimante)	23.46
03.08.06	Pintura de oleo mate en las vigas (inc. Imprimante)	59.79
03.08.07	Pintura de oleo mate en las vigas de arriostre (inc. Imprimante)	12.06
03.08.08	Pintura de oleo mate en las derrames (inc. Imprimante)	45.00
03.08.09	Pintura de oleo mate para el cielo raso (inc. Imprimante)	110.90
03.09	Señalizacion de seguridad	
03.09.01	STICKER AUTOADHESIVO (ZONA SEGURA EN CASOS DE SISMOS 0.20x0.30)	4.00
03.09.02	STICKER AUTOADHESIVO (UBICACIÓN DE SALIDA 0.30x0.20)	2.00
03.09.03	STICKER AUTOADHESIVO (EXTINTOR PORTATIL 0.30x0.20)	2.00
03.09.04	STICKER AUTOADHESIVO (ALTO VOLTAJE RIESGO ELECTRICO 0.30x0.20)	2.00

Tabla 5. Metrado de estructura

ITEM	PARTIDAS	TOTAL
02	Estructuras	
02.01	Trabajos preliminares	
02.01.01	Desmontaje de puertas y ventanas	1.00
	Demolición de patios, veredas, falso piso y	57.69
02.01.02	losas deportivas	
02.01.03	Demolición en columnas de concreto armado	0.54
02.01.04	Demolición en estructuras de albañileria confinada	39.60
02.01.04	Eliminación de demoliciones c/equipo,	
02.01.05	dmax=10 km	77.12
02.01.06	Limpieza permanente en obra	53.20
02.01.07	Trazo, nivelación y replanteo	53.20
02.02	Movimiento de tierra	
02.02.01	Zanja para cimiento corrido y zapata	29.34
02.02.02	Excavación forma manual para veredas	10.81
02.02.03	Compactacion de relleno	12.50
02.02.04	Anular de materiales excedentes	22.73
02.02.05	Nivelación interna y compactado	48.37
02.02.06	Afirmado : 4" para veredas	10.81
02.03	Concreto simple	
02.03.01	Solado, concreto	15.37
02.03.02	Concreto para cimiento corrido	8.28
02.03.03	Concreto para sobrecimiento	0.90
02.03.04	Encofrados y desencofrados de sobrecimiento	12.06
02.03.05	Concreto para piso primario (e=4")	48.37
02.03.06	VEREDA DE CONCRETO f'c=140 kg/cm2', FROTACHADO Y BRUÑADO, E=0.10 m.	1.62
02.03.07	Encofrados y desencofrados de vereda	3.90
02.04	Concreto armado	
02.04.01	Zapata	
02.04.01.01	Concreto en zapata	9.13
02.04.01.02	Aceros grado 60 en zapata	95.64
02.04.02	Viga para las cimentaciónes	
02.04.02.01	Concreto en viga de cimentaciónes	2.35
	Encofrados y desencofrados en viga de	29.75
02.04.02.02	cimentaciónes	
02.04.02.03	Aceros grado 60° en viga de cimentaciónes	512.68
02.04.03	Columnas	
02.04.03.01	Columna principales	_
02.04.03.01.01	Concreto columna	9.24
02 04 02 01 02	Encofrados y desencofrados en las	91.70
02.04.03.01.02	columnas Aceros grado 60 en columna	1,540.48
02.04.03.01.03 02.04.03.02	Columna de arriostre	1,540.40
	Concreto en la columna de arriostre	1.60
02.04.03.02.01	Concreto en la columna de arriostre	1.00

	Encofrados y desencofrados de columna	29.70
02.04.03.02.02	de arriostre	25.10
02.04.03.02.03	Aceros grado 60 en columna de arriostre	186.64
02.04.04	Viga	
02.04.04.01	Vigas estructurales	
02.04.04.01.01	Concreto en viga	8.66
02.04.04.01.02	Encofrados y desencofrados en las vigas	66.06
02.04.04.01.03	Aceros con grado 60° en viga	1,271.66
02.04.04.02	Viga de arriostre	
02.04.04.02.01	Concreto en vigas de arriostre	0.96
	Encofrados y desencofrados en vigas de	6.32
02.04.04.02.02	arriostre	0.32
02.04.04.02.03	Aceros grado 60 en vigas de arriostre	136.92
02.04.05	Losa aligerada	
02.04.05.01	Concreto en losas aligeradas	9.12
	Encofrados y desencofrados en losas	104.20
02.04.05.02	aligerada	101.20
02.04.05.03	Aceros grado 60 en losas aligerada	621.28
02.04.05.04	LADRILLO HUECO - ARCILLA	868.04
02.04.06	Juntas	
	JUNTA CON SELLANTE SIKAFLEX,	84.10
02.04.05.01	3cm DE ESPESOR, ANCHO DE 15 cm	07.10

Tabla 6.Metrado de instalaciones eléctricas

ITEM	DESCRIPCION	TOTAL
04	Instalaciones eléctrica	
04.01	Salidas para la fuerza y electricidad	
04.01.01	Salidas de iluminación	
04.01.01.01	Salidas centro para luz	8.00
0401.01.02	Salida centro de spot light	6.00
04.01.02	Salidas de tomacorriente	
04.01.02.01	Salida de tomacorrientes bipolares doble	24.00
04.02	Canalizaciones y/o tuberías	
04.02.01	Tubería eléctrica empotrado en el techo ø 20 milimetros pvc-sell	36.10
04.02.02	Tubería eléctrica empotrado en el piso ø 20 milimetro pvc-sell	48.26
04.03	Conductores y/o cables	
04.03.01	Cable 2.5 mm2 pvc 600v multifilar	84.36
04.04	Cajas de paso	
04.04.01	CAJAS DE PASO 100x100x50	1.00
04.05	Tablero para la distribución	
05.05.01	Tablero para la distribución consta de 2 piezas	2.00
04.06	Interruptor, toma, señales y comunicación	
04.06.01	Interruptor unipolar simple	2.00
04.06.02	Interruptor unipolar doble	2.00
04.06.03	Tomacorriente bipolar doble	24.00
04.07	Luminaria	
04.07.01	FLUORECENTE ADOSADO CON REJILLA 2x36 W	2.00
04.07.02	Luminaria adosada de 30 w	6.00

Todo el proceso se basa en alcanzar el objetivo principal de cuantificar los materiales con sus respectivos costos de adquisición del producto.

COSTO DIRECTO	153,515.58
GASTOS GENERALES 10%	15,351.56
UTILIDAD 8%	12,281.25
SUBTOTAL	181,148.39
IGV 18%	32,606.71
COSTO DE EJECUCION DE OBRA	213,755.10
GESTION DE OBRA	4,175.00
SUPERVISION DE OBRA	14,000.00
PRESUPUESTO TOTAL	231,930.10

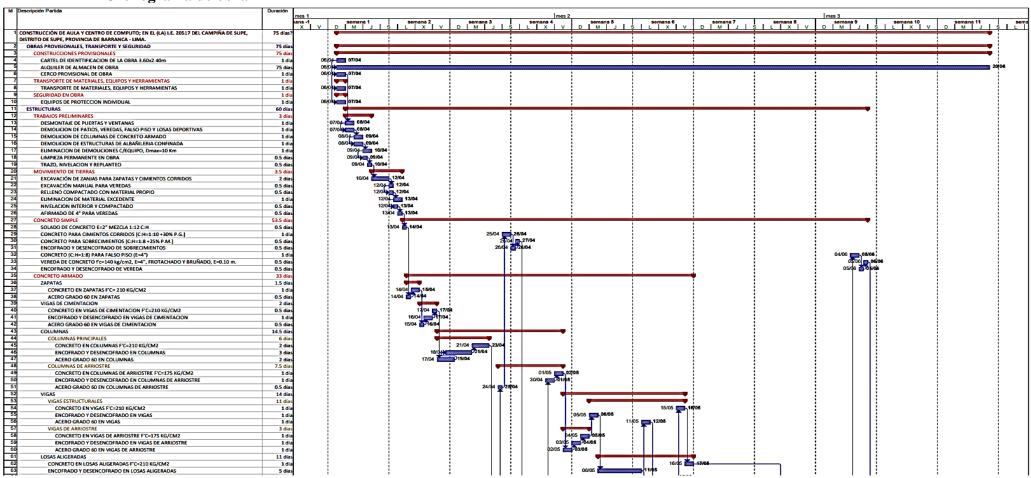
Figura 24. Presupuesto global del proyecto

4.1.4. Procesos constructivos

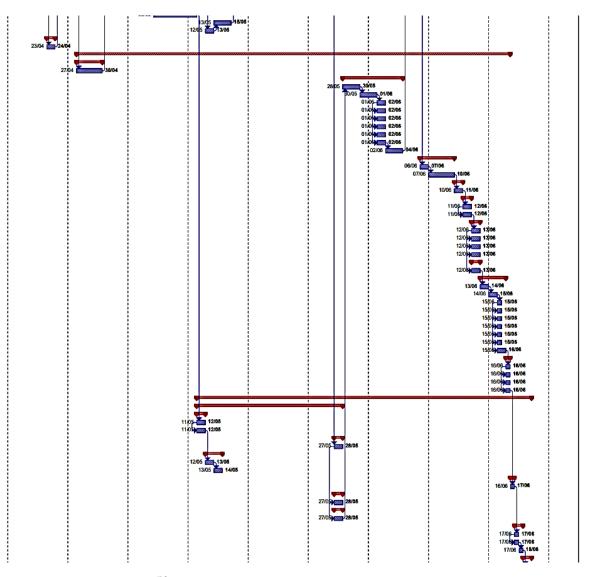
Tiempo de ejecución, Tiempo de aprovisionamiento de materiales)

PLAZO DE EJECUCION.

Con base en los resultados del análisis, el cronograma de trabajo propuesto incluye un tiempo mínimo de construcción, lo que resulta en un tiempo de finalización de 75 días calendario.


MODALIDAD DE EJECUCION.

La Ejecución de la obra se realizará por Administración Indirecta – Contrata.


UNIDAD EJECUTORA.

La Unidad Ejecutora es la Gerencia de Desarrollo Urbano y Rural de la Municipalidad Distrital de Supe.

Cronograma de obra

	LITCO I MADO I DESCRICO INDO LITEO PERCENDIO	
64	ACERO GRADO 60 EN LOSAS ALIGERADAS	2 dias
65	LADRILLO HUECO/ARCILLA 15x30x30 P/TECHO ALIGERADO	1 dia
66	JUNTAS	1 dia
67	JUNTA CON SELLANTE SIKAFLEX, 3cm DE ESPESOR, ANCHO DE 15 cm	1 dia
68	ARQUITECTURA	50.5 días
69	MUROS Y TABIQUES	3 días
70	MURO DE LADRILLO K.K DE ARCILLA 18H DE SOGA MEZCLA C:A 1:4x1.5cm	3 dias
71	REVOQUES Y ENLUCIDOS	7 días
72	TARRAJEO FROTACHADO DE MUROS INTERIORES MEZ. C:A 1:5 E=1.5cm	2 dias
73	TARRAJEO FROTACHADO DE MUROS EXTERIORES MEZ. C:A 1:5 E=1.5cm	2 dias
74	TARRAJEO FROTACHADO DE COLUMNAS MEZ. C:A 1:5 E=1.5cm	1 dia
75	TARRAJEO FROTACHADO DE COLUMNAS DE ARRIOSTRE MEZ. C:A 1:5 E=1.5cm	1 dia
76	TARRAJEO FROTACHADO EN PLACAS MEZ. C:A 1:5 E=1.5cm	1 dia
77	TARRAJEO FROTACHADO DE VIGAS MEZ. C:A 1:5 E=1.5cm	1 dia
78	TARRAJEO FROTACHADO DE VIGAS DE ARRIOSTRE MEZ. C:A 1:5 E=1.5cm	1 dia
79	VESTIDURA DE DERRAMES	1 dia
80	TARRAJEO FROTACHADO DE CIELORRASO CON MEZCLA C:A 1:4 E=1.5cm	2 dias
81	PISOS Y CONTRAPISOS	4 días
82	CONTRAPISO E=4cm MEZCLA 1:6, FROTACHADO	1 dia
83	PISO PORCELANATO ANTIDESLIZANTE DE ALTO TRANSITO 40cm x 40cm	3 dias
84	CONTRAZOCALOS	1 dia
85	CONTRAZÓCALO DE PORCELANATO H=0.20m	1 dia
86	CARPINTERÍA DE MADERA	1 dia
87	PUERTA DE MADERA TORNILLO CONTRAPLACA DE 1.00 x 2.70 m	1 dia
88	PUERTA DE MADERA TORNILLO CONTRAPLACA DE 1.00 x 2.40 m	1 dia
89	CARPINTERIA METALICA	1 dia
90	VENTANA METALICA DE 2.48 x 1.50	1 dia
91	VENTANA METALICA DE 3.48 x 1.50	1 dia
92	VENTANA METALICA DE 2.48 x 1.20	1 dia
93	VENTANA METALICA DE 3.48 x 1.20	1 dia
94	VIDRIOS	1 dia
95	VIDRIO SEMI TEMPLADO DE 6MM.	1 dia
96	PINTURA	3 días
97	PINTURA OLEO MATE 2 MANOS EN MUROS INTERIORES (INC. IMPRIMANTE)	1 dia
98	PINTURA OLEO MATE 2 MANOS EN MUROS EXTERIORES (INC. IMPRIMANTE)	1 dia
99	PINTURA OLEO MATE 2 MANOS EN COLUMNAS (INC. IMPRIMANTE)	0.5 dias
100	PINTURA OLEO MATE 2 MANOS EN COLUMNAS DE ARRIOSTRE (INC. IMPRIMANTE)	0.5 dias
101	PINTURA OLEO MATE 2 MANOS EN PLACAS (INC. IMPRIMANTE)	0.5 dias
102	PINTURA OLEO MATE 2 MANOS EN VIGAS (INC. IMPRIMANTE)	0.5 dias
103	PINTURA OLEO MATE 2 MANOS EN VIGAS DE ARRIOSTRE (INC. IMPRIMANTE)	0.5 dias
104	PINTURA OLEO MATE 2 MANOS EN DERRAMES (INC. IMPRIMANTE)	0.5 dias
105	PINTURA OLEO MATE 2 MANOS EN CIELO RASO (INC. IMPRIMANTE)	1 dia
106	SEÑALIZACION DE SEGURIDAD	0.5 días
107	STICKER AUTOADHESIVO (ZONA SEGURA EN CASOS DE SISMOS 0.20x0.30)	0.5 dias
108	STICKER AUTOADHESIVO (UBICACIÓN DE SALIDA 0.30x0.20)	0.5 dias
109	STICKER AUTOADHESIVO (EXTINTOR PORTATIL 0.30x0.20)	0.5 dias
110	STICKER AUTOADHESIVO (ALTO VOLTAJE RIESGO ELECTRICO 0.30x0.20)	0.5 dias
111	INSTALACIONES ELECTRICAS	39 días?
112	SALIDAS PARA ELECTRICIDAD Y FUERZA	17 días?
113	SALIDAS DE ILUMINACION	1 dia?
114	SALIDAS CENTRO DE LUZ	1 dia?
115	SALIDAS CENTRO DE SPOT LIGHT	1 dia?
116	SALIDAS DE TOMACORRIENTE	1 dia?
117	SALIDA DE TOMACORRIENTES BIPOLARES DOBLE	1 dia?
118	CANALIZACIONES Y/O TUBERIAS	2 días
119	TUBERIA ELECTRICA EMPOTRADA EN TECHO Ø 20 MM PVC-SELL	1 dia
120	TUBERIA ELECTRICA EMPOTRADA EN PISO Ø 20 MM PVC-SELL	1 dia
121	CONDUCTORES Y/O CABLES	0.5 días
122	CABLE 2.5 MM2 PVC 600V MULTIFILAR	0.5 dias
123	CAJAS DE PASO	1 dia
124	CAJAS DE PASO 100x100x50	1 dia
125	TABLERO DE DISTRIBUCION	1 dia
126	TABLERO DE DISTRIBUCION DE 2 PIEZAS	1 dia
127	INTERRUPTOR, TOMA, SEÑALES Y COMUNICACIÓN	1 dia
	INTERRUPTOR UNIPOLAR SIMPLE	0.5 dias
128		
129	INTERRUPTOR UNIPOLAR DOBLE	0.5 dias
	INTERRUPTOR UNIPOLAR DOBLE TOMACORRIENTE BIPOLAR DOBLE LUMINARIA	0.5 dias 0.5 dias 1 dia

								:				71. ▼ 1
132	FLUORECENTE ADOSADO CON REJILLA 2x36 W	1 dia			•		;		;	•	;	18/06 19/06
133	LUMINARIA ADOSADA DE 30 W	1 dia	;	:	:	;	;	:	:	:	;	18/06
134	MOBILIARIO Y EQUIPAMIENTO	1 dia	1	:	:	;	:	1	:	:	;	•
135	AULA PRIMARIA	1 dia	1	: :	:	;	1	1	:	:	;	· · · · · · · · · · · · · · · · · · ·
136	MESA UNIPERSONAL	1 dia		:	:	:	:	:	:	:	;	19/06 20/06
137	SILLAS INDIVIDUALES	1 dia	:	:	:	:	:	:	:	:	:	19/0 20/06
138	ESTANTE PARA DOCENTE	1 dia		:	:	:		:	:	:	1	19/06
139	ESCRITORIO Y SILLA PARA DOCENTE	1 dia	1		:		1	1			i	19/06
140	CENTRO DE COMPUTO	1 dia					1	1			İ	
141	ESCRITORIO Y SILLA PARA DOCENTE	1 dia	!		:	:			:	:		19/05 20/06
142	MODULO DE COMPUTADORA	1 dia	!				i		:	:	i i	19/05 20/06
143	SILLAS INDIVIDUALES	1 dia	į	i i			i	i			i	19/06
144	ESTANTE PARA DOCENTE	1 dia	į	i i		i	i	i	i	i	i	19/0
145	PIZARRA ACRILICA	1 dia	1	i i			i	1	i		i	19/06 20/06

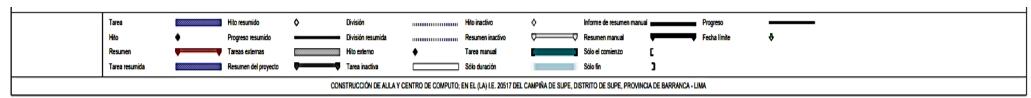


Figura 25. Cronograma de avance de obra

Tabla 7.Cronograma de desembolso

CRONOGRAMA DE DESEMBOLSO

UBICACIÓN: C.P. LA CAMPIÑA - SUPE - BARRANCA - LIMA

Descripción	Parcial S/.	MES 01	MES 02	MES 03
COSTO DIRECTO GASTOS	137,633.32	51,899.41	39,700.53	46,033.38
GENERALES (10%)	13,763.33	5,189.94	3,970.05	4,603.34
UTILIDAD (8%)	11,010.67	4,151.95	3,176.04	3,682.67
SUBTOTAL	162,407.32	61,241.30	46,846.63	54,319.39
IGV	29,233.32	11,023.43	8,432.39	9,777.49
COSTO DE EJECUCION DE OBRA SUPERVISION DE OBRA	191,640.64 14,000.00	72,264.73 5,279.18	55,279.02 4,038.32	64,096.88 4,682.49
PRESUPUESTO TOTAL	205,640.64	77,543.92	59,317.34	68,779.37
PORCENTAJE MENSUAL % PORCENTAJE	100.00%	37.71%	28.84%	33.45%
ACUMULADO %	100.00%	37.71%	66.55%	100.00%

4.2. Calidad educativa

4.2.1. Habitabilidad

Confort lumínico y técnico

Aquellos niveles sobre la iluminación de las tareas visuales y áreas de trabajos, donde aquellos niveles deben incluir los planos de trabajo con el sustento de NOM-025-STPS-2008, para cada tipo de tareas a realizar para ello se establece la siguiente tabla:

Tarea Visual del Puesto de Trabajo	Área de Trabajo	Niveles Mínimos de Iluminación (luxes)
En exteriores: distinguir el área de tránsito, desplazarse caminando, vigilancia, movimiento de vehículos.	Exteriores generales: patios y estacionamientos.	20
En interiores: distinguir el área de tránsito, desplazarse caminando, vigilancia, movimiento de vehículos.	Interiores generales: almacenes de poco movimiento, pasillos, escaleras, estacionamientos cubiertos, labores en minas subterráneas, illuminación de emergencia.	50
En interiores.	Áreas de circulación y pasillos; salas de espera; salas de descanso; cuartos de almacén; plataformas; cuartos de calderas.	100
Requerimiento visual simple: inspección visual, recuento de piezas, trabajo en banco y máquina.	Servicios al personal: almacenaje rudo, recepción y despacho, casetas de vigilancia, cuartos de compresores y pailería.	200
Distinción moderada de detalles: ensamble simple, trabajo medio en banco y máquina, inspección simple, empaque y trabajos de oficina.	Talleres: áreas de empaque y ensamble, aulas y oficinas.	300
Distinción clara de detalles: maquinado y acabados delicados, ensamble de inspección moderadamente difícil, captura y procesamiento de información, manejo de instrumentos y equipo de laboratorio.	Talleres de precisión: salas de cómputo, áreas de dibujo, laboratorios.	500
Distinción fina de detalles: maquinado de precisión, ensamble e inspección de trabajos delicados, manejo de instrumentos y equipo de precisión, manejo de piezas pequeñas.	Talleres de alta precisión: de pintura y acabado de superficies y laboratorios de control de calidad.	750
Alta exactitud en la distinción de detalles: ensamble, proceso e inspección de piezas pequeñas y complejas, acabado con pulidos finos.	Proceso: ensamble e inspección de piezas complejas y acabados con pulidos finos.	1,000
Alto grado de especialización en la distinción de detalles.	Proceso de gran exactitud. Ejecución de tareas visuales: de bajo contraste y tamaño muy pequeño por periodos prolongados; exactas y muy prolongadas, y muy especiales de extremadamente bajo contraste y pequeño tamaño.	2,000

Figura 26. Tabla de niveles de iluminación para tareas visuales y áreas de trabajo

4.2.2. Seguridad

Estimación de riesgos (peligro y vulnerabilidad)

Estratificación del peligro: En el siguiente cuadro se muestra la matriz de peligros obtenido:

Nivel de Peligro		Rangos
Peligro Muy Alto	Con una anomalia de 1,000-2,000 % superior a su normal climática, con una frecuencia entre De 3 a 4 eventos por año en promedio y/o Por lo menos 1 vez al año cada evento de El Niño y/o superior a 5 eventos al año en; presentan pendiente entre 5° a 10° y/o Menor a 5°; con una geomorfología entre Terrazás aluviales (T-al) y/o Llanura o planicie inundable (Pl-i); con una Geología entre Deposito aluvial pleistoceno (Qpl-al) y/o Depósito fluvial (Qr-fl).	0.265 < P ≤ 0.422
Peligro Alto	Con una anomalía de 1,000-2,000 % superior a su normal climática, con una frecuencia entre De 2 a 3 eventos por año en promedio y/o De 3 a 4 eventos por año en promedio; Con pendientes Entre 10° a 15° y/o Entre 5° a 10°; una geomorfología entre Mantos de arena (M-a) y/o Terrazas aluviales (T-al); con una geología entre Depósito eólico holoceno (Qh-e) y/o Deposito aluvial pleistoceno (Qpl-al).	0.158 < P ≤ 0.265
Peligro Medio	Con una anomalía de 1,000-2,000 % superior a su normal climática, con una frecuencia entre De 1 a 2 eventos por año en promedio y/o De 2 a 3 eventos por año en promedio; Con pendientes de Entre 15° a 25° y/o Entre 10° a 15°; con una geomorfología entre Colinas en rocas volcano-sedimentarias (RC-rvs) y/o Mantos de arena (M-a); con una geología entre Formación Casma (Ki-c) y/o Depósito eólico holoceno (Qh-e).	0.097 < P ≤ 0.158
Peligro Bajo	Con una anomalia de 1,000-2,000 % superior a su normal climática, con una frecuencia entre De 1 evento por año en promedio o inferior y/o De 1 a 2 eventos por año en promedio; presenta pendientes Entre Mayor a 25° y/o Entre 15° a 25°; con una geomorfología entre Colinas en rocas intrusivas (RC-ri) y/o Colinas en rocas volcano-sedimentarias (RC-rvs); con una geología entre Plutón Paltashaco, adamelita (KP-pa/a) y/o Formación Casma (Ki-c).	0.058 ≤ P ≤ 0.097

Figura 27. Matriz de peligro

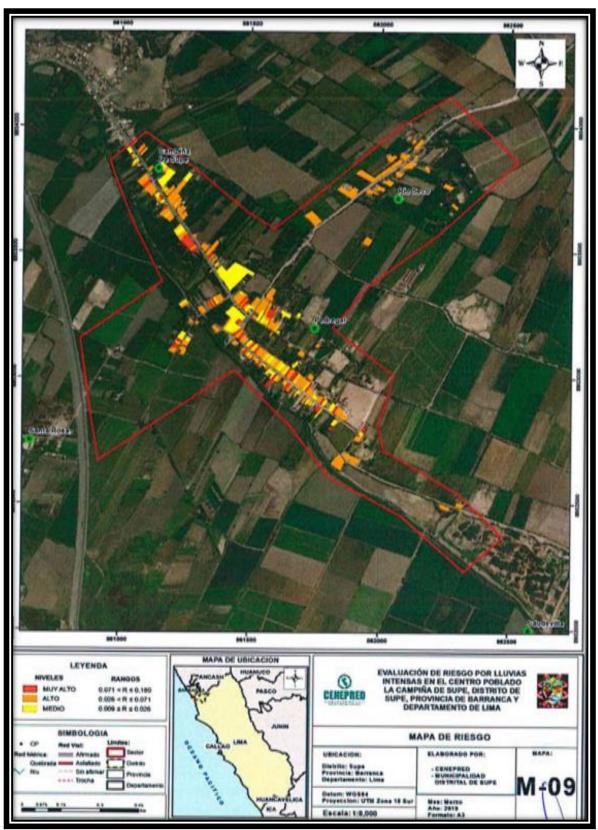


Figura 28. Mapa de riesgo

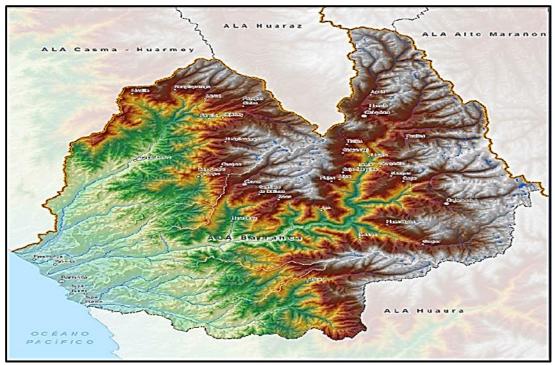


Figura 29. Cuencas hidrográficas

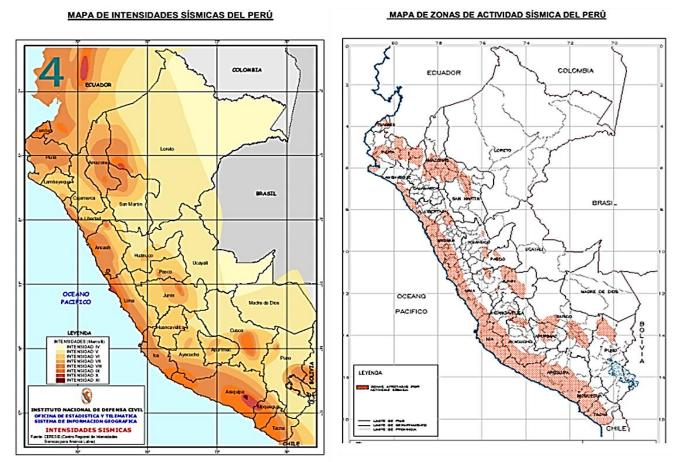


Figura 30. Identificación y características de las amenazas.

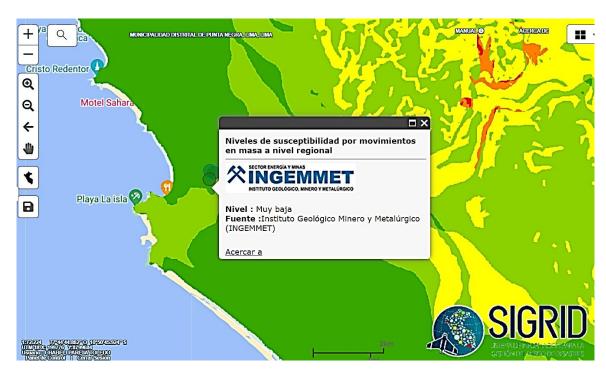


Figura 31. Mapa de riesgo según SIGRID

4.3. Resultados metodológicos

4.1.1. Validez del instrumento

En este apartado podemos validar nuestra información mediante juicio de expertos, debido a la expertiz de sus conocimientos podrán calificar basado en parámetros estrictos los cuales deben de contener claridad, suficiencia, coherencia y relevancia.

Por lo tanto, luego de evaluar el contenido calificaron de la siguiente:

Tabla 8.Lista de experto y calificacion

Expertos	Calificar
Primer experto	15
Segundo experto	15
Tercer experto	14
Total	15

Tabla 9.Escalas para la validación

ESCALAS	INDICADORES
1,00 – 0,95	Valido Perfectamente
0,94 - 0,81	Excelentemente Valido
0,80 - 0,70	Muy Valido
0,69 - 0,65	Valido
0,64 - 0,54	Valor bajo
0,53 - 0,00	Valor nulo

Fuente: (Herrera, 1998)

4.1.2. Confiabilidad del instrumento

Podemos referenciar que el resultado de la confiabilidad mediante el estadístico SPSS Estatistics 25, de tal manera que nos servirá de base para adquirir resultados confiables luego de la cuantificación, posteriormente se realizará la contrastación de hipótesis y así llegara una toma de decisiones las cuales respaldan la conclusión general y especifica del trabajo de investigación abordado.

Tabla 10.Procesamientos en SPSS para la confiabilidad (Alfa de Cronbach)

Estadísticas de fiabilidades			
Alfa de Cronbachs	N° de elementos		
,950	30		

Escala: ALL VARIABLES

Resumen de procesamiento de casos

		N	%
Casos	Válido	100	35,5
	Excluido ^a	182	64,5
	Total	282	100,0

La eliminación por lista se basa en todas las variables del procedimiento.

Estadísticas de fiabilidad

Alfa de	N de
Cronbach	elementos
,95	0 30

Figura 32. Resumen de procesamiento de casos, estadística de fiabilidad

Con los resultados que vamos obteniendo pues podemos confirmar que el instrumento de recolección de información de cambo resulte certero con las premisas colocando en las todo ello basado en la escala Herrera (1998),

Tabla 11.Escalas de confiabilidad

Escalas	Indicador
1,00 – 0,95	Confiable perfecto
0,94 - 0,81	Excelentemente confiable
0,80 - 0,70	Muy confiablemente
0,69 - 0,65	Confiablemente
0,64-0,54	Confiablemente bajo
0,53 - 0,00	Confiable nulo

Fuente: Herrera, (1998)

4.1.3. Contrastación de hipótesis

Para la adecuada contratación de hipótesis podemos referir los cálculos estadísticos basados en los resultados recopilados de campo.

Tabla 12.Escalas de correlación.

Rangos	Indicador	
1.00	Influencia grande y perfecto	
0.90 - 0.99	Influencia muy alto	
0.70 - 0.89	Influencia alto	
0.40 - 0.69	Influencia moderado	
0.20 - 0.39	Influencia bajo	
0.00 - 0.19	Influencia nulo	

Fuente: Herrera (1996)

El nivel adecuado de significancia a de ser 0.05 donde la decisión posee el criterio siguiente:

Se rechaza la $\mathbf{H_0}$ si: x^2 crítico $< x^2$ calculado

✓ Contrastación de hipótesis general

 H_0 : El diseño de aula y centro de cómputo no se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

H₁: El diseño de aula y centro de cómputo se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

Tabla 13.Correlaciónes con tau-b de Kendal y Rho de Spearman de las variables (Diseño de un aula y centro de cómputo – calidad educativa)

	Correlaciones					
			DISEÑO DE			
			UN AULA Y			
			CENTRO DE	CALIDAD		
			COMPUTO	EDUCATIVA		
Tau_b de	DISEÑO DE UN	Coef. correl.	1.000	.584**		
Kendall	AULA Y	Sig. (bilateral)		.000		
	CENTRO DE	N	100	100		
	COMPUTO					
	CALIDAD	Coef. correl.	.584**	1.000		
	EDUCATIVA	Sig. (bilateral)	.000			
		N	100	100		
Rho de	DISEÑO DE UN	Coef. correl.	1.000	.586**		
Spearman	AULA Y	Sig. (bilateral)		.000		
	CENTRO DE	N	100	100		
	COMPUTO					
	CALIDAD	Coef. correl.	.586**	1.000		
	EDUCATIVA	Sig. (bilateral)	.000			
		N	100	100		

^{**.} La correlación es significativa en el nivel 0,01 (bilateral).

Tabla 14.Correlación R Pearson (diseño de un aula y centro de cómputo – Calidad educativa)

Correlaciones						
		DISEÑO DE UN				
		AULA Y CENTRO DE	CALIDAD			
		COMPUTO	EDUCATIVA			
DISEÑO DE UN	Correlación de	1	,773**			
AULA Y CENTRO DE	Pearson					
COMPUTO	Sig. (bilateral)		,000			
	N	100	100			
CALIDAD	Correlación de	,773**	1			
EDUCATIVA	Pearson					
	Sig. (bilateral)	,000				
	N	100	100			

^{**.} La correlación es significativa en el nivel 0,01 (bilateral).

Tabla 15.Tabla de contingencia y frecuencia esperada (Diseño de un aula y centro de cómputo – calidad educativa)

Tabla cruzada DISEÑO DE UN AULA Y CENTRO DE COMPUTO*CALIDAD EDUCATIVA							
CALIDAD EDUCATIVA					Total		
				Ni de acuerdo ni			
			En	en	De	Muy de	
			desacuerdo	desacuerdo	acuerdo	acuerdo	
DISEÑO DE	En	Recontar	1	0	0	0	1
UN AULA Y CENTRO	desacuerdo	Recontar esperado	.0	0.	1.0	0.	1.0
DE	Ni de	Recontar	0	1	2	0	3
COMPUTO	acuerdo ni en desacuerdo	Recontar esperado	.0	.0	2.9	.0	30
	De acuerdo	Recontar	0	0	95	1	96
		Recontar esperado	1.0	1.0	93.1	1.0	96.0
Total		Recontar	1	1	97	1	100
		Recontar esperado	1.0	1.0	97.0	1.0	100.0

Tabla 16: Chi cuadrada (Diseño de un aula y centro de cómputo – calidad educativa)

Prueba de chi-2							
	Valores	DF	Sig. asintótica (bilateral)				
Chi2 - Pearson	132,668 ^a	6	,000				
verosimilituded	18,603	6	,005				
Asociación lineal x lineal	59,085	1	.000				
Numero de los casos válidos	100						

Se realizó el análisis de (gl), donde la ecuación adecuada es:

 x^2 critico $< x^2$ calculado

Donde:

Gl: Grados de libertad.

R: Números de fila.

K: Números de columna.

Entonces:

 x^2 critico $< x^2$ calculado = (4-1)(3-1) = 6

Valores críticos para los estadísticos de las pruebas

 x^{2} crítica (gl; α) = x^{2} crítica (gl = 6; α =0,05)= 12,592

Figura 33. Grafica de Barras para las variables (X-Y)

Barras de error simples Media de CALIDAD EDUCATIVA por DISEÑO DE UN AULA Y CENTRO DE COMPUTO

Barras de error: 95% CI

Figura 34. Gráfico de dispersión de las variables basado en función lineal (X-Y)

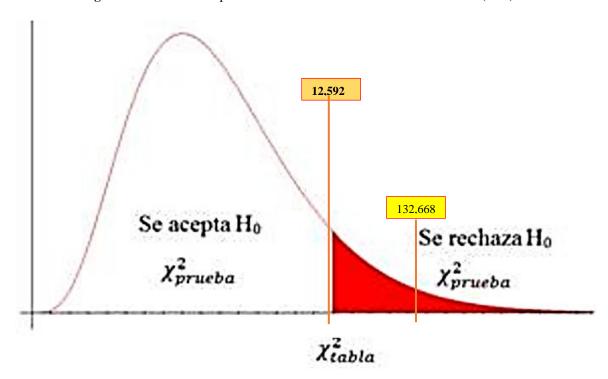


Figura 35. Gráfico de ubicación de los resultados obtenidos

a) Toma de decisión

Se realiza la toma de decisión adecuado basado en los cálculos estadísticos donde se referencia que X² calculado es 132,668 resulta mayor al X² critico es 12,592 siendo así que se posiciona en la zona de rechazo, siendo motivo principal que se rechace la hipótesis nula **H**₀ y se acepe la hipótesis alternativa **H**₁, todo ello con un nivel de confianza del 5%, siendo así: El diseño de aula y centro de cómputo se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

✓ Contrastación de hipótesis específicos

Diagnóstico situacional (D1) – calidad educativa (Y)

H₀: El diagnóstico situacional de la infraestructura no se relaciona
 significativamente con la calidad educativa de la Institución Educativa N° 20517
 Supe, Barranca, Lima, 2022.

 H_1 : El diagnóstico situacional de la infraestructura se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

Tabla 17.Correlación R Pearson (diagnóstico situacional – Calidad educativa)

	Correlaciones							
			DIAGNÓSTICO					
			SITUACIONAL DE LA	CALIDAD				
			INFRAESTRUCTURA	EDUCATIVA				
Tau_b de	DIAGNÓSTICO	Coef correl.	1,000	,649**				
Kendall	SITUACIONAL	Sig. (bilateral)		.000				
	DE LA	N	100	100				
	INFRAESTRUC							
	TURA							
	CALIDAD	Coef. correl.	,649**	1.000				
	EDUCATIVA	Sig. (bilateral)	,000,					
		N	100	100				
Rho	DIAGNÓSTICO	Coef. Correl.	1,000	,652**				
	SITUACIONAL	Sig. (bilateral)		,000				
	DE LA	N	100	100				
	INFRAESTRUC							
	TURA							
	CALIDAD	Coef. correl.	,652**	1,000				
	EDUCATIVA	Sig. (bilateral)	,000,					
		N	100	100				

Tabla 18.Tabla de contingencia y frecuencia esperada (diagnóstico situacional – calidad educativa)

Tabla cruzada DIAG	Tabla cruzada DIAGNÓSTICO SITUACIONAL DE LA INFRAESTRUCTURA*CALIDAD						
			CATIVA				
			CA	LIDAD EDU	JCATIVA		Total
				Ni de			
				acuerdo ni			
			En	en	De	Muy de	
			desacuerdo	desacuerdo	acuerdo	acuerdo	
DIAGNÓSTICO	Ni de	Recontar	1	1	3	0	5
SITUACIONAL DE	acuerdo ni	Recontar	,1	,1	4,9	,1	5,0
LA	en	esperado					
INFRAESTRUCTURA	desacuerdo						
	De acuerdo	Recontar	0	0	93	0	93
		Recontar	,9	,9	90,2	,9	93,0
		esperado					
	Muy de	Recontar	0	0	1	1	2
	acuerdo	Recontar	.0	.0	1.9	.0	2,0
		esperado					
Total		Recontar	1	. 1	97	1	100
		Recontar	1.0	1.0	97.0	1.0	100,0
		esperado					

Tabla 19. Chi cuadrada (Diagnóstico situacional – calidad educativa)

Prueba de chi-2							
			Sig. asintótica				
	Valores	DF	(bilateral)				
Chi2	88,247 ^a	6	.000				
Razón de verosimilitud	21,265	6	.002				
Asociación lineal x lineal	37,317	1	.000				
Numero de los casos válidos	100						

Se realizó el análisis de los gl, donde la ecuación adecuada.

$$x^2$$
 critico $< x^2$ calculado

Donde:

G1 : Grados de libertad.R : Número de fila.K : Número de columna.

Entonces

$$x^2$$
 critico $< x^2$ calculado = $(4-1)(3-1) = 6$

Valores críticos para la estadística de pruebas

 x^{2} crítica (gl; α) = x^{2} crítica (gl =6; α =0,05)= 12,592

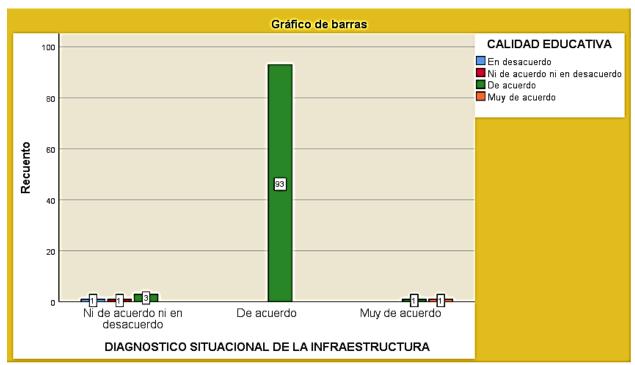


Figura 36. Gráfica de Barras para las variables (D1-Y)

b) Toma de decisión

Se realiza la toma de decisión adecuado basado en los cálculos estadísticos donde se referencia que X^2 calculado es 88,247 resulta mayor al X^2 critico es 12,592 siendo así que se posiciona en la zona de rechazo, siendo motivo principal que se rechace la hipótesis nula \mathbf{H}_0 y se acepe la hipótesis alternativa \mathbf{H}_1 , todo ello con un nivel de confianza del 5%, siendo así: El diagnóstico situacional de la infraestructura se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

Diseño de infraestructura (D2) – calidad educativa (Y)

H₀: El diseño de infraestructura no se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

H₁: El diseño de infraestructura se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

Tabla 20.Correlación con tau-b de Kendal y Rho de Spearman de las variables (diseño de infraestructura – calidad educativa)

		Corre	elacion	
			DISEÑO INFRAESTRUCTURA L	CALIDAD EDUCATIVA
Tau_b	DISEÑO INFRAESTRU CTURAL	Coef. correl.	1.000	,478**
	CIURAL	Sig. (bilateral)		,000
		N	100	100
	CALIDAD EDUCATIVA	Coef. correl.	.478**	1,000
		Sig. (bilateral)	.000	
		N	100	100
Rho	DISEÑO INFRAESTRU CTURAL	Coef. correl.	1.000	,481**
	Cremin	Sig. (bilateral)		,000
		N	100	100
	CALIDAD EDUCATIVA	Coef. correl.	,481**	1,000
		Sig. (bilateral)	,000,	
		N	100	100

Tabla 21.Tabla de contingencia y frecuencia esperada (diseño de infraestructura – calidad educativa)

Tabla cruzada DISEÑO INFRAESTRUCTURAL*CALIDAD EDUCATIVA							
			CALIDAD EDUCATIVA Tot				
				Ni de			
				acuerdo ni			
			En	en	De	Muy de	
			desacuerdo	desacuerdo	acuerdo	acuerdo	
DISEÑO	Muy en	Recontar	1	0	0	0	1
INFRAES	desacuerdo	Recontar	.0	.0	1.0	.0	1.0
TRUCTU		esperado					
RAL	En desacuerdo	Recontar	0	0	1	0	1
		Recontar	.0	.0	1.0	.0	1.0
		esperado					
	Ni de acuerdo	Recontar	0	1	3	0	4
	ni en	Recontar	.0	.0	3,9	.0	4.0
	desacuerdo	esperado					
	De acuerdo	Recontar	0	0	93	1	94
		Recontar	.9	,9	91.2	,9	94.0
		esperado					
Total		Recontar	1	1	97	1	100
		Recontar	1.0	1.0	97.0	1.0	100.0
		esperado					

Tabla 22. Chi cuadrada (Diseño de infraestructura – calidad educativa)

	Prueba de chi-2		
	Valor	DF	Significación asintótica (bilateral)
Chi2	124,271 ^a	9	,000
Razón de verosimilitud	17,966	9	,036
Asociación lineal x lineal	47,721	1	,000
Numero de los casos válidos	100		

Se realizó el análisis de los gl, donde la ecuación adecuada.

 x^2 critico $< x^2$ calculado

Nota:

Gl : Grados de libertad. R : Número de fila. K : Número de columna.

Entonces

$$x^2$$
 critico $< x^2$ calculado = (4-1)(4-1) = 9

Valores críticos para el estadístico de pruebas

 x^2 crítica (gl; α) = x^2 crítica (gl = 9; α =0,05)= 16,919

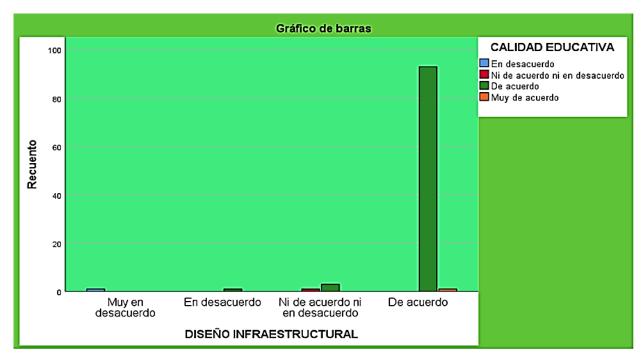


Figura 37. Gráfica de Barras para las variables (D3-Y)

a) Toma de decisión

Se realiza la toma de decisión adecuado basado en los cálculos estadísticos donde se referencia que X^2 calculado es $124,271^a$ resulta mayor al X^2 critico es 16,919 siendo así que se posiciona en la zona de rechazo, siendo motivo principal que se rechace la hipótesis nula $\mathbf{H_0}$ y se acepe la hipótesis alternativa $\mathbf{H_1}$, todo ello con un nivel de confianza del 5%, siendo así: El diseño de infraestructura se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

Costos y presupuestos (D3) – calidad educativa (Y)

 H_0 : Los costos y presupuestos no se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

H₁: Los costos y presupuestos se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

Tabla 23.Correlación con tau-b de Kendal y Rho de Spearman de las variables (costo y presupuesto – calidad educativa)

	Correlacion							
			COSTO Y	CALIDAD				
			PRESUPUESTO	EDUCATIVA				
Tau_b	COSTO Y	Coef. correl.	1,000	,264**				
	PRESUPUESTO	Sig. (bilateral)		,008				
		N	100	100				
	CALIDAD	Coef. correl.	,264**	1,000				
	EDUCATIVA	Sig. (bilateral)	,008					
		N	100	100				
Rho	COSTO Y	Coef. correl.	1,000	,266**				
	PRESUPUESTO	Sig. (bilateral)		,007				
		N	100	100				
	CALIDAD	Coef. correl.	,266**	1,000				
	EDUCATIVA	Sig. (bilateral)	,007					
		N	100	100				

Tabla 24.Tabla de contingencia y frecuencia esperada (costo y presupuesto – calidad educativa)

Ta	bla cruzada CO	STO Y PRI	ESUPUESTO	*CALIDAD	EDUCA	TIVA	
			CALIDAD EDUCATIVA				
				Ni de			
				acuerdo ni			
			En	en	De	Muy de	
			desacuerdo	desacuerdo	acuerdo	acuerdo	
COSTO Y	En	Recontar	1	0	0	0	1
PRESUP UESTO	desacuerdo	Recontar esperado	,0	,0	1,0	,0	1,0
	Ni de	Recontar	0	0	4	0	4
	acuerdo ni en desacuerdo	Recontar esperado	,0,	,0	3,9	,0	4,0
	De acuerdo	Recontar	0	1	93	1	95
		Recontar esperado	1,0	1,0	92,1	1,0	95,0
Total		Recontar	1	1	97	1	100
		Recontar esperado	1,0	1,0	97,0	1,0	100,0

Tabla 25.Chi cuadrada (costo y presupuesto – calidad educativa)

	Prueba de chi-2		
			Sig. asintótica
	Valores	DF	(bilateral)
Chi2	100,087 ^a	(,000
Razón de verosimilitud	11,367	(,078
Asociación lineal x lineal	32,731	-	,000
Numero de los casos válidos	100		

Se realizó el análisis de los gl, donde la ecuación adecuada.

 x^2 critico $< x^2$ calculado

Nota:

Gl: Grados de libertad.

R: Número de filas.

K : Número de columnas.

Entonces

 x^2 critico $< x^2$ calculado = (4-1)(3-1) = 6

Valores críticos para el estadístico de pruebas

 x^{2} crítica (gl; α) = x^{2} crítica (gl =6; α =0,05)= 12,592

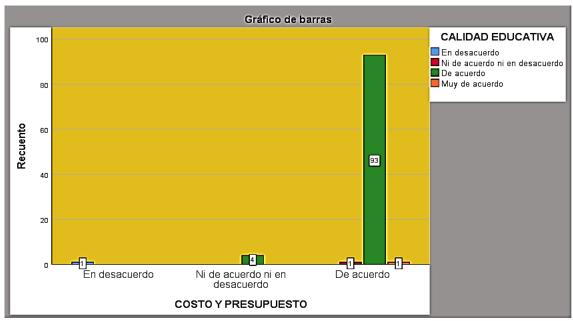


Figura 38. Gráfica de Barras para las variables (D3-Y)

b) Toma de decisión

Se realiza la toma de decisión adecuado basado en los cálculos estadísticos donde se referencia que X^2 calculado es $100,087^a$ resulta mayor al X^2 critico es 12,529 siendo así que se posiciona en la zona de rechazo, siendo motivo principal que se rechace la hipótesis nula $\mathbf{H_0}$ y se acepe la hipótesis alternativa $\mathbf{H_1}$, todo ello con un nivel de confianza del 5%, siendo así: Los costos y presupuestos se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

Los procesos constructivos (D4) – calidad educativa (Y)

 H_0 : Los procesos constructivos no se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

H₁: Los procesos constructivos se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

Tabla 26.Correlación con tau-b de Kendal y Rho de Spearman de las variables (Proceso constructivo – calidad educativa)

Correlaciones						
			PROCESO	CALIDAD		
			CONSTRUCTIVO	EDUCATIVA		
Tau_b	PROCESO	Coef. correl.	1,000	1,000**		
	CONSTRUCTIVO	Sig. (bilateral)				
		N	100	100		
	CALIDAD	Coef. correl.	1,000**	1,000		
	EDUCATIVA	Sig. (bilateral)				
		N	100	100		
Rho	PROCESO	Coef. correl.	1,000	1,000**		
	CONSTRUCTIVO	Sig. (bilateral)				
		N	100	100		
	CALIDAD	Coef. correl.	1,000**	1,000		
	EDUCATIVA	Sig. (bilateral)				
		N	100	100		

Tabla 27.Correlación con tau-b de Kendal y Rho de Spearman de las variables (proceso constructivo – calidad educativa

Tabla	cruzada PRO	CESO CO	NSTRUCTI	VO*CALID	AD EDUC	ATIVA	
			CALIDAD EDUCATIVA Ni de				Total
			acuerdo ni				
			En	en	De	Muy de	
			desacuerdo	desacuerdo	acuerdo	acuerdo	
PROCESO	En	Recontar	1	0	0	0	1
CONSTRUCTI VO	desacuerdo	Recontar esperado	,0	,0	1,0	,0	1,0
	Ni de	Recontar	0	1	0	0	1
	acuerdo ni en desacuerdo	Recontar esperado	,0	,0	1,0	,0	1,0
	De acuerdo	Recontar	0	0	97	0	97
		Recontar esperado	1,0	1,0	94,1	1,0	97,0
	Muy de	Recontar	0	0	0	1	1
	acuerdo	Recontar esperado	,0	,0	1,0	,0	1,0
Total		Recontar	1	1	97	1	100
		Recontar esperado	1,0	1,0	97,0	1,0	100,0

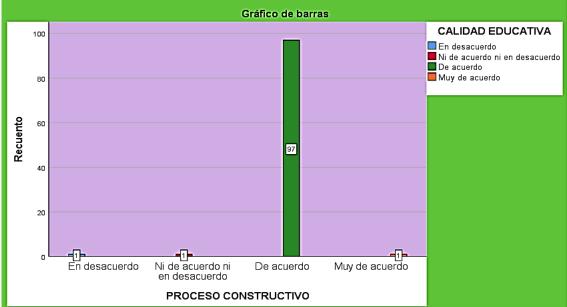
Tabla 28. Chi cuadrada (Proceso constructivo – calidad educativa)

Pruebas de chi-2					
			Significación		
	Valor	DF	asintótic	ca (bilateral)	
Chi2	$300,000^{a}$		9	,000	
Razón de verosimilitud	33,540		9	,000	
Asociación lineal por lineal	99,000		1	,000	
N de casos válidos	100				

Se realizó el análisis de los gl, donde la ecuación adecuada.

$$x^2$$
 crítico $< x^2$ calculado

Nota:


GL: Grados de libertad.R: Número de filas.K: Número de columnas.

Entonces

$$x^2$$
 critico $< x^2$ calculado = (4-1)(4-1) = 9

Valores críticos para el estadístico de pruebas

Figura 39. Gráfica de Barras para las variables (D4-Y)

a) Toma de decisión

Se realiza la toma de decisión adecuado basado en los cálculos estadísticos donde se referencia que X² calculado es 100,087ª resulta mayor al X² critico es 16,9199 siendo así que se posiciona en la zona de rechazo, siendo motivo principal que se rechace la hipótesis nula **H**₀ y se acepe la hipótesis alternativa **H**₁, todo ello con un nivel de confianza del 5%, siendo así: Los procesos constructivos se relaciona significativamente con la calidad educativa de la Institución Educativa N° 20517 Supe, Barranca, Lima, 2022.

Resumen de prueba de hipótesis

	Hipótesis nula	Prueba	Sig.	Decisión
1	La distribución de DISEÑO DE UI AULA Y CENTRO DE COMPUTO es normal con la media 4 y la desviación estándar 0,261.	NPrueba de Kolmogorov- Smirnov para una muestra	,0001	Rechazar la hipótesis nula.
2	La distribución de DIAGNOSTICO SITUACIONAL DE LA INFRAESTRUCTURA es normal con la media 4 y la desviación estándar 0,284.) Prueba de Kolmogorov- Smirnov para una muestra	,0001	Rechazar la hipótesis nula.
3	La distribución de DISEÑO INFRAESTRUCTURAL es normal con la media 4 y la desviación estándar 0,404.	Prueba de Kolmogorov- Smirnov para una muestra	,0001	Rechazar la hipótesis nula.
4	La distribución de COSTO Y PRESUPUESTO es normal con la media 4 y la desviación estándar 0,278.		,0001	Rechazar la hipótesis nula.
5	La distribución de PROCESO CONSTRUCTIVO es normal con media 4 y la desviación estándar 0,245.		,0001	Rechazar la hipótesis nula.
ε	La distribución de CALIDAD EDUCATIVA es normal con la media 4 y la desviación estándar 0,245.	Prueba de Kolmogorov- Smirnov para una muestra	,0001	Rechazar la hipótesis nula.

Se muestran significaciones asintóticas. El nivel de significación es de ,0

Figura 40. Resumen de prueba de hipótesis

¹Lilliefors corregida

CAPITULO V: DISCUSION

5.1. Discusión de resultados

Para analizar aquellos resultados contrastados con otras investigaciones es conveniente sintetizar los enunciados y datos dejando solo lo más próximo adminisisble o similar al proyecto desarrollado. Motivo por el cual en nuestro proyecto referenciamos que nuestras variables si posee una relación moderada motivo por el cual la propuesta se encamina adecuadamente, en nuestros antecedentes evidenciamos que varias investigaciones respaldan nuestro procedimiento y a los resultados que llegamos a obtener para ellos respaldamos cada uno de nuestras dimensiones.

El diagnóstico situacional se realizó en el contexto visuales para ello se replanteo las dimensiones, levantamos un informe detallado del estado en las cuales se están encontrando la infraestructura y finalmente se procede a realizar el plan de trabajo continuo, estas observaciones han sido validados por los supervisores encargados de la obra. Resultados similares fueron recolectados de Radic (2019), donde termino su estudio con resultados de síntesis básica luego de la obtención de las cuantificaciones y contrastación de resultados porque lo conocimientos se encuentran subjetivamente en las personas el cual difiere en cuantificarlas pero si se pudo parámetros en rangos y en base a ello distinguir la interpretación de los resultados respondiendo así al objetivo planteado, el análisis de datos los niveles resaltantes fueron políticas educativas, la escuela y formación de docentes debido a la conexión directa con el mundo académico.

El diseño de infraestructura de la infraestructura está basado en las dimensiones básicas de replanteo obtenidas por el profesional encargados es decir, topografía, cadista o proyectista, ingeniero residentes, asistente y personal de SSOMA, para ello se diseñó para el área de cómputo los cuales serán utilizados para el nivel primario y docentes por lo tanto el segundo piso para rea de aulas del nivel primario, este diseño se realizó en el

diseñador CAD en ello se referencia planos de planta, perfil y elevación detallando las medidas y acabados de cada parámetros abarcado en la industria de la construcción. . Resultados similares fueron recolectados de Zorrilla (2018), donde termino su investigación que aplicando el diseño propuesto para dar posible solución mitigando los problemas futuros brindando seguridad y confort para los estudiantes el cual no se torne aburrida el recibir las instrucciones del docente ni desanimó de continuar con el aprendizaje.

El costo y presupuesto en la investigación abordas se basa en todo el proceso de construcción y metrados de las partidas a ejecutar con el propósito de cuantificar cada precio unitario de los requisitos que serán utilizados durante la construcción de materiales y equipos con la finalidad de desagregar cada costo unitario y cobrarlo mediante valorización del avance de obra, la cual resalta en cada uno del tren de actividades y esto va acompañado de la curva S el cual respalda el avance adecuado del proyecto bajo los parámetros y estándares establecidos en el expediente técnico. . Resultados similares fueron recolectados de Lorrén (2018), donde termino que se ha realizado estudios básicos para el diseño del ambiente en tal sentido es necesario contar con un levantamiento topográfico para definir relieves donde a su vez las pendientes del terreno se encuentran por debajo de 3%, s diseño 3 módulos educativos el cual se encuentra diseñado con sistema combinado compuesto ya sean por pórticos basados en concreto armado y/o muros de albañilería por lo tanto si concuerda con el RNE (Reglamento Nacional de Edificaciones).

Los procesos constructivos en nuestro proyecto de investigación abordado referenciamos que efectivamente en el plazo establecido según cronograma de obra se ha desarrollado donde el desfase de la curva S no ha excedido del 5% por lo tanto la ejecución de todo el proyecto ha sido consistente y detenidamente desarrollado de

acuerdo a las técnicas obtenidas de ingeniería y especificaciones técnicas aprobadas en el expediente, sin embargo nuestro proyecto abordado la propuesta de diseño el cual se dio el cumplimiento de lo detalles tanto en vanos como en la parte estructural con al finalidad de cumplir con la ejecución sin ninguna complicación alterna el cual termine en un retraso o incumplimiento de plazo. Resultados similares fueron recopilados de Espíritu (2022) la investigación concluye basado en las percepciones de los testeados que existe un mediado nivel de calidad educativa que se viabiliza para la acreditación sin embargo el proceso de acreditación abarca otros campos los cuales complementan con la finalidad de garantizar el servicio educativo.

5.2. Conclusión

Luego de analizar los resultados y contrastar la información procesa con apoyo del software SPSS v 25, consolidamos información y concluimos que las variables diseño de un aula y centro de cómputo se vincula notablemente con la variable calidad pedagógico la cual respalda la infraestructura ejecutada brindando mayor comodidad y confort en el ambiente laboral y educativo de las personas que lo habitan por el espacio de tiempo estimado.

La correlación obtenida mediante los estadísticos de Tau-b Kendal es de 58.4% y Rho de Spearman es de 58.6% es por ello que podemos referenciar que la relacion es moderada, luego de calcular los resultados del cuestionario empleado, rescatamos los resultados totales, para la variable diseño de un aula y centro de cómputo fueron: "En desacuerdo" respondieron 1 persona, 3 respuestas fueron "Ni de acuerdo ni en desacuerdo", 96 respuestas "De acuerdo", 0 respuestas "Muy de acuerdo"; y por la calidad de la educación es; 1 "En desacuerdo", 1 "Ni de acuerdo ni en desacuerdo", 97 "De acuerdo", 1 "Muy de acuerdo"; Además, las hipótesis sintetizadas usando estadísticas que reportan que el X2 calculado es 132,668 y es mayor que el X2 crítico de 12,592, caen en la región de rechazo, que es la razón principal para rechazar la hipótesis nula H0 y aceptar la hipótesis alternativa H1, todos tienen un nivel de confianza del 5%, por lo tanto: El diseño del aula y centro de cómputo se relaciona significativamente con la calidad educativa de la institución educativa No. 20517 Supe, Barranca, Lima, 2022.

Conclusiones especificas

Mediante el análisis realizado con el diagnóstico situacional de la investigación es conveniente definir que la situación tal como se ubica el proyecto antes de realizar la ejecución es sumamente importante porque de ello depende los trazos y en caso sería necesario la demolición se cuenta con un adicional de obra en nuestra situación podemos inferir que la dimensión diagnóstico situacional se relaciona con la calidad educativa hablando estructuralmente.

La correlación obtenida mediante los estadísticos de Tau-b Kendal es de 64.9% y Rho de Spearman es de 65,9% es por ello que podemos referenciar que la correlación es moderada, posteriormente luego de cuantificar los resultados del cuestionario aplicado, rescatamos los resultados totales, para la variable diseño de un aula y centro de cómputo fueron: "No estoy de acuerdo" respondió a 1 persona, 1 respuesta "o acordé estar en desacuerdo", 97 respuestas "acordaron", 1 respuesta "muy acordado"; Y para la educación hubo; 1 "No estoy de acuerdo" La respuesta, 1 respuesta "Ni siquiera estaba de acuerdo", 97 respuestas "están de acuerdo", 1 respuestas fueron "muy acordadas"; Además, los contrastes de hipótesis se hicieron de acuerdo con las estadísticas, que se mencionaron que el X2 calculado es 88 247, más que un crítico de X2 es 12,592, por lo tanto, está en la zona negativa, es la razón principal por la cual la hipótesis de cero e hipótesis alternativas de hipótesis e hipótesis hipótesis alternativas. H1, todas con un nivel de confianza del 5%, es: un diagnóstico situacional de infraestructura se asocia en

gran medida con la calidad de la educación de las instituciones educativas No. 20517 Supe, Barranca, Lima, 2022.

✓ El diseño de la infraestructura está basado netamente en las dimensiones o distribuciones de ambiente con la finalidad de mantener una comodidad y confort básico para las personas que lo habitan tanto como docentes y alumnos sin embargo es preciso mencionar que en nuestra investigación se relaciona con la calidad educativa debido a que la luminiscencia y el confort se encontrara en un índice de habitabilidad constantes y excepcionalmente integra.

La correlación obtenida mediante los estadísticos de Tau-b Kendal es de 47.8% y Rho de Spearman es de 48,1% es por ello que podemos referenciar que la correlación es moderada, posteriormente luego de cuantificar los resultados del cuestionario aplicado, rescatamos los resultados totales, para la variable diseño de un aula y centro de cómputo fueron: "Muy en desacuerdo" respondieron 1, "En desacuerdo" respondieron 1 persona, 4 respuestas fueron "Ni de acuerdo ni en desacuerdo", 94 respuestas "De acuerdo", 0 respuestas "Muy de acuerdo"; y por la calidad de la educación es; 1 "En desacuerdo", 1 "Ni de acuerdo ni en desacuerdo", 97 "De acuerdo", 1 "Muy de acuerdo"; Además, las hipótesis se comparan utilizando un estadístico que indica que el valor calculado de X2 de 124271a es mayor que el valor crítico de X2 de 16919 y por lo tanto se encuentra en la región de rechazo, por lo que se rechaza la hipótesis nula H0. y la hipótesis alternativa H1, ambas con el 5% de confianza, así: El proyecto de infraestructura se relaciona significativamente con la calidad de la educación en el Establecimiento Educativo N° 20517 Supe, Barranca, Lima,

✓ La dimensión costos y presupuestos de nuestra investigación abarca el proceso de Metrado de todas las particas que se ejecutan durante el proceso de construcción con la finalidad de mantener una curva de avance acorde al tren de actividades siendo así que en el proceso de ejecución de nuestra propuesta referenciamos que existe una correlación de la dimensión con la variables calidad educativa, es decir que los costos y presupuestos proyectados se están realizando acorde al proceso constructivos.

La correlación obtenida mediante los estadísticos de Tau-b Kendal es de 26.4% y Rho de Spearman es de 26,6% es por ello que podemos referenciar que la correlación es moderada, posteriormente luego de cuantificar los resultados del cuestionario aplicado, rescatamos los resultados totales, para la variable diseño de un aula y centro de cómputo fueron: "Muy en desacuerdo" respondieron 0, "En desacuerdo" respondieron 1 persona, 4 respuestas fueron "Ni de acuerdo ni en desacuerdo", 95 respuestas "De acuerdo", 0 respuestas "Muy de acuerdo"; y por la calidad de la educación es; 1 "En desacuerdo", 1 "De acuerdo o en desacuerdo", 97 "De acuerdo", 1 "Totalmente de acuerdo"; Además, las hipótesis se comparan mediante un estadístico que indica que el valor calculado de X2 de 100 087a es mayor que el valor crítico de X2 de 12 529 y, por lo tanto, se encuentra en la región de rechazo, por lo que se rechaza la hipótesis nula H0. y la hipótesis alternativa H1, todas con un nivel de confianza del 5%, por lo tanto: Costo y presupuesto están significativamente relacionados con la calidad de la educación en el Establecimiento Educativo N° 20517 Supe, Barranca, Lima, 2022.

✓ La dimensión de procesos constructivos abordado en nuestra investigación es básicamente señalada con la finalidad de abarcar cada uno de las actividades acorde a un especialista que conlleve las operaciones en relación al proceso estructural el cual convenga sin alteras las dimensiones ni ensayos correspondientes por ello la relación existente entre la variable calidad educativa es moderada.

La correlación obtenida mediante los estadísticos de Tau-b Kendal es de 100% y Rho de Spearman es de 100% es por ello que podemos referenciar que la correlación es moderada, posteriormente luego de cuantificar los resultados del cuestionario aplicado, rescatamos los resultados totales, para la variable diseño de un aula y centro de cómputo fueron: "Muy en desacuerdo" respondieron 0, "No estoy de acuerdo" respondió a 1 persona, respondí "o acordé estar en desacuerdo", 97 respuestas "acordaron", 1 respuesta "muy de acuerdo"; Y para la educación existente; 1 "No estoy de acuerdo" la respuesta, 1 respuesta "Él ni siquiera está de acuerdo", 97 respuestas "De acuerdo", 1 la respuesta está "muy de acuerdo"; Además, la hipótesis contrastante según las estadísticas se realizó luego una célula, una hipótesis H1 alternativa: aceceno, todo lo cual tiene un 5% de confiabilidad, porque lo son: los procesos que se construyen en gran medida relacionados con la calidad de la educación. 20517 Supe, Barranca, Lima, 2022.

96

5.3. Recomendación

En nuestra investigación el diseño de aula y un centro de cómputo es

importante para el desarrollo de la calidad educativa con la confianza de mantener y dar

buen uso, por lo tanto, es recomendables que se cumpla la vida útil proyectada realizando

los mantenimientos correspondientes.

Los informes de diagnóstico situacional deben se ser derivados a la sede

central y aso mantener la data anual de la situación estructural.

Los diseño y modificaciones que se realicen a futuros deben mantener un

diseño impreso y un banco de datos con la finalidad de retornar basado en garantía

siempre en cuando lo amerite.

Los costos adicionales y presupuestos a ejercer no contemplan el proceso

de ejecución realizado.

Los procesos constructivos realizados mantienen un cuaderno de obra

actualizado y visado por supervisión el cual esta accesible para cualquier inquietud.

CAPITULO VII: FUENTES DE INFORMACION

5.1 Fuentes bibliográficas

Alfaro, M. (2019). El diseño del aula y centro de cómputo acondicionado para estudiantes.

Carrot, S. (2016). Diagnóstico inicial.

- Córdova, I. (2013). El proyecto de investigación cuantitativa. San Marcos.
- Espíritu, J. (2022). Calidad educativa con visión a la acreditación según el SINEACE en una institución educativa de educación básica regular, 2019. En *La deserción escolar de estudiantes de secundaria en las escuelas públicas del Perú*. Universidad Católica de Trujillo.

 Obtenido de http://repositorio.uct.edu.pe/bitstream/123456789/346/1/0061220211_0001193711_T_2 018.pDF
- Huaytan, A. (2021). Diseño e implementación del aula virtual y el seminario Mayor San Martín De Porres, Diocesis de Chosica. Universidad San Martin de Porres.
- INDECI. (2018). Evaluación / Estimación del Riesgo.
- Isamitt, V. (2016). Propuesta para el control de avance del trabajo en proyectos de excavación usando fotografías digitales.
- Leal, A. (2020). Habitabilidad en zonas necesarias.
- Lorrén, L. (2018). Diseño definitivo de la infraestructura Educativa Inicial Pública Nº 10982 Hacienda Chacupe, Distrito de la Victoria, provincia de Chiclayo. Universidad Señor de Sipán.
- Marín, F. (2019). Calidad educativa bajo condiciones de infraestructura en el fortalecimiento del desempeño académico del estudiante. Universidad de la Costa.
- OMS. (2015). El acceso a agua potable y saneamiento. Agua, Saneamiento e Higiene.
- Ortega, C. (2015). Planificación y control en la construcción.
- OSCE. (2020). Dirección Técnico Normativa Opinión.
- Parra, L. (2020). Calidad educativa desde base en la filosofía.
- Perez, D. (2020). La habitabilidad de una infraestructura.
- Peréz, J. (2016). Control y monitoreo de avance de obra.

- Radic, J. (2019). Sistema de evaluación y mejora de la calidad educativa. Universidad Autónoma de Madrid.
- Retamozo, J. (2019). Diseño de un aula y centro de cómputo en la apertura de un centro de educación ocupacional de diseño gráfico y computación. Universidad Nacional Mayor de San Marcos.
- Romero, G. (2014). Impuesto a la renta y gastos deducibles.
- Salomón, F. (2019). Diseño de un aula y centro de computación de una entidad educativa.
- Sampieri, R. (2014). Sesión 6 Hernández Sampieri Metodología de la investigación (Quinta ed.).

 Mc Graw Hill.
- Silva, D. (2018). Diseño estructural de un colegio.
- Tapia, F. (2020). Calidad educativa.
- Verastegui, M. (2021). La infraestructura para mejorar la calidad educativa y su relación con estudiantes de la Escuela Superior de Guerra del Ejercito, escuela de postgrado, 2018.

 Escuela Superior del Guerra del Ejercito.
- Zarzosa, P. (2019). Calidad educativa.
- Zorrilla, M. (2018). Aplicación del diseño interior en aulas de clase para niños de 3 a 6 años en la escuela particular gratuita N° 54 " Sor Francisca de Llaga" ubicada en el sector San Miguel ciudad de Milagro (zona 5) Provincia de Guayas. Universidad de Guayaquil.

5.2. Fuentes hemerográficas

- Barriento, J. (2018). Diseño de aulas escolares. 1999, 1-6.
- Becker, A. (2019). Proceso constructivo. *Syria Studies*, 7(1), 37–72. Obtenido de https://www.researchgate.net/publication/269107473_What_is_governance/link/

548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/C ivil wars_12December2010.pDF%0Ahttps://think-asia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625

Casalino, M. (2019). Diseño estructural de un aula escolar. 1999, 1-6.

Cruz, A. (2020). Proceso constructivo en edificación. 1999, 1-6.

Prada, A. (2020). Diseño infraestructural. 1999, 1-6.

Salas, J., & Lucín, R. (2019). Evaluación de la calidad del servicio educativo para determinar el nivel de la deserción estudiantes en la Unidad Educativa "Capitán Pedro Oscar Salas Bajaña. *In Kemampuan Koneksi Matematis*, 53(9).

5.3. Fuentes electrónicas

Zuñiga, A. (2016). *Costos y Presupuestos*. Obtenido de http://www.eafit.edu.co/escuelas/administracion/consultorio-contable/Documents/CAPITALES GOLONDRINA.pDF

ANEXOS

Anexo 1. Instrumento de investigación

	CU	JESTIONARIO	
Área de trabajo	o:		Fecha:
	ENTACION: el tesista, .		de
	usted anónimamente no	***************	Dor tanto, es de vista a los factores o aspectos más
a lo que usted j	piensa. Sus respuestas sc	n confidenciales y	onteste la alternativa que más se acerca serán reunidas junto a las respuestas de n estos días. Muchas gracias.
2.2. Marque con correcta.	ción que Ud. nos brinde		a y anónima. regunta, que Ud. considere la opción
III. ASPECTOS	S GENERALES:		
3.1. Género	() Masculino	() Femenino	
3.2. Edad	() 18 a 23 años	() 24 a 28 años	() 29 a 33 años
	() 34 a 38 años	() 39 a 43 años	() 44 a más años
3.3. Nivel de ins	trucción () Primaria	() Secundaria	() Universitaria

		Es	cala de (Calificación	1		
1		2		3	4		5
Muy en desacuerdo	Algo	en desacuerdo		cuerdo ni sacuerdo	Algo de acue	rdo	Muy de acuerdo
		DISEÑO DE UN	AULA Y	CENTRO	DE COMPUTO)	
DIAGNÓSTICO SITUACIONAL INFRAESTRUO	DE LA	DISEÑO INFRAESTRUCT	TURAL	COSTO Y PRESUPU		PROC	CESO STRUCTIVO
(01 a 05)		(06 a 10)		(11 a 15)	(16:	a 20)

I: D	I: DIAGNOSTICO SITUACIONL DE LA INFRAESTRUCTURA					
N°	İtems	1	2	3	4	5
01	Se realiza levantamiento topográfico del espacio donde se diseñará el aula y centro de cómputo.					
02	Estudio de mecánica de suelo para tener en cuenta la resistencia sísmica de la infraestructura.					
03	Con que frecuencia se realiza mantenimientos estructurales a el aula del centro educativo.					
04	Con que frecuencia el centro educativo mejora la infraestructura					
05	Se debería de tener proyección para varios pisos					

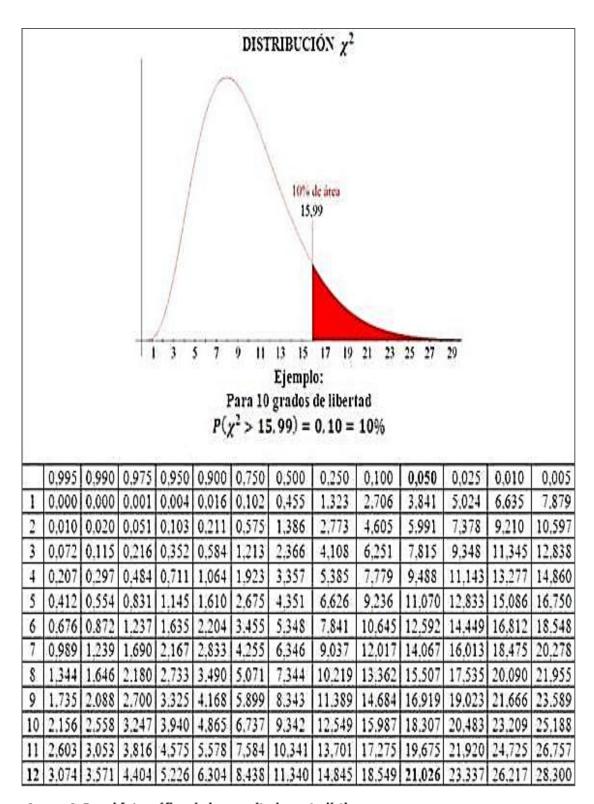
П: 1	DISEÑO INFRAESTRUCTURAL	Calificación					
N°	İtems	1	2	3	4	5	
06	Cada etapa lleva un ritmo de trabajo dependiendo de la complejidad de cada pieza.						
07	Las horas hombres trabajadas son reflejados en dl avance del proyecto.						
08	La mano de obra calificada y no calificada hacen posible la existencia del objetivo y el cumplimiento de la misma.						
09	Las horas muertas deben ser menoras a las ejecutadas.						
10	Las cantidades son valoradas en porcentajes para saber las aproximaciones de cumplimiento.						

III:	COSTOS Y PRESUPUESTOS	Cal	ifica	ció	1	
N°	İtems	1	2	3	4	5
11	Considera que los costos estimados en los metrados alcanzarán para la ejecución.					
12	Los costos de materiales y mano de obra actualmente se encuentran elevado esto será un problema para iniciar la ejecución.					
13	Considera que las adquisiciones de los materiales serán oportunas para no desfasar la ejecución de la obra.					
14	Mantener las cantidades estimadas mejorara el presupuesto asignado.					
15	La deficiencia en el aprovisionamiento de materiales influye en el incremento de costos y presupuestos.					

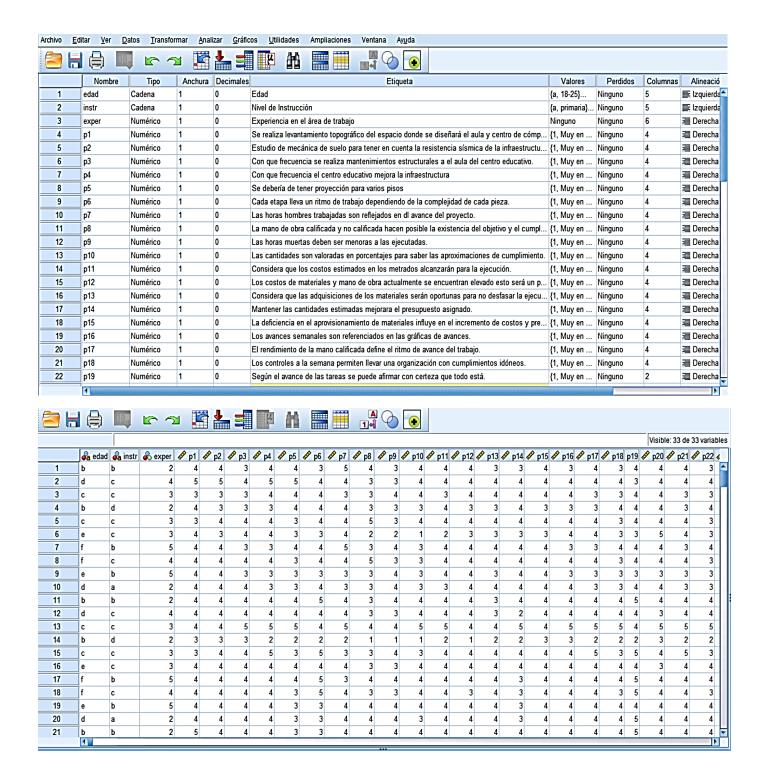
IV:	PROCESO CONSTRUCTIVO	Cal	ifica	ciór	1	
N°	İtems	1	2	3	4	5
16	Los avances semanales son referenciados en las gráficas de avances.					
17	El rendimiento de la mano calificada define el ritmo de avance del trabajo.					
18	Los controles a la semana permiten llevar una organización con cumplimientos idóneos.					
19	Según el avance de las tareas se puede afirmar con certeza que todo está.					
20	Las tareas designadas siguen un proceso constructivo ceñido a las normas.					

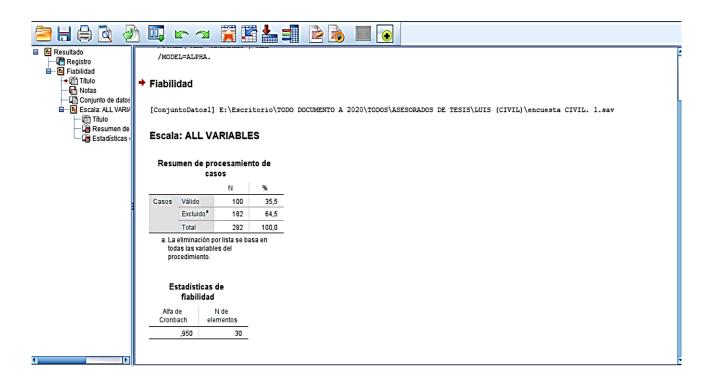
	E:	cala de Calif	icación	ı		
1	2		3 4		5	
Muy en desacuerdo	Algo en desacuerdo	Ni de acuer en desacue		Algo de acuerdo	Muy de acuerdo	
	CAI	LIDAD EDU	CATIV	A		
HABITABILIDA	4D		SEGURIDAD			
(21 a 25)		(2	6 a 30)			

I: HABITABILIDAD					Calificación					
N°	İtems	1	2	3	4	5				
21	Considera que la infraestructura mejora el aprendizaje.									
22	Considera usted que el espacio debe ser ventilado.									
23	Los ambientes deben tener una adecuada arquitectura.									
24	Con que frecuencia los estudiantes interactúan con los equipos tecnológicos del centro educativo.									
25	Considera que una mejor funcionabilidad (Equipamiento) mejoraría la calidad de aprendices.									


II: SEGUI	RIDAD	Ca	lific	aci	ón	
N°	İtems	1	2	3	4	5
26	Considera que al llevar un adecuado proceso constructivo la estructura resistirá a sismos fuertes.					
27	Considera que el ambiente habitable es siempre seguro.					
28	Considera que el certificado de defensa civil (ITSE) otorga mayor seguridad.					
29	Cree que del diseño depende la seguridad de infraestructura para los estudiantes y maestros.					
30	Considera que la calidad educativa está basada en mantener un ambiente saludable.					

Anexo 2. Juicio de expertos


matriz de consist Profesional, val	ide dicho instrumento para su	amos que, en base a su Criterio y Experiencia
CRITERIO	CALIFICACION	INDICADOR
SUFICIENCIA:	 No cumple con el criterio 	Los ítems no son suficientes para medir la dimensión.
Los ítems que pertenecen a una	2. Bujo nivel	Los ítems miden algún aspecto de la dimensión, pero no corresponden con la dimensión total.
misma dimensión	3. Moderado nivel	Se deben incrementar algunos ítems para poder evaluar la dimensión complementaria.


bastan para obtener la medición de ésta.	4. Alt	to nive	:1			Los items son suficien	tes.
an areare training contract contract	1. No	cump	le cor	ı el e	riterio	El item no es claro.	
CLARIDAD: El						El ítem requiere bastar	ntes modificaciones o una modificación
ítem se comprende	2. Ba	jo nive	el				de las palabras de acuerdo con su
făcilmente, es decir,		,					denación de las mismas.
su sintáctica y semántica son							cación muy específica de algunos de los
adecuadas.	3. Ma	derad	o nive	el		términos del ítem.	rate and the special at a against the no
anecuacus.	4. Alt	to nive	-1				semántica y sintaxis adecuada.
COHERENCIA: EI				ı el e	riterio		on lógica con la dimensión.
ítem tiene relación	2. Ba						ión tangencial con la dimensión.
lógica con la		derad		-1		El ítem tiene una relac	ión moderada con la dimensión que está
dimensión o	3. NW	nderad	o mvi	CI.		midiendo.	
indicador que está	4 51	to nive	d .				ompletamente relacionado con la
midiendo.	4. 74.					dimensión que está mi	
	1. No	cumn	le cor	ı el e	riterio	-	inado sin que se vea afectada la
RELEVANCIA: EI		camp				medición de la dimens	
ítem es esencial o	2. Ba	jo nive	el				levancia, pero otro item puede estar
importante, es decir						incluyendo lo que mid	
debe ser incluido.		derad		el		El ítem es relativamen	
	4. Al	to nive	:1			El item es muy relevar	nte y debe ser incluido.
I							
Calificación de los I	tems (iel Cu	estio	mario	0:		
Calificación de los I	\neg		ustio usció		0:	1	01
Calificación de los I Criterio de Validez	\neg				0:	Argumento	Observaciones y/o Sugerencias
		Punt	иясіб	e .):	Argumento	Observaciones y/o Sugerencias
Criterio de Validez		Punt	иясіб	e .	0:	Argumento	Observaciones y/o Sugerencias
Criterio de Validez Suficiencia		Punt	иясіб	e .		Argumento	Observaciones y/o Sugerencias
Criterio de Validez Suficiencia Claridad		Punt	иясіб	e .	0;	Argumento	Observaciones y/o Sugerencias
Criterio de Validez Suficiencia Claridad Coherencia		Punt	иясіб	e .	0:	Argumento	Observaciones y/o Sugerencias
Criterio de Validez Suficiencia Claridad Coherencia Relevancia		Punt	иясіб	e .	0:	Argumento	Observaciones y/o Sugerencias
Criterio de Validez Suficiencia Claridad Coherencia Relevancia Total Parcial		Punt	иясіб	e .		Argumento	Observaciones y/o Sugerencias
Criterio de Validez Suficiencia Claridad Coherencia Relevancia Total Parcial		Punt	иясіб	e .		Argumento	Observaciones y/o Sugerencias
Criterio de Validez Suficiencia Claridad Coherencia Relevancia Total Parcial TOTAL		Punt	иясіб	e .		Argumento	Observaciones y/o Sugerencias
Criterio de Validez Suficiencia Claridad Coherencia Relevancia Total Parcial TOTAL Puntusción:	1	Punt 2	3	e .			
Criterio de Validez Suficiencia Claridad Coherencia Relevancia Total Parcial TOTAL	1	Punt 2	3	e .		Argumento De 10 a 12: Válido,	
Criterio de Validez Suficiencia Claridad Coherencia Relevancia Total Parcial TOTAL Puntusción: De 4 a 6: No válida,	, refor	Punt	3	e .		De 10 a 12: Válido,	mejorar
Criterio de Validez Suficiencia Claridad Coherencia Relevancia Total Parcial TOTAL Puntusción:	, refor	Punt	3	e .			mejorar
Criterio de Validez Suficiencia Claridad Coherencia Relevancia Total Parcial TOTAL Puntuación: De 4 a 6: No válida, De 7 a 9: No válido,	refor	Punt	3	e .		De 10 a 12: Válido,	mejorar
Criterio de Validez Suficiencia Claridad Coherencia Relevancia Total Parcial TOTAL Puntusción: De 4 a 6: No válida,	refor	Punt	3	e .		De 10 a 12: Válido,	mejorar

Anexo 3. Tabla de chi - cuadrada

Anexo 4. Panel fotográfico de los resultados estadísticos

