UNIVERSIDAD NACIONAL JOSÉ FAUSTINO SANCHEZ CARRION

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS

ESTUDIO Y DISEÑO DE LAS REDES DE AGUA POTABLE PARA EL CENTRO POBLADO SAN JUAN BAUTISTA VEGUETA HUAURA 2019

PRESENTADO POR:

CINTHIA LUCIA PANTOJA ESPINOZA

Asesor:

Ing. GOÑI AMERI CARLOS FRANCISCO

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO CIVIL

HUACHO, PERÚ

2019

ESTUDIO Y DISEÑO DE LAS REDES DE AGUA POTABLE PARA EL CENTRO POBLADO SAN JUAN BAUTISTA VEGUETA HUAURA 2019

DEDICATORIA

A mis padres que formaron en mi a una persona con valores y amor al prójimo en beneficio de la sociedad.

.

Cinthia Lucia

AGRADECIMIENTO

Dar gracias a mi casa de estudios y donde día a día forjé mis conocimientos por medio de docentes calificados en su rubro.

Cinthia Lucia

RESUMEN

El trabajo denominado "Estudio y diseño de las redes de agua potable para el centro

poblado San Juan Bautista – Vegueta – Huaura – 2019", es un trabajo de investigación

para conseguir el Título profesional de Ingeniero Civil –UNJFSC- Huacho. El método

utilizado en esta investigación se acoge al estudio básico representativo-correlacional, no

experimental. La premisa hipotética planteada fue la siguiente: "El estudio y diseño de

las redes de agua potable si influye en el consumo de agua potable para el centro poblado

San Juan Bautista – Vegueta – Huaura – 2019". La población estuvo dada por 22031

pobladores del distrito de Huaura. La muestra utilizada en este estudio consta de 93

habitantes del centro poblado ya mencionado. Con la aplicación de la encuesta a las

variables se obtuvieron resultados que demuestran que sí existen influencia entre el diseño

de la red de agua potable sobre el consumo de la misma en el centro poblado San Juan

Bautista – Vegueta – Huaura – 2019. La correlación es de una magnitud buena.

El autor

Palabras claves: sistema de agua potable, montaje, investigación.

V

ABSTRACT

The work called "Study and design of drinking water networks for the San Juan Bautista

- Vegueta - Huaura - 2019 town center", is a research work to obtain the Professional

Title of Civil Engineer -UNJFSC- Huacho. The methodology that was used is within the

basic and descriptive-correlational, non-experimental research and the hypothesis was:

"The study and design of drinking water networks does influence the consumption of

drinking water for the San Juan town center Bautista - Vegueta - Huaura - 2019". The

population was given by 22031 residents of the district of Huaura. The research

determined the use of a convenience sample of 93 inhabitants. The survey applied to the

first and second variables was used. The results show that there is influence of the study

and design of drinking water networks on the consumption of drinking water for the San

Juan Bautista - Vegueta - Huaura - 2019 population center. The correlation is of a good

magnitude.

The author

Keywords: water networks, drinking, design, study.

vi

INDICE

DEDIC	ATO	ORIA	iii
AGRA	DEC	IMIENTO	iv
RESUN	MEN		v
ABSTF	RAC	Γ	vi
		E TABLAS	
INDIC	E DE	E FIGURAS	X
CAPIT	ULO	I PLANTEAMIENTO DEL PROBLEMA	11
1.1.	De	scripción de la realidad problemática	11
1.2.	Fo	rmulación del problema	12
1.3.	Ob	jetivo de la investigación	13
1.3	3.1.	Objetivo general	13
1.3	3.2.	Objetivos específicos.	13
1.4.	Jus	stificación de la investigación	13
1.5.	De	limitaciones del estudio	14
1.6.	Via	abilidad del estudio	14
CAPIT	ULO	II MARCO TEÓRICO	16
2.1.	An	tecedentes de la investigación.	16
2.2.	Ba	ses teóricas	19
2.2	2.1. E	El sistema de Agua Potable	19
2.2	2.2. C	Componentes del sistema de agua potable:	20
2.3.	De	finiciones conceptuales	29
2.4.	Fo	rmulación de las hipótesis	31
2.4	l.1.	Hipótesis general	31
2.4	1.2.	Hipótesis específicas	31
2.5	Op	peracionalización de variables	31
2.5	5.1.	Variables Independientes. (VI)	31

2.5.2	. Variables Dependientes (VD)	32
CAPITUI	LO III METODOLOGIA	33
3.1. I	Diseño metodológico.	33
3.1.1	. Tipo de investigación	33
3.1.2	. Tipo de diseño:	33
3.1.3	. Método de investigación:	33
3.1.4	. Método general	33
3.1.5	. Métodos específicos:	33
3.2. I	Población y muestra	34
3.3.	Γécnicas de recolección de datos.	36
3.3.1	. Técnicas de investigación para el muestreo:	36
3.3.2	. Técnicas e instrumentos de recolección de datos.	36
3.4.	Técnicas para el procesamiento, análisis de datos y de información	37
3.4.1	. Para la presentación de resultados.	37
CAPITUI	LO IV ANALISIS DE LOS RESULTADOS	40
4.1. Res	sultados descriptivos de las variables	40
4.2. Pru	neba de normalidad de Kolmogorov - Smirnov	48
4.3. Ge	neralización entorno la hipótesis central	49
CAPITUI	LO V DISCUSIÓN, CONCLUSIONES Y RECOMENDACIONES	57
DISCU	SIÓN	57
CONCLU	JSIONES	59
RECOME	ENDACIONES	60
REFERE	NCIAS BIBLIOGRÁFICAS.	61
MATRIZ	DE CONSISTENCIA	63
Tabla de d	datos	65

ÍNDICE DE TABLAS

Tabla 1. Operacionalización de la variable X	31
Tabla 2. Operacionalización de la variable Y	32
Tabla 3. Población de estudio	35
Tabla 4. Interpretación del coeficiente de correlación de Spearman	39
Tabla 5. Estudio y diseño de la redes de agua potable	40
Tabla 6. Situación actual de las redes de agua	41
Tabla 7. Diseño de la línea de conducción	42
Tabla 8. Estrategias de participación ciudadana	43
Tabla 9. Consumo de agua potable	44
Tabla 10. Instalación de tuberías PVC ISO 4422	45
Tabla 11. Calidad de materiales	46
Tabla 12. Mano de obra	47
Tabla 13. Resultados de la prueba de bondad de ajuste Kolmogorov – Smirnov	48
Tabla 14. Estudio de las redes de agua potable y diseño de agua potable para consumo	49
Tabla 15. Estudio de las redes de agua potable y la instalación de tuberías PVC ISO 4422	51
Tabla 16. Estudio de las redes de agua potable y la calidad de materiales	53
Tabla 17	55

ÍNDICE DE FIGURAS

Figura 1. Estudio y diseño de la redes de agua potable	40
Figura 2. Situación actual de las redes de agua	41
Figura 3. Diseño de la línea de conducción	42
Figura 4. Estrategias de participación ciudadana	43
Figura 5. Consumo de agua potable	44
Figura 6. Instalación de tuberías PVC ISO 4422	45
Figura 7. Calidad de materiales	46
Figura 8. Mano de obra	47
Figura 9. Estudio de las redes de agua potable y el diseño de agua potable para el consumo	50
Figura 10. Estudio de las redes de agua potable y la instalación de tuberías PVC ISO 4422	52
Figura 11. Estudio de las redes de agua potable y la calidad de materiales	54
Figura 12. Estudio de las redes de agua potable y la mano de obra para el consumo de agua potable	56

CAPITULO I PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la realidad problemática.

Entre varios fines del Estado, uno de ellos es lograr la satisfacción de las necesidades de la sociedad y es indiscutible que el recurso hídrico (agua) es una de ellas, asimismo, es vital para el desarrollo de todo ser humano y, en forma general, para el desarrollo del propio país en distintos aspectos. La necesidad de que todos accedan a este recurso de vital importancia se materializa en un proceso de transporte para hacer llegar de manera eficiente a los receptores en los distintos lugares. Para lograr la eficacia en el transporte se deben tener en cuenta tres puntos primordiales: la cuantía, la propiedad y la recepción con respecto a los usuarios (Calzin, 2014, p.1).

Recordemos que el agua no solo va a ser de utilidad para el consumo humano, sino que también es indispensable para desarrollar sus actividades sin ningún tipo de inconveniente, por ejemplo, en el lavado de alimentos, en la higiene personal o en la limpieza de su hogar. Es por ello que si no se toman en los tres puntos mencionados en el párrafo anterior muy difícilmente se cubrirán aquellas necesidades.

En la actualidad con respecto a el CC.PP. SAN JUAN BAUTISTA DE VEGUETA. Héroes, el aprovisionamiento de agua potable es deficiente para el número de personas que integran una familia en este centro poblado. Esto debido a que como centro de recepción hay solo una línea de conducción, esta llega hasta el depósito que fue montado por determinada línea de aducción, el mismo que llega hasta las redes de reparto. En el mismo sentido, ya teniendo esta deficiencia técnica en el reparto del agua potable, el servicio

dura 1 hora cada 2 días lo que hace insuficiente el tiempo para todas las necesidades que cada miembro de la familia percibe.

El efecto que produce la insuficiencia del suministro de agua potable, la carencia de un almacenamiento higiénico y el diseño de transporte poco eficiente, puede originar distintos tipos de parásitos que perjudican la salud de aquellos que los ingieren produciendo enfermedades gastroentéricas, especialmente en la población vulnerable como niños, ancianos y personas con desnutrición. El fin de este proyecto de investigación es superar aquellas deficiencias que presenta el sistema de suministro del recurso hídrico bebible con respecto al CC.PP. San Juan Bautista de Vegueta, esto traerá como consecuencia el mejoramiento en la salud y en garantizar una vida digna a los pobladores.

1.2. Formulación del problema.

1.2.1 Problema general.

¿En qué medida influye el estudio de las redes de agua potable para diseño del agua potable para consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019?

1.2.2 Problemas específicos.

¿En qué medida incide el estudio de las redes de agua potable sobre la instalación de tuberías PVC ISO 4422 dentro del diseño de las redes de agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019?

¿De qué manera está incidiendo el estudio de las redes de agua potable sobre la calidad de materiales dentro del diseño de las redes de agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019?

¿Cómo incide el estudio de las redes de agua potable sobre la mano de obra dentro del diseño de las redes de agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019?

1.3. Objetivo de la investigación.

1.3.1. Objetivo general.

Determinar, en qué medida influye el estudio de las redes de agua potable sobre el diseño de agua potable para consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

1.3.2. Objetivos específicos.

Establecer, en qué mensura incide el estudio de las redes de agua potable sobre la instalación de tuberías PVC ISO 4422 dentro del diseño de las redes de agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019

Establecer, de qué manera está incidiendo el estudio de las redes de agua potable sobre la calidad de materiales en el estudio dentro del diseño de las redes de agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

Determinar, cómo incide el estudio de las redes de agua potable sobre la mano de obra dentro del diseño de las redes de agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

1.4. Justificación de la investigación.

Esta investigación es necesaria porque la población de San Juan Bautista carece de la prestación de agua purificada para la satisfacción humana; en la actualidad los pobladores compran agua que llegan con las cisternas insalubres y con un precio elevado.

El diseño del sistema de agua saludable les dará una mejor calidad de vida, reducirá la contaminación ambiental y el desarrollo de enfermedades, aportará con el desarrollo socioeconómico y salubridad de la población del centro poblado San Juan Bautista — Vegueta — Huaura, que se encuentra ubicado a 31 min (20.6 km) por Auxiliar Panamericana Nte. /Carretera 1N y Antigua Panamericana Norte. Desde la provincia de Huaura.

Los estudios complementarios se realizarán en la Facultad de Ingeniería Civil de la UNJFSC Huacho.

1.5. Delimitaciones del estudio.

1.5.1 Delimitación de contenido

- Ingeniería Civil
- Hidráulica
- Sistema de alcantarillado
- Salubridad de los habitantes del Centro Poblado.

1.5.2. Delimitación Espacial

Las investigaciones de campo serán actuadas en el Centro Poblado San Juan Bautista Distrito de Vegueta que se encuentra ubicado a 31 min (20.6 km) por Auxiliar Panamericana Nte. /Carretera 1N y Antigua Panamericana Norte. Desde la provincia de Huaura.

Los estudios complementarios se realizarán en la Facultad de Ingeniería Civil de la UNJFSC Huacho.

1.5.3. Delimitación Temporal

La presente investigación será realizada en la fase que consta desde el mes de octubre del 2019 hasta el mes de abril del 2020

1.6. Viabilidad del estudio.

El actual proyecto de tesis es factible debido a que mejorara el método utilizado para el aprovisionamiento de agua potable, ya que este recurso natural es indispensable para la supervivencia del ser humano, así como para la satisfacción de sus menesteres; es por ello que la carencia de agua potable es una de las dificultades de mayor énfasis en nuestra nación. Asimismo, se evidenciará en ofrecerles una solución a los moradores del Centro Poblado San Juan Bautista Distrito de Vegueta que habitan en medio del problema de precisar con un suministro de un sistema de agua potable de calidad.

1.6.1. Por la disponibilidad de la tecnología

Se utilizará distintos equipos electrónicos como computadoras, dispositivos móviles, entre otros. También serán de ayuda distintos recursos electrónicos como el internet donde se encontrarán distintas investigaciones paralelas a la nuestra.

1.6.2. Por la disponibilidad financiera

Se prevé con un presupuesto direccionado a solventar los gastos de internet, movilidad, profesional en estadística, software, consultor y materiales.

1.6.3. Por la disponibilidad operativa

El proyecto y el informe de tesis se realizarán cumpliendo el horario establecido para la exhibición y sustentación.

CAPITULO II MARCO TEÓRICO

2.1. Antecedentes de la investigación.

2.1.1. Investigaciones relacionadas con el estudio.

Frente a investigaciones que se asimilan a esta hemos considerado a los siguientes investigadores.

A nivel Internacional:

Lam J. (2011), en su tesis "Diseño del sistema de abastecimiento de agua potable para la aldea Captzín Chiquito, Municipio de San Mateo Ixtatán, Huehuetenango"- Guatemala expuso como finalidad primordial el armar la estructura del suministro de agua bebible para la aldea Captzín Chiquito. En la tesis mencionada, el autor llego a concluir que para diseñar el sistema de suministro del recurso fue usado de manera estratégica la forma en la que se encontraba la superficie de tal aldea. Debido a la separación de los hogares, también se utilizó la morfología de las ramas. Asimismo, para reducir los costos, dado el volumen del proyecto, se optimizó los costos reduciendo las dotaciones.

Rivadeneira, V (2012), expuso en su tesis "Cantidad de agua potable de la red de distribución y su incidencia en la satisfacción de los usuarios de la Ciudad de Palora, Cantón Palora, Provincia de Morona Santiago" – Ecuador, el objeto de Estudiar la satisfacción de la cuantía del agua saludable en el sistema de suministro, en los habitantes de la ciudad de Palora. En el proyecto se concluye que el 80% de los habitantes percibe que la cantidad que se le suministra es poca o promedia, mientras que el 20% precisa que la cantidad que percibe es considerable. En el caso de la duración en la que se suministra el agua solo el 30% de los habitantes menciona que el suministro de agua potable es permanente, a diferencia del 70% que manifiesta que la duración es deficiente o promedia. En cuanto al impulso o fuerza que debe tener el

suministro de agua para que llegue a los pisos superiores el 76% por ciento menciona que el impulso es carente o promedio, mientras que el 24% manifiesta que el impulso es muy considerable. Todo esto nos lleva a que la satisfacción es de poca o promedia en el 75% de los habitantes de la ciudad.

Gonzáles, T (2013), en su trabajo de investigación "Evaluación del sistema de abastecimiento de agua potable y disposición de excretas de la población del corregimiento de Monterrey, Municipio de Simití, Departamento de Bolívar-Colombia, proponiendo soluciones integrales al mejoramiento de los sistemas y la salud de la comunidad", manifestó el propósito de valorar el sistema de aprovisionamiento de agua saludable en el pueblo del corregimiento de Monterrey, esto para verificar el impacto que tiene en el bienestar de los moradores y así presentar distintas alternativas de solución. En este proyecto se determina que el agua que se suministraba no era viable para la satisfacción humana, debido a que provenía de un acueducto originado del rio de un bosque. El agua que se consumía contenía sustancias dañinas para la salud, como el E.coli, coliformes fecales, entre otros. Además, en cuanto a las féminas muestreadas, se concluye que la forma en la que se manipulaba el agua era deficiente. Asimismo, aquella deficiente calidad de agua se manifiesta en las enfermedades de carácter acuátil en la población muestreada.

A nivel Nacional:

Gonzales (2017) en su tesis "Diseño de alcantarillado de agua potable y su relación con la calidad de vida de los pobladores del Asentamiento Humano Los Pinos I etapa, distrito de Santa María 2017", tuvo como objetivo la preparación del anteproyecto del alcantarillado y aprovisionamiento de agua bebible. La conclusión a la que llegó el autor citado es en el distrito el diseño del alcantarillado y aprovisionamiento de agua potable tiene un relevante impacto en la percepción de vida de la población.

Alegría, J (2013). "Ampliación y mejoramiento del sistema de agua potable de la Ciudad de Bagua Grande". La tesis mencionada, para prosperar

la forma de vida de los pobladores, se concentra en el problema sanitario por el que aquella ciudad atraviesa, para solucionar aquel problema los gobiernos regional y local comenzaron con modelo del proyecto, cuya aprobación se dio el 20 de octubre del año 2003. El plan de agua potable comprende los siguientes elementos: sistema de conducción de agua no potable, ventrículos que disminuyen el impulso, estacionamiento de tratamiento del recurso hídrico, ventrículo de conexión entre el cloro, cisterna, impulsador, estación de almacenamiento, válvulas que disminuyen el impulso, ventrículos distribuidores de cantidad de agua y redes de agua pura. Los distintos cálculos realizados en esta investigación se encuentran en los anexos.

Farje, I (2014) "Impacto de las decisiones políticas en la autonomía y gestión de los organismos reguladores de servicios públicos, caso Osinergmin". La tesis citada no solo se avocó en el traslado, ya que concluyo necesario la construcción de un orden legal que tendrá como fin el corregir la acción del mercado a través del ius puniendi del Estado.

Hurtado, W (2012) "Proceso Constructivo Del Sistema de Agua Potable y Alcantarillado del Distrito de Chuquibambilla – Grau - Apurímac" frente al problema que acoge el distrito esta tesis se centra en proponer una alternativa para la carencia de aquel momento que neutralizará aquella deficiencia durante 20 años.

Bocanegra,M (2010) "Ampliación De Redes De Agua Potable Y Alcantarillado del IV Sector Del Pueblo Joven Nuevo San Lorenzo En el Distrito de José Leonardo Ortiz"; propone el mejoramiento de la calidad del servicio del sistema de agua bebible y desagüe por medio de la amplificación de las mismas y distintos tipos de enlaces entre los domicilio encontrados en el pueblo Joven Nuevo San Lorenzo.

2.2. Bases teóricas.

2.2.1. El sistema de Agua Potable

Un sistema de aprovisionamiento de agua bebible tiene como objetivo el distribuir a los miembros de determinada comunidad una cierta cantidad de este recurso para la satisfacción de sus necesidades. El agua es sumamente importante para el correcto desenvolvimiento del organismo de los seres vivos y; por lo tanto, es determinante para la supervivencia de los mismos. Como sabemos, el agua por sí sola no es potable debido a los múltiples minerales, microorganismo y bacterias que pueden existir desde su origen, es por eso que para que el agua sea considerada potable, esta debe observar determinados parámetros impartidos por la institución mundial de la salud, estos parámetros establecen la cuantía de sales que puede comprender el agua para que sea considerada potable. Ahora bien, ¿cuál es la definición de potable? Agua potable es aquel recurso hídrico tratado para la satisfacción humana, sin que esta cause perjuicios a la salud del que la bebiese o utilice.

1. Sistema de agua potable por gravedad:

Lossio (2012) argumenta que se denomina sistema de agua por gravedad a determinado proceso por el que el agua desciende de un manantial de una cota principal hacia otra secundaria que se halla en la superficie, a través de ellas, el agua fluye siguen conductos que servirán para proveer a los habitantes que se encuentran en lugares más apartados. La fuerza de la que se vale el agua es producida por la distinción de ambas cotas.

2. Sistema de agua potable por bombeo:

A diferencia del proceso de agua potable por fuerza natural o gravedad, en este caso, ambas cotas se encuentran en la superficie siendo indispensable emplear una fuerza secundaria para trasladar el agua a determinado depósito, estos, sí están ubicados en puntos más altos de los

que están las cotas que recepcionan el agua. Este proyecto favorece la cantidad en la que se distribuye este recurso debido a que se aprovecha el impulso de gravedad que se distribuye al agua siendo más fácil su conducción. (Lossio, 2012).

2.2.2. Componentes del sistema de agua potable:

1. Captación:

Para dar inicio a todo el sistema de aprovisionamiento de agua es indispensable la obtención del agua de su fuente origen, esto con el fin ser conducidos para su distribución a los receptores. En la mayoría de casos el origen de las aguas, para su posterior captación, provienen de cámaras subterráneas, debido a que se encuentran en el subsuelo y su obtención puede ser muy costosa. Por otro lado, existen aguas superficiales que se caracterizan por su limpieza, debido a que se encuentra por debajo del subsuelo, no obstante, si existen rasgos de contaminación ya no existe alguna forma de remediarlo (Jiménez, 2012).

Para poder establecer los caudales de obtención de agua existen distintos métodos, por ejemplo, uno de ellos para determinar la cantidad de bombeo es a través de la perspectiva de aproximaciones previas, aquí se utiliza la fórmula de Bresse.

$$D(m) = 1.3 X1/4 \sqrt{Q(m^3/s)}$$
.

2. Línea de conducción:

Es el grupo de componentes como tubos, válvulas de impulso, entre otros, que servirán para el transporte del agua desde el momento de su obtención hasta el reservorio donde se acumulará el recurso hídrico. Se tomará provecho de la carga estática para formar el flujo y llevar la cantidad máxima diariamente. 20 milímetro como mínimo será el diámetro, mientras que el revestimiento de las tuberías deberá tener un mínimo de 1 centímetro. La velocidad con la que deberá ser impulsada el agua deberá girar alrededor de 0.6 y 3 metros por segundo.

Línea de impulsión:

Para la mudanza del recurso, desde el origen de obtención hasta la fuente de aprovisionamiento, es necesario un conjunto de componentes como lo son las ventosas, válvulas de impulso, entre otros. Este conjunto de componentes es denominado línea de impulsión (Acueductos, Cloacas y Drenaje, p. 1).

Los cálculos de las líneas de impulso se llevan a cabo a través de las fórmulas de continuidad. Ahora, se presenta en la tabla N° 1 los coeficientes de Hazen y Williams.

Coeficientes de fricción "C" en la fórmula de Hazen y Williams

TIPO DE TUBERÍA	"C"
Acero sin costura	120
Acero soldado espiral	100
Cobre sin costura	150
Concreto	110
Fibra de vidrio	150
Hierro fundido	100
Hierro fundido con revestimiento	140
Hierro galvanizado	100
Polietileno, Asbesto Cemento	140
Poli (cloruro de vinilo) (PVC)	150

Fuente: Norma para obras de saneamiento OS. 010

Ecuación de continuidad

$$V = (4*Q) / (\Pi*D2),$$
 $Q = V. A$

Fórmula de Hazen y Williams:

Q = 0.2785CD2.63 S0.54, Hf = S*L

Donde:

S: Pendiente (m/m)

D: Diámetro (m)

C: Coeficiente de fricción (adimensional)

Q: Caudal (m3/s)

Hf: perdida por fricción (m)

L: longitud de la tubería (m)

Se considera los coeficientes de fricción, según la tabla N° 01.

Fórmula de manning:

$$V = \frac{S^{1/2}R^{2/2}}{n}$$

Para esta fórmula se establecen los siguientes Coeficientes de fricción "C":

PVC = 0.009

Concreto = 0.015

Fierro galvanizado = 0.010

Tratamiento:

Se refiere a todos los procedimientos utilizados para que el agua captada sea eficaz para su consumo. Los procedimientos utilizados pueden ser de carácter químico, físicos y mecánicos. Generalmente si el agua es segura para el consumo, estéticamente aceptada y rentable, se pude decir que es potable. Para la creación de un estacionamiento de tratamiento es indispensable tener en cuenta

22

las características físicas, químicas y biológicas del agua tratar (Jiménez, 2012, p. 20).

Almacenamiento:

El tanque de aprovisionamiento sirve para garantizar la distribución de agua cuando ocurran ciertos desperfectos en las líneas antecesoras. Al ser el agua muy importante para la satisfacción y supervivencia del ser humano este componente es de mucha importancia para que este recurso no sea deficiente (Jiménez, 2012, p. 20).

Línea de aducción:

Se asimila a la línea de impulsión en cuanto al diseño, pues también se trata de un conjunto de componentes que serán de utilidad para distribuir el agua desde el puesto de aprovisionamiento hasta las redes de distribución (Jimbo, 2011, p. 52).

Red de distribución:

Según Jiménez (2012) Para que el agua llegue a manos de los receptores es necesario un conjunto de tuberías que cumplan con los parámetros. De esta forma el agua alcanzará óptimas condiciones en cantidad y calidad.

Conexiones Domiciliarias:

El conjunto de conectores que debe contener cada domicilio está agrupado de la siguiente manera: De toma: Que está revestida por fierro fundido para tubos de cemento, sistema o herramienta de libre flujo. Si se utiliza tuberías de revestimiento con fierro fundido la llave ser introducida de manera directa a la tubería. De acarreo: Compuesta por determinados tubos cubiertos de policloruro de vinilo no amoldado o PVC para el transporte del líquido a impulso todo esto de acuerdo a los procedimientos y métodos de prueba NMP N°399-004. De inspección: instituido por estos elementos: CAJON

de seguridad con cuadro y cubierta de PVC. Llave de control con racor de bronce. Contador de agua que será conectado al medidor interno a través de un niple con la tuerca idónea de bronce.

Micro medición:

Dícese de aquellas acciones que servirán para percibir la cantidad aproximada del consumo de agua de los habitantes de cierta población. Esta herramienta es importante, debido a que a través de ella se verificará que el cobro sea justo frente al servicio brindado.

Diseño del plan de agua potable:

Parafraseando a Gonzáles (2013) En poblaciones campesinas la preparación del sistema de agua saludable debe realizar teniendo en cuenta la demanda, la propuesta y la propiedad del recurso hídrico. Este sistema se logra a través del planeamiento, donde se tiene una pluralidad de objetivos y, por ende, pluralidad de actuaciones para lograrlos.

Demanda de agua:

El cálculo se realiza teniendo en cuenta los siguientes elementos:

Periodo de diseño.

Población presente y venidera.

Dación de agua.

Cálculo de cantidades.

a) Período de Diseño:

Con el fin de anticiparse a posibles daños del método de agua potable, es necesario establecer el tiempo de utilidad de cada uno de ellos. Con el tiempo y el crecimiento de la población las demandas serán mayores, por ello, se debe prever su deterioro paulatino con el fin de añadir nuevos materiales al sistema (Bravo, 2012).

En concordancia con lo dicho anteriormente sobre el tiempo de utilidad de los materiales del sistema, ha de tomarse en cuenta el siguiente cuadro N° 1.

Periodos de diseño máximos recomendables

COMPONENTES		VIDA				
		UTIL				
Capacidad de las fuentes	de 2	20 años				
abastecimiento						
Obras de Captación	2	20 años				
Pozos	2	20 años				
Plantas de tratamiento de agua p	ara 2	20 años				
consumo humano						
Reservorios 20 año						
Tuberías de conducción	1	15 años				
Equipos de Bombeo	1	10 años				
Caseta de Bombeo	2	20 años				

Fuente: Ministerio de Economía y Finanzas — Parámetros de diseño de infraestructura de agua y saneamiento

En referencia a DIGESA, para poblaciones campesinas se establece una fase de tiempo paralelamente con el diseño del sistema de agua bebible N° 2.

Periodos de diseño para zonas rurales

SISTEMA	PERIODO DE
	VIDA UTIL
Gravedad	20 años
Bombeo	10 años
Tratamiento	10 años
E DICECT	

Fuente: DIGESA

b) Población actual y futura:

Según García (2009) "para obtener la población presente se debe tomar en cuenta los censos y, además, con la cooperación de la información proporcionada por las autoridades de la localidad" (p. 11).

Para calcular la población venidera se utilizan las siguientes reglas

Fórmula de crecimiento geométrico:

En palabras de Alvarado (2013) "El proceso metodológico

consta del criterio en la que la población se forma de manera

similar al incremento de la cuantía colocada al interés compuesto

(...)". (p. 23)

Pv = Pp (1 + i * n)

En donde:

Pv: Población venidera.

Pp: Población presente.

n: Periodo de diseño entre la población futura y la actual.

i: Tasa de incremento poblacional aritmético.

Esta fórmula es utilizada para pueblos de lugares

campesinos teniendo como referencia los resultados obtenidos de

la población venidera en cada método, se compara ambos

resultados para determinar lo representativo de una comunidad.

De la misma manera, en jurisdicciones con habitantes de

200 habitantes serán de utilidad los tipos que corresponden a

DIGESA, la cual establece la siguiente regla para el cálculo de la

población venidera:

Donde:

Pf: Población Futura

Pa: Población Actual

r: Tasa de Crecimiento Anual (x1000)

t: Número de años

c) Dotación de agua:

Según García (2009) Es aquella cuantía aproximada de

agua que cada habitante requiere para la satisfacción de sus

26

necesidades. La dotación se expresa en litros al día por un individuo. Es importante hacer el cálculo anual de los requerimientos de agua anualmente.

La regla que determina los parámetros de diseño para zonas agrarias nos indica que:

ZONA	Lt/Hab./Día
Clima frio	180
Clima templado y cálido	220

En referencia al clima en poblaciones campesinas tenemos el siguiente cuadro:

Dahlasión	Clima		
Población	Frío	Cálido	
Rural	100	100	
2,000	-		
10,000	120	150	
10,000	-		
50,000	150	200	
50,000	200	250	

Tomando en cuenta las predisposiciones principales del anteproyecto de la fundación sanitaria, RNE OS 100, se determina que la dotación para enlaces de domicilios corresponde a 220 l/hb/día en un tiempo cálido, teniendo en cuenta un 20% de desechos y escapes.

d) Cálculo de caudales:

Caudal Promedio Diario (Qp)

Se calculará el caudal promedio con:

Qp = (Población x Dotación) /86400

Caudal Máximo Diario (Qmd)

Se calculará con la siguiente formula:

 $Qmd = K1 \times Qp$

Caudal Máximo Horario (Qmh)

Se calculará con la siguiente formula:

 $Qmh = K2 \times Qp$

Donde los valores mínimos de K1 y K2 son:

Máximo anual de la demanda diaria: 1.3

Máximo anual de la demanda horaria: 1.8 a 2.5

Calidad del Agua:

Para determinar la calidad del agua se debe tomar en consideración el uso que se le va a brindar a ella, pues bien podría ser eficaz para el consumo humano y sus demás necesidades, no obstante, no produce el mismo efecto cuando esta será utilizada con fines industriales. Por lo tanto, el agua es contaminado cuando la modificación gira en torno a la afectación que le producirá al remitente

Asimismo, para determinar que el recurso es competente para el consumo los habitantes se deben tomar en cuenta los factores permitidos del Reglamento de Calidad del Agua para Consumo Humano. DS N° 031-2010-SA.

Características físicas:

Se le denomina propiedades físicas debido a que estas serán captadas a través de nuestros sentidos produciendo así una aceptación o un rechazo con respecto a su utilización. Las características más comunes son: el color, sabor, olor temperatura, entre otros.

Características químicas:

28

"Para el tratamiento del agua, con respecto al consumo humano o para fines sanitarios, los elementos químicos son escasos, sin embargo, el agua sí puede contener cualquier otro elemento que no tenga ese fin"

Características bacteriológicas:

Existen diferentes organismos que van a tratar de sobrevivir dentro del agua y aquí juega un papel importante la temperatura en la que se encuentra el agua. Aquellos organismos son imperceptibles frente a los sentidos humano y no todos aquellos organismos afectan el bienestar del ser humano. (Tratamiento de agua para consumo humano, 2004, p. 60)

2.3. Definiciones conceptuales.

Agua potable: Cuando el agua puede ser consumida y utilizada para la satisfacción de necesidades por los habitantes, sin ningún tipo de perjuicio en su salud, entonces esta agua es potable.

Anclajes: Son aquellos soportes que servirán de base a los diseños de construcción. Cumplen la función de acoplarse con fuerza a cimentaciones de gran profundidad.

Conexión de agua potable: Corresponde a una revestida de hierro fusionado o PVC y un grifo de toma.

Cloro residual: Es aquel purificante universal utilizado para la desinfección del agua no potable.

Desinfección: Supresión de todo tipo de gérmenes que afecten la salud corporal.

Estudio topográfico: Conjunto de acciones realizadas sobre un terreno con herramientas adecuadas para obtener una representación gráfica o plano.

Muestra: Cantidad minoritaria de un todo tomada para sujetarla a indagaciones, estudios o experimentación.

Presión nominal: La presión de una tubería, material o componente es aquella presión real manifestada en mega pascales, que ha sido de utilidad para determinar la mensura a

Presión de prueba: Procedimiento en el que se lleva la presión baja al límite a la línea de agua hidráulica. Esto dentro de las especificaciones técnicas.

Red de distribución: Aquellas tuberías sistematizadas que recorren desde el almacén de reparto hasta las líneas de los domicilios.

Servicio de agua potable: Derecho y servicio por el que toda persona debe recibir agua potable para su consumo y satisfacción de sus necesidades, para una vida de calidad. El lucro de este este recurso natural está proscrito.

Sistema de Agua Potable: Se denomina sistema de aprovisionamiento de agua potable a aquel procedimiento que comprende la obtención, dirección e impulso, acumulación y repartición del agua. Todo este sistema hace posible que este recurso natural llegue a manos de la población en óptimas condiciones y en el tiempo necesario para la satisfacción de sus requerimientos (Lossio, 2012, p.19).

Válvulas: Sistema mecánico que tiene la función de regular el paso del recurso hídrico. Este dispositivo tiene la facultad de iniciar, detener, aminorar u obstruir el camino del agua hacia las redes de distribución.

Uniones: Componentes que son de utilidad para unir dos segmentos de tuberías

2.4. Formulación de las hipótesis.

2.4.1. Hipótesis general.

El estudio de las redes de agua potable influye en el diseño de agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

2.4.2. Hipótesis específicas

El estudio de las redes de agua potable influye en determinar la instalación de tuberías PVC ISO 4422 dentro del diseño del agua potable para consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

El estudio de las redes de agua potable influye en determinar la calidad de materiales dentro del diseño de agua bebible para consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

El estudio de las redes de agua potable influye en determinar la mano de obra dentro del diseño del agua potable para el consumo en el centro poblado San Juan Bautista – Vegueta – Huaura – 2019

2.5 Operacionalización de variables.

2.5.1. Variables Independientes. (VI)

Estudio y diseño de las redes de agua potable.

Tabla 1. *Operacionalización de la variable X*

Dimensiones	Ítems	Categorías	Intervalos
Situación actual de las	1	Bajo	4 -7
redes de agua	4	Medio Alto	8 -11 12 -16
		Bajo	4 -7
La línea de conducción	4	Medio	8 -11
		Alto	12 -16

Estrategias de		Bajo	4 -7
participación	4	Medio	8 -11
ciudadana		Alto	12 -16
Estudio de los vedes de espe		Bajo	12 -23
Estudio de las redes de agua	12	Medio	24 -35
potable		Alto	36 -48

Fuente: "Cuestionario aplicado a pobladores del Centro poblado San Juan Bautista Vegueta Huaura 2019."

2.5.2. Variables Dependientes (VD)

Consumo de agua potable para el centro poblado San Juan Bautista

Tabla 2. *Operacionalización de la variable Y*

Dimensiones	Ítems	Categorías	Intervalos
Instalación de tuberías DVC	4	Bajo	4 -7
Instalación de tuberías PVC ISO 4422		Medio	8 -11
130 4422		Alto	12 -16
		Bajo	4 -7
Calidad de materiales	4	Medio	8 -11
		Alto	12 -16
		Bajo	4 -7
Mano de obra	4	Medio	8 -11
		Alto	12 -16
Disaña da agua notable nara		Bajo	12 -23
Diseño de agua potable para	12	Medio	24 -35
consumo		Alto	36 -48

Fuente: ""Cuestionario aplicado a pobladores del Centro poblado San Juan Bautista Vegueta Huaura 2019."

CAPITULO III METODOLOGIA

3.1. Diseño metodológico.

3.1.1. Tipo de investigación.

Descriptivo – Explicativo.

3.1.2. Tipo de diseño:

Nuestra investigación se acoge al tipo no experimental, la cual se realiza sin dirigir directamente las variables independientes; transaccional o transversal, ya que los datos van a surgir a través del tiempo.

3.1.3. Método de investigación:

Descriptiva

Promedio:

Aritmético

3.1.4. Método general.

Método científico en sus niveles de Análisis y síntesis.

3.1.5. Métodos específicos:

- a) El de formalización. Los datos que se obtengan serán sintetizados para comprenderlos dentro del aura general del conocimiento científico.
- b) El de mate matización. En la prueba de hipótesis, procesamiento de datos y presentación de resultados, se aplicarán fórmulas y parámetros estadísticos
- c) El inferencial. Procedimiento para inferir los resultados y, además, para estimar determinadas conclusiones parciales y totales.

3.2. Población y muestra.

Diagnóstico del Distrito.

El distrito de Vegueta, según el censo del 2015, tiene la siguiente población:

Total : 22 031 habitantes.

 $Densidad \qquad : \qquad \qquad 102,04 \; hab/km^2$

Fuente. INEI. 2015.

Extensión del Distrito.

Superficie: 253.9 km²

Elevación: 12 m.s.n.m

Fuente: I.N.E.I. 2015.

DEPARTAMENTO, PROVINCIA Y DISTRITO	Total		
HUAURA	219059		
НИАСНО	58532		
AMBAR	2737		
CALETA DE CARQUIN	6801		
CHECRAS	1781		
HUALMAY	28589		
HUAURA	35373		
LEONCIO PRADO	1980		
РАССНО	2189		
SANTA LEONOR	1455		
SANTA MARIA	33496		
SAYAN	24095		
VEGUETA	22031		

Fuente: INEI 2015

3.2.1. Población o área a investigar:

Distrito de Vegueta, Centro Poblado San Juan Bautista – Vegueta – Huaura – 2019 provincia de Huaura, Región Lima.

Se consideran a 11162 pobladores comprendidos entre las edades de 20 a 59 años.

Tabla 3. *Población de estudio*

PERÚ: POBLACIÓN TOTAL AL 30 DE JUNIO, POR GRUPOS QUINQUENALES DE EDAD, SEGÚN DEPARTAMENTO, PROVINCIA Y DISTRITO, 2015.

DEPARTAMENTO, PROVINCIA Y DISTRITO	Total -								
	Total -	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49	50 - 54	55 - 59
HUAURA	219059	19697	16509	15704	15638	13504	12333	11085	9425
НИАСНО	31384	5089	4280	4096	4232	3798	3571	3442	2876
AMBAR CALETA DE	1248	220	166	168	163	134	152	135	110
CARQUIN	3805	662	601	586	501	473	361	346	275
CHECRAS	819	72	88	81	122	111	105	138	102
HUALMAY	14998	2566	2155	2062	2096	1852	1546	1440	1281
HUAURA	18182	3362	2761	2590	2476	2137	1930	1629	1297
LEONCIO PRADO	971	170	147	123	125	104	117	113	72
PACCHO	1022	130	119	132	142	141	123	120	115
SANTA LEONOR	667	92	67	71	91	87	90	100	69
SANTA MARIA	17114	2907	2463	2436	2491	2008	1787	1556	1466
SAYAN	12523	2320	1987	1840	1740	1377	1332	1043	884
VEGUETA	11162	2107	1675	1519	1459	1282	1219	1023	878

Fuente: INEI 2015

3.2.2. Muestra a investigar

Del centro Poblado San Juan Bautista se encuestarán a 93 habitantes.

Debido a que se utilizará el diseño no experimental, en este caso se usará el sistema descriptivo; por lo tanto, el esquema a utilizar es: M-O

M: Espacio en donde serán aplicados los estudios del proyecto de investigación y donde ser acoplarán la cuantía de la población beneficiada.

O: La información captada de la muestra.

3.3. Técnicas de recolección de datos.

Instrumentos. Procedimiento de validación, contrastación y fiabilidad de los materiales.

3.3.1. Técnicas de investigación para el muestreo:

a) Técnica de muestreo:

Probabilístico.

b) Técnica:

Estadística.

3.3.2. Técnicas e instrumentos de recolección de datos.

Técnicas:

- a) Observación directa. Este proceso será empleado para visualizar el proceso de construcción del sistema de abastecimiento de agua bebible.
- **b) Observación indirecta**. A través de esta técnica se analizarán detenidamente la información de la mensuración obtenida en los documentos sobre el caso concreto investigado.
- c) Entrevista. Técnica para conocer cómo se desarrollan los procesos de construcción del sistema de abastecimiento de agua bebible.
- e) Entrevista a funcionarios de la municipalidad Provincial de Huaura.

f) Cuestionario. Sera de utilidad para el proceso de evaluación de

mensura institucionalizada.

g) **Encuesta**. (Formularios y fichas) a pobladores de las

comunidades campesinas del Centro poblado San Juan Bautista.

Instrumentos.

Encuesta por cuestionario. Se realizará una encuesta con cuestionario

a los comuneros a los pobladores de las comunidades campesinas

del Centro poblado San Juan Bautista.

• Escalas. Para conocer las opiniones y actividades de los procesos

de medición especializada y determinar su calidad y veracidad.

• Encuesta por entrevista. A los que tienen involucramiento con el

tema.

• Ficha de observación. Para el trabajo de análisis de estudio de los

diversos documentos que contienen datos relevantes.

• Fotos. Se realizarán tomas de fotografías de las distintas etapas del

trabajo en concreto.

3.4. Técnicas para el procesamiento, análisis de datos y de información.

3.4.1. Para la presentación de resultados.

Técnicas : Visualización de colaborador

Instrumentos : modelo De Observación.

Análisis descriptivo : la información será materializada a través de

programas especializados, como AutoCad

2018, AutoCad Civil 3D, S10, Ms Project,

MS, Excel 2018.

37

a. Descriptiva

Una vez obtenidos los datos necesarios se continuará con el procesamiento de la información, para lograr fue de utilidad el software Statistical Package for Social Sciences, para encontrar el efecto de la adaptación de los formularios.

 Análisis descriptivo por variables y dimensiones con tablas de frecuencias y gráficos.

b. Inferencial

- . Se someterá a prueba:
- Las hipótesis
- Análisis de los cuadros de doble entrada

El Coeficiente de correlación de Spearman, ρ (ro) que es una medida para calcular de la correlación entre dos variables aleatorias continúas.

$$\rho = 1 - \frac{6\sum D^2}{N(N^2 - 1)}$$

Tabla 4. *Interpretación del coeficiente de correlación de Spearman*

Interpretación
Correlación muy alta
Correlación alta
Correlación moderada
Correlación baja
Correlación prácticamente nula
Correlación prácticamente nula
Correlación baja
Correlación moderada
Correlación alta
Correlación muy alta

CAPITULO IV ANALISIS DE LOS RESULTADOS

4.1. Resultados descriptivos de las variables

Tabla 5. *Estudio y diseño de las redes de agua potable*

		Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
Válidos	Alto	35	37,6	37,6	37,6
	Bajo	24	25,8	25,8	63,4
	Medio	34	36,6	36,6	100,0
	Total	93	100,0	100,0	

Fuente: Cuestionario aplicado a pobladores del Centro poblado San Juan Bautista Vegueta Huaura 2019.

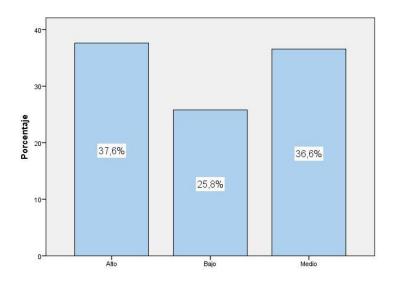


Figura 1. Estudio y diseño de las redes de agua potable

De la fig.1, un 37,6% de pobladores del Centro poblado San Juan Bautista Vegueta Huaura precisan que se llegó a un grado alto en la variable estudio y diseño de las conexiones del recurso hídrico, un 36,6% afirman que se obtuvo un grado medio y un 25,8% detectaron un grado bajo.

Tabla 6.Situación actual de las redes de agua

		Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
Válidos	Alto	37	39,8	39,8	39,8
	Bajo	27	29,0	29,0	68,8
	Medio	29	31,2	31,2	100,0
	Total	93	100,0	100,0	

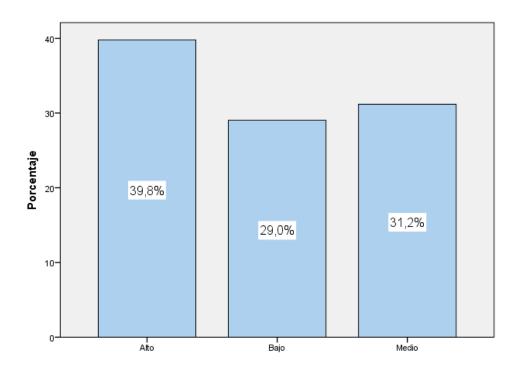


Figura 2. Situación actual de las redes de agua

De la fig. 2, un 39,8% de pobladores del Centro poblado San Juan Bautista Vegueta Huaura 2019 determinan que tuvieron un grado alto en la dimensión situación actual de las redes de agua potable, un 31,2% afirman que se apreció un grado medio y un 29,0% obtuvieron un grado mínimo.

Tabla 7.Diseño de la línea de conducción

		Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
Válidos	Alto	36	38,7	38,7	38,7
	Bajo	20	21,5	21,5	60,2
	Medio	37	39,8	39,8	100,0
	Total	93	100,0	100,0	

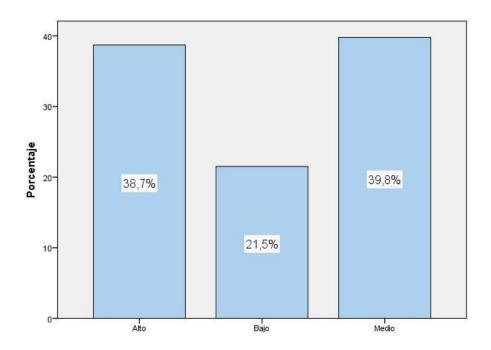


Figura 3. Diseño de la línea de conducción

De la fig. 3, un 39,8% de pobladores del Centro poblado San Juan Bautista Vegueta Huaura 2019 manifiestan que se llegó a un nivel medio en la dimensión diseño de la línea de conducción de agua potable, un 38,7% afirman que se consiguió una cantidad alta y un 21,5% una cuantía menor.

Tabla 8. *Estrategias de participación ciudadana*

		Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
	Alto	37	39,8	39,8	39,8
¥7/1° 1	Bajo	25	26,9	26,9	66,7
Válidos	Bajo Medio	31	33,3	33,3	100,0
	Total	93	100,0	100,0	

Figura 4

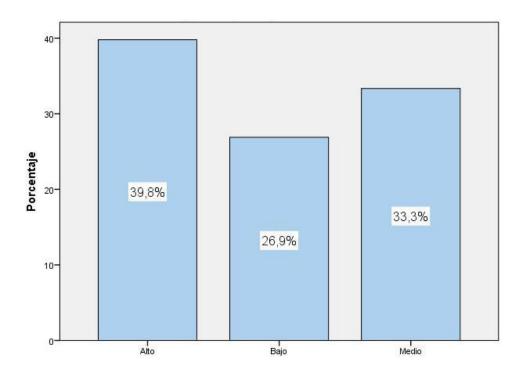


Figura 4. Estrategias de participación ciudadana

De la fig. 4, un 39,8% de pobladores del Centro poblado San Juan Bautista – Vegueta – Huaura del año 2019 precisan que se arribó un grado medio en la mensura estrategias de participación ciudadana, un 33,3% afirman que se consiguió un nivel medio y un 26,9% hallaron un grado bajo.

Tabla 9. *Consumo de agua potable*

		Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
	Alto	37	39,8	39,8	39,8
Válidos	Bajo	8	8,6	8,6	48,4
	Medio	48	51,6	51,6	100,0
	Total	93	100,0	100,0	

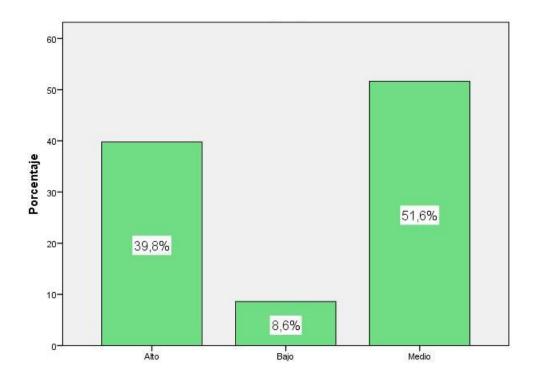


Figura 5. Consumo de agua potable

De la fig. 5, un 51,6% de pobladores del Centro poblado San Juan Bautista – Vegueta – Huaura – 2019 revelan que se arribó un nivel medio en la variable consumo de agua potable, un 39,8% afirman que se consiguió un nivel alto y un 8,6% obtuvieron un nivel mínimo.

Tabla 10. *Instalación de tuberías PVC ISO 4422*

		Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
Válidos	Alto	52	55,9	55,9	55,9
	Bajo	7	7,5	7,5	63,4
	Medio	34	36,6	36,6	100,0
	Total	93	100,0	100,0	

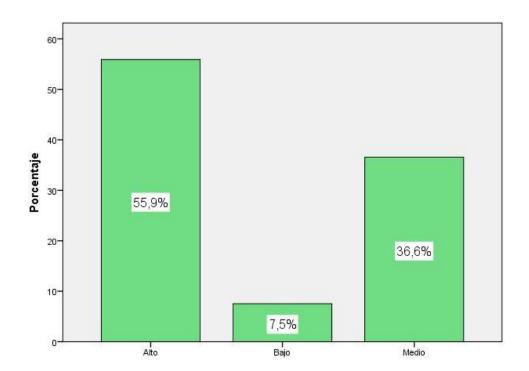


Figura 6. Instalación de tuberías PVC ISO 4422

De la fig. 6, un 55,9% de pobladores del Centro poblado San Juan Bautista – Vegueta – Huaura en el año 2019 recabaron un grado medio en la mensura instalación de tuberías PVC ISO 442, un 36,6% revela que se precisó un nivel medio y un 7,5% recabaron una altitud baja.

Tabla 11. *Calidad de materiales*

		Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
Válidos	Alto	40	43,0	43,0	43,0
	Bajo	7	7,5	7,5	50,5
	Medio	46	49,5	49,5	100,0
	Total	93	100,0	100,0	

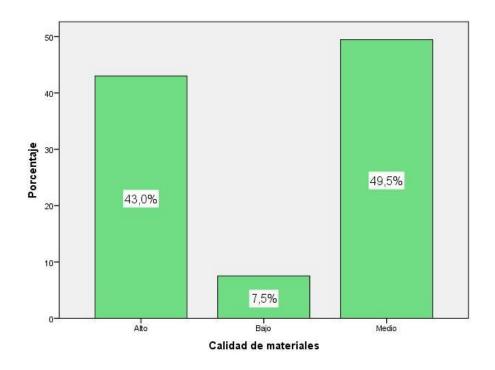


Figura 7. Calidad de materiales

De la fig. 7, un 49,5% de pobladores del Centro poblado San Juan Bautista – Vegueta – Huaura en el año 2019 precisan que se recabó una altitud media en la mensura calidad de materiales, un 43,0% avalan que se recabó un grado alto y un 7,5% instituyeron un nivel bajo.

Tabla 12. *Mano de obra*

		Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
Válidos	Alto	44	47,3	47,3	47,3
	Bajo	28	30,1	30,1	77,4
	Bajo Medio	21	22,6	22,6	100,0
	Total	93	100,0	100,0	

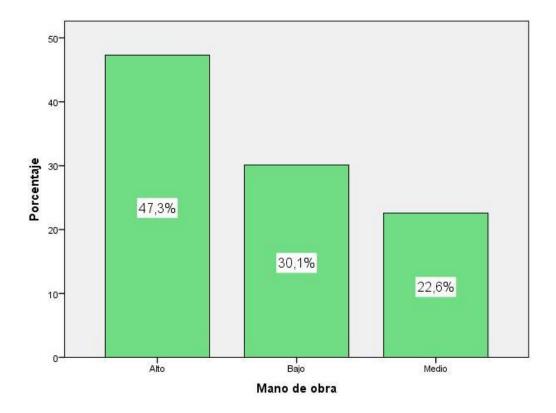


Figura 8. Mano de obra

De la fig. 8, un 47,3% de pobladores del Centro poblado San Juan Bautista – Vegueta – Huaura en el año 2019 precisan que se recabó una altitud alta en el tamaño mano de obra, un 30,1% afirman que se consiguió un grado mínimo y un 22,6% obtuvieron una cuantía media.

4.2. Prueba de normalidad de Kolmogorov - Smirnov

Tabla 13.Resultados de la prueba de bondad de ajuste Kolmogorov – Smirnov

¥7	Kolmogoro	Kolmogorov-Smirnova			
Variables y dimensiones	Estadístico	gl	Sig.		
Situación actual de las redes de agua	,235	93	,000		
Diseño de la línea de conducción	,233	93	,000		
Estrategias de participación ciudadana	,240	93	,000		
Estudio y diseño de la red de agua potable	,217	93	,000		
Instalación de tuberías PVC ISO 4422	,298	93	,000		
Calidad de materiales	,250	93	,000		
Mano de obra	,303	93	,000		
Consumo de agua potable	,246	93	,000		

Fuente: "Cuestionario aplicado a pobladores del Centro poblado San Juan Bautista Vegueta Huaura 2019."

En la tala N° 13 se exhiben los efectos del examen de bondad de acuerdo de Kolmogov Smirnov. Las variables demostradas no van de acuerdo a lo normal. Debido a que existen conexiones de variables y mensuras, el examen estadístico idóneo será no paramétrico, es decir, la de correlación de Spearman.

4.3. Generalización entorno la hipótesis central

Hipótesis general

Ha: El estudio de las redes de agua potable influye en el diseño de agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

H₀: El estudio de las redes de agua potable no influye en el diseño de agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

Tabla 14. *Estudio de las redes de agua potable y diseño de agua potable para consumo*

Correlaciones Estudio de la Diseño de redes de agua potable agua potable para consumo Coeficiente de ,652** 1,000 correlación Estudio de la redes de agua potable Sig. (bilateral) .000 93 93 Rho de Spearman Coeficiente de ,652** 1,000 correlación Diseño de agua potable para consumo Sig. (bilateral) ,000, N 93 93

El cuadro 14 evidencia una conexión de 0,652, con un valor Sig<0,05 con lo que queda verificada la hipótesis optativa y se elimina la hipótesis nula. Es por esto que se puede evidenciar estadísticamente que existe influencia del estudio de la trama de agua potable sobre en el montaje de agua potable para el consumo en el centro poblado San Juan Bautista – Vegueta – Huaura – 2019. La codependencia es de una amplitud correcta.

^{**.} La correlación es significativa al nivel 0,01 (bilateral).

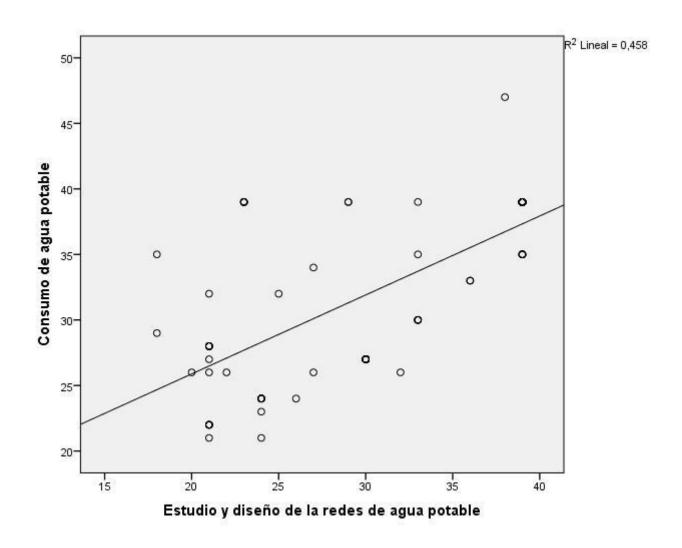


Figura 9. Estudio de las redes de agua potable y el diseño de agua potable para el consumo

Hipótesis especifica 1

Ha: El estudio de las redes de agua potable influye en determinar la instalación de tuberías PVC ISO 4422 dentro del diseño del agua potable para consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

H₀: El estudio de las redes de agua potable no influye en determinar la instalación de tuberías PVC ISO 4422 dentro del diseño del agua potable para consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

Tabla 15.Estudio de las redes de agua potable y la instalación de tuberías PVC ISO 4422

	Corr	elaciones		
			Estudio de la redes de agua potable	Instalación de tuberías PVC ISO 4422
	Estudio de la redes de agua potable Instalación de tuberías PVC ISO 4422	Coeficiente de correlación	1,000	,449**
		Sig. (bilateral)	•	,000
Rho de		N	93	93
Spearman		Coeficiente de correlación	,449**	1,000
		Sig. (bilateral)	,000	
		N	93	93

^{**.} La correspondencia es revelador al nivel 0,01 (bilateral).

En el cuadro 15 se visualiza una correspondencia de 0,449, con una estimación Sig<0,05 con lo que se admite la hipótesis optativa y se desvirtúa la hipótesis nula. Por lo tanto, se puede evidenciar estadísticamente que existe influencia del estudio del tramo de agua potable sobre la instalación de tuberías PVC ISO 442 para el abastecimiento de agua potable para el centro poblado San Juan Bautista – Vegueta – Huaura – 2019. La correlación es de una magnitud moderada.

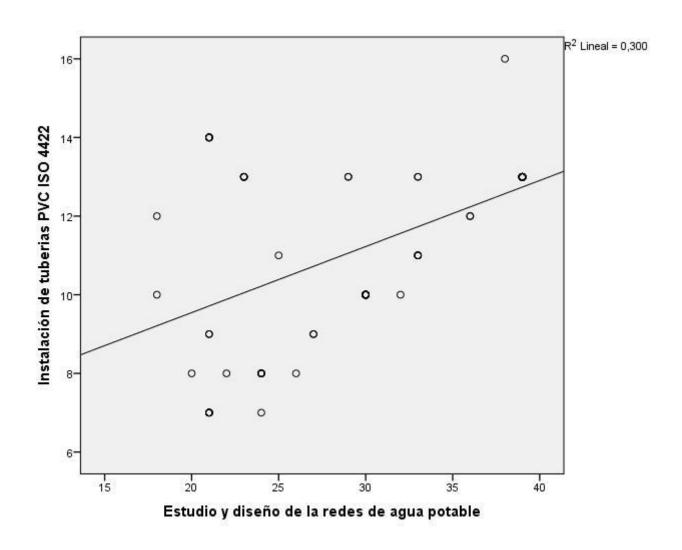


Figura 10. Estudio de las redes de agua potable y la instalación de tuberías PVC ISO 4422

Hipótesis especifica 2

Ha: El estudio de las redes de agua potable influye en determinar la calidad de materiales dentro del diseño de agua potable para consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

H₀: El estudio de las redes de agua potable no influye en determinar la calidad de materiales dentro del diseño de agua potable para consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

Tabla 16. *Estudio de las redes de agua potable y la calidad de materiales*

Correlaciones

			Estudio de la redes de agua potable	Calidad de materiales
	Estudio de la redes de agua potable	Coeficiente de correlación	1,000	,651**
		Sig. (bilateral)		,000
Rho de		N	93	93
Spearman	Calidad de materiales	Coeficiente de correlación	,651**	1,000
		Sig. (bilateral)	,000	
		N	93	93

^{**.} La correlación es significativa al nivel 0,01 (bilateral).

La tabla anterior muestra una correspondencia de 0,651, con una apreciación Sig<0,05 con lo que se acepta la hipótesis facultativa y se desestima la hipótesis nula. Por consiguiente, se demuestra de forma estadística que hay influencia del estudio de las redes de agua potable sobre la calidad de materiales para el consumo de agua saludable para el centro poblado San Juan Bautista – Vegueta – Huaura – 2019. La conformidad es una mensura indulgente.

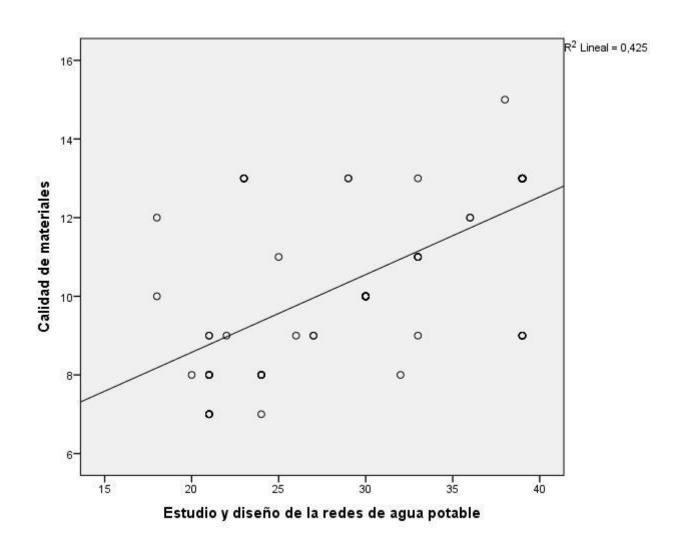


Figura 11. Estudio de las redes de agua potable y la calidad de materiales

Hipótesis especifica 3

Ha: El estudio de las conexiones de agua potable influye en determinar la mano de obra dentro del diseño del recurso hídrico potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

H₀: El estudio de las redes de agua potable no influye en determinar la mano de obra dentro del diseño del agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019.

 Tabla 17.

 Estudio de las redes de agua potable y la mano de obra para el consumo de agua potable

	Cor	relaciones		
			Estudio de la redes de agua potable	Mano de obra
	Estudio de la redes de	Coeficiente de correlación	1,000	,597**
	agua potable	Sig. (bilateral)		,000
Rho de		N	93	93
Spearman	M 1 1	Coeficiente de correlación	,597**	1,000
	Mano de obra	,000		
		N	93	93

^{**.} La correlación es significativa al nivel 0,01 (bilateral).

La tabla que precede determina una concordancia de 0,597, y un mérito Sig<0,05 con lo que se confirma la hipótesis optativa y se desestima la hipótesis nula. Por consiguiente, es posible fundamentar de manera estadística que existe influencia del estudio de las redes de agua potable sobre la mano de obra para el consumo del recurso hídrico potable para el centro poblado San Juan Bautista Vegueta Huaura 2019. La correspondencia es de mensura regular.

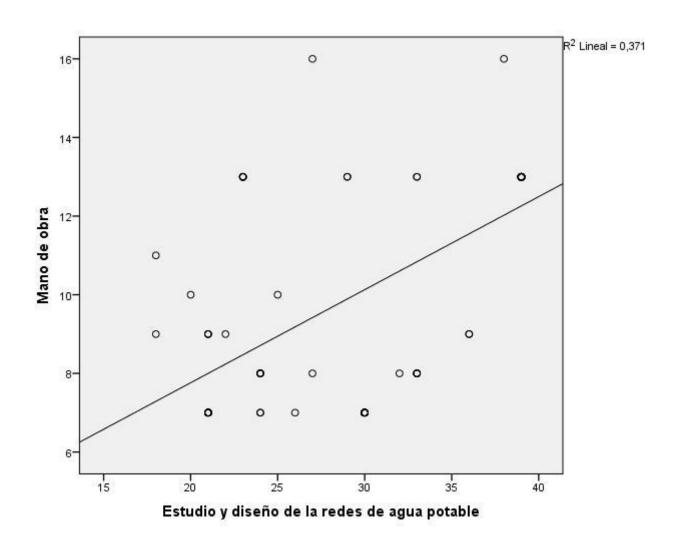


Figura 12. Estudio de las redes de agua potable y la mano de obra para el consumo de agua potable

CAPITULO V DISCUSIÓN, CONCLUSIONES Y RECOMENDACIONES

DISCUSIÓN

Luego de la investigación realizada se puede demostrar que es patente la influencia que existe entre el estudio de las conexiones de agua bebible sobre el montaje del mismo para la población San Juan Bautista – Vegueta – Huaura – 2019. La correlación es de una magnitud buena. Similares resultados encontramos en los trabajos de Lam, J (2011) en su trabajo "Diseño del sistema de abastecimiento de agua potable para la aldea Captzín Chiquito, Municipio de San Mateo Ixtatán, Huehuetenango- Guatemala" expuso como finalidad primordial el armar la estructura del suministro de agua bebible para la aldea Captzín Chiquito. En la tesis mencionada, el autor llego a concluir que para diseñar el suministro de agua sistematizado se utilizó de manera estratégica la forma en la que se encontraba la superficie de tal aldea. Debido a la separación de los hogares, también se utilizó la morfología de las ramas. Asimismo, para reducir los costos, dado el volumen del proyecto, se optimizó los costos reduciendo las dotaciones.

Y la de Gonzales (2017) en su tesis "Diseño de alcantarillado de agua potable y su relación con la calidad de vida de los pobladores del Asentamiento Humano Los Pinos I etapa, distrito de Santa María 2017", que tuvo como principal fin la ejecución del montaje del alcantarillado y el aprovisionamiento de agua potable. Se concluyó que existe una relación directamente proporcional el acceso a una vida digna y de calidad de los moradores de la ciudad con el anteproyecto del alcantarillado y aprovisionamiento de agua purificada.

En la actualidad existen herramientas tecnológicas (software) que van a cooperar de manera significativa frente a los diseños del alcantarillado y de aprovisionamiento de agua potable. Es importante la difusión de este tipo de herramientas, ya que esto acelerará

el proceso de construcción brindando más eficiencia al trabajo y, además, reduciría los costos.

En el tiempo en el que vivimos es indispensable concientizar a la población frente al ahorro de agua y además hacer uso de herramientas que permitan disminuir el desperdicio del agua tratada. En este caso y, concretamente, en el tramo de desagüe de la ciudad de Vegueta el agua se dirige a los pozos sin ningún procedimiento de reparación o remedio. Es por esto que, se debe implementar un estacionamiento de tratamiento de aguas sobrantes, ya que a estas se les podría dar un nuevo uso, como, por ejemplo, para el regadío de la flora o para la hidratación de animales, entre otros.

CONCLUSIONES

- Primera: Existe influencia del estudio de las redes de agua bebible sobre el diseño del recurso para el gasto del centro poblado San Juan Bautista Vegueta Huaura 2019.
 La correlación es de una magnitud buena.
- Segunda: Existe influencia del estudio del tramo de agua saludable sobre la
 instalación de tuberías PVC ISO 442 para el montaje del recurso hídrico potable para
 el consumo en el poblado San Juan Bautista Vegueta Huaura 2019. La correlación es
 de una magnitud moderada.
- Tercera: Existe influencia del estudio de las conexiones de agua potable sobre la propiedad de materiales para el diseño de agua potable para consumo en la comunidad de San Juan Bautista Vegueta Huaura 2019. La correlación es de una magnitud buena.
- Cuarta: Existe influencia del estudio de las conexiones de agua potable sobre la mano de obra para el diseño de agua potable para el consumo en el centro poblado San Juan Bautista Vegueta Huaura 2019. La correlación es de una magnitud moderada.

RECOMENDACIONES

- Primero: A las autoridades del distrito de Vegueta considerar dentro de su ejecución de obras y anteproyecto las conexiones de agua potable para el consumo humano a través de gestiones, planes, diálogos concertados y organizar el desenvolvimiento administrativo a la brevedad posible, debido a que existe demasiada burocracia administrativa para la ejecución del mencionado proyecto.
- Segundo: Realizar mediante Ingenieros expertos el estudio y diseño del proyecto de inversión que mejore el tramo sistematizado de agua saludable y el alcantarillado el pueblo ubicado en San Juan Bautista del distrito de Vegueta.
- Tercero: Afianzar la forma de vida de los habitantes (para mejorarla) del estudio en concreto estableciendo un comité de vigilancia de obra de impacto que inciden en mejorar el anteproyecto de las conexiones de agua potable en el Centro poblado San Juan Bautista. Ello permitirá asegurar el cumplimiento estipulado de acuerdo a lo que establece el expediente técnico y los usuarios, teniendo en cuenta lo importante que es la conservación y cuidado del agua de acorde al desarrollo de capacidades planteado.

REFERENCIAS BIBLIOGRÁFICAS.

- Alvarado Calderón Cesar, Análisis estructural con SAP 2000, Instituto de la Construcción y Gerencia, Lima, 2010.
- Arica Castro Manuel Augusto, Análisis y diseño de reservorios apoyados de gran capacidad, Tesis de Titulación Professional. Facultad de Ingeniería Civil UNI, Lima, 1996.
- Bonilla De la Cruz Fernando, Diseño de reservorio apoyado de concreto armado V=1400 m3, Informe de Suficiencia de Titulación Profesional. Facultad de Ingeniería Civil-UNI, Lima, 2001.
- Dávila De la Cruz Carlos Llofre, Proceso constructivo de reservorio apoyado y obras complementarias distrito de Uchiza, Tesis de Titulación Professional Facultad de Ingeniería Civil-UNI, Lima, 2001.
- Delgado Fernández José Valerio, Programación y procesos constructivos del sistema de abastecimiento de agua potable de la ciudad de Végueta, Tesis de Titulación Professional. Facultad de Ingeniería Civil-UNI, Lima, 1998.
- Norma E.060, E.030, Reglamento Nacional de Edificaciones, Ministerio de Vivienda Construcción y Saneamiento, Lima, 2006.
- Norma ACI-350.3-01, Instituto Americano de Concreto, Lima, 2008

ANEXOS

MATRIZ DE CONSISTENCIA ESTUDIO Y DISEÑO DE LAS REDES DE AGUA POTABLE PARA EL CENTRO POBLADO SAN JUAN BAUTISTA – VEGUETA – HUAURA -2019.

Problemas	Objetivos	Hipótesis	Variables e	Diseño de	Población y
Tioblemas	Objetivos	Tripotesis	Indicadores	Investigación	muestra
Problema general	Objetivo general	Hipótesis general	Variable		
¿En qué medida influye el	Determinar, en qué medida	El estudio de las redes de	independiente	✓ Tipo de	
estudio de las redes de agua	influye el estudio de las	agua potable influye en el		investigación:	
potable para diseño del agua	redes de agua potable sobre	diseño de agua potable para	Estudio de las		Población:
potable para consumo en el	el diseño de agua potable	el consumo en el centro	redes de agua	Cuantitativo	Centro
centro poblado San Juan	para consumo en el centro	poblado San Juan Bautista	potable.	Continúo	poblado San
Bautista Vegueta Huaura	poblado San Juan Bautista	Vegueta Huaura 2019	- Situación		Juan Bautista
2019?	Vegueta Huaura 2019		actual de las		
			redes.		
Problemas específicos	Objetivos específicos	Hipótesis específicas	- La línea de	✓ Nivel de	
¿En qué medida incide el	Establecer, en qué medida	El estudio de las redes de	conducción del	investigación:	Muestra:
estudio de las redes de agua	incide el estudio de las redes	agua potable influye en	sistema de	Cuantitativo-	
potable sobre la instalación	de agua potable sobre la	determinar la instalación de	agua.	continúo.	100
de tuberías PVC ISO 4422	instalación de tuberías PVC	tuberías PVC ISO 4422	- Estrategias de		pobladores del
dentro del diseño de las	ISO 4422 dentro del diseño	dentro del diseño del agua	participación	✓ Diseño de	centro
redes de agua potable para	de las redes de agua potable	potable para consumo en el	ciudadana.	investigación:	poblado San
el consumo para el centro	para el consumo en el centro	centro poblado San Juan	Dimensiones	experimental	Juan Bautista.
poblado San Juan Bautista	poblado San Juan Bautista	Bautista Vegueta Huaura			
Vegueta Huaura 2019?	Vegueta Huaura 2019	2019.			

			Variable	
¿De qué manera está	Establecer, de qué manera		Dependiente	
incidiendo el estudio de las	está incidiendo el estudio de	El estudio de las redes de		
redes de agua potable sobre	las redes de agua potable	agua potable influye en	Diseño de agua	
la calidad de materiales	sobre la calidad de	determinar la calidad de	potable para	
dentro del diseño de las	materiales en el estudio	materiales dentro del diseño	consumo	
redes de agua potable para	dentro del diseño de las	de agua potable para		
el consumo en el centro	redes de agua potable para	consumo en el centro	Dimensiones:	
poblado San Juan Bautista	el consumo en el centro	poblado San Juan Bautista	- Instalación de	
Vegueta Huaura 2019?	poblado San Juan Bautista	Vegueta Huaura 2019.	tuberías PVC	
	Vegueta Huaura 2019.		ISO 4422	
			- Calidad de	
¿Cómo incide el estudio de	Determinar, cómo incide el		materiales para	
las redes de agua potable	estudio de las redes de agua	El estudio de las redes de	el consumo de	
sobre la mano de obra	potable sobre la mano de	agua potable influye en	agua	
dentro del diseño de las	obra dentro del diseño de las	determinar la mano de obra	- La mano de	
redes de agua potable para	redes de agua potable para	dentro del diseño del agua	obra para el	
el consumo en el centro	el consumo en el centro	potable para el consumo en	consumo de	
poblado San Juan Bautista	poblado San Juan Bautista	el centro poblado San Juan	agua.	
Vegueta Huaura 2019?	Végueta Huaura 2019.	Bautista Végueta Huaura		
		2019		

Tabla de datos

			Estudio de las rec								Diseñ	o de	agua	otable	para (consu	no									
N	Situación actual de agua	e las redes	Diseño de la lí conducci		Estrate	jias de pa ciudadar	rticipación na	ST1	V1	lı	nstala		de tub O 4422	erías PVC	С	alida	ad de n	aterial	es		N	/lano d	e obra		ST2	V2
	1 2 3 4 S1	D1	5 6 7 8 S2	D2	5 6 7	8 S3	D3			1	2 3		S4	D4	5 6	7	8 S	5)5	9 1	0 1	1 12	S6	D6		
1	3 4 4 2 13	Alto	2 3 3 3 11	Medio	2 2 2	2 8	Medio	32	Medio	3	3 2		10	Medio	2 2		2 8		edio	2 1	2	_	8	Medio	26	Medio
2	2 2 3 3 10	Medio	2 2 1 2 7	Bajo	2 2 1	2 7	Bajo	24	Medio	2	2 1	2	7	Bajo	2 2	2 1	2	Е	ajo	2 1	2	2	7	Bajo	21	Bajo
3	3 3 3 4 13	Alto	3 3 3 4 13	Alto		4 13	Alto	39	Alto	3	3 3	4	13	Alto	3 3	3 3	4 1	3 A	Ito	3 3	3 4	3	13	Alto	39	Alto
4	3 2 2 2 9	Medio	2 3 2 2 9	Medio	2 3 2	2 9	Medio	27	Medio	3	2 2	2	9	Medio	2 3	3 2	2 !	M	edio	4 4	4	4	16	Alto	34	Medio
5	3 2 3 2 10	Medio	2 3 3 2 10	Medio	2 3 3	2 10	Medio	30	Medio	3	2 3	2	10	Medio	2 3	3	2 1) M	edio	2 1	2	2	7	Bajo	27	Medio
6	2 2 1 2 7	Bajo	2 2 1 2 7	Bajo	2 2 1	2 7	Bajo	21	Bajo	2	2 1	2	7	Bajo	2 2	2 1	2	E	ajo	2 1	2	2	7	Bajo	21	Bajo
7	3 3 3 4 13	Alto	3 3 3 4 13	Alto	3 3 3	4 13	Alto	39	Alto	3	3 3	4	13	Alto	3 3	3	4 1	3 A	lto	3 3	3 4	3	13	Alto	39	Alto
8	2 2 2 2 8	Medio	2 2 2 2 8	Medio	2 2 2	2 8	Medio	24	Medio	2	2 2	2	8	Medio	2 2	2 2	2 8	M	edio	2 1	2	2	7	Bajo	23	Bajo
9	4 4 4 4 16	Alto	3 2 2 4 11	Medio		4 11	Medio	38	Alto	4	4 4	. 4	16	Alto	3 4		4 1	5 A	lto	4 4		4	16	Alto	47	Alto
10	3 2 2 2 9	Medio	2 3 2 2 9	Medio	2 3 2	2 9	Medio	27	Medio	3	2 2	2	9	Medio	2 3	3 2	2 !	M	edio	2 2	2 2	2	8	Medio	26	Medio
11	2 2 1 2 7	Bajo	2 2 1 2 7	Bajo		2 7	Bajo	21	Bajo	4	4 4	. 2	14	Alto	2 2		2	E	ajo	2 1	2	2	7	Bajo	28	Medio
12	3 3 3 4 13	Alto	3 3 3 4 13	Alto		4 13	Alto	39	Alto	3		4	13	Alto	3 3	3	4 1		lto	3 3	3 4	3	13	Alto	39	Alto
13	3 2 3 2 10	Medio	2 3 3 2 10	Medio	2 3 3	2 10	Medio	30	Medio	3			10	Medio	2 3		2 1		edio	2 1	2	2	7	Bajo	27	Medio
14	3 2 3 2 10	Medio	2 3 3 2 10	Medio	2 3 3	2 10	Medio	30	Medio	3		2	10	Medio	2 3		2 1		edio	2 1	2	2	7	Bajo	27	Medio
15	1 1 1 4 7	Bajo	3 3 3 4 13	Alto	3 3 3	4 13	Alto	33	Medio	3	_	4	13	Alto	3 2	_			edio	3 3		. 3	13	Alto	35	Medio
16	1 1 1 4 7	Bajo	3 3 3 4 13	Alto	3 3 3	4 13	Alto	33	Medio	3	3 3	4	13	Alto	3 3	_	4 1	3 <i>A</i>	lto	3 3		. 3	13	Alto	39	Alto
17	2 1 2 1 6	Bajo	2 1 2 1 6	Bajo	2 3 2	1 8	Medio	20	Bajo	2	3 2	_	8	Medio	2 3	_			edio	2 2		_	10	Medio	26	Medio
18	1 1 1 4 7	Bajo	3 1 1 4 9	Medio		4 13	Alto	29	Medio	3	3 3	_	13	Alto	3 3				lto	3 3			13	Alto	39	Alto
19	2 2 1 2 7	Bajo	2 2 1 2 7	Bajo	2 2 1	2 7	Bajo	21	Bajo	2	2 3		9	Medio	2 2				edio	2 3			9	Medio	26	Medio
20	2 1 1 3 7	Bajo	3 2 1 1 7	Bajo	3 2 3	3 11	Medio	25	Medio	2			11	Medio	3 2				edio	1 3	_		10	Medio	32	Medio
21	1 1 1 4 7	Bajo	3 1 1 4 9	Medio	1 1 1	4 7	Bajo	23	Bajo	3		_	13	Alto	3 3	_			lto	3 3		_	13	Alto	39	Alto
22	1 1 1 4 7	Bajo	3 1 1 4 9	Medio	1 1 1	4 7	Bajo	23	Bajo	3		_	13	Alto	3 3	_			lto	3 3		·	13	Alto	39	Alto
23	1 1 1 3 6	Bajo	3 1 1 1 6	Bajo	1 1 1	3 6	Bajo	18	Bajo	3		_	12	Alto	3 3				lto	2 3			11	Medio	35	Medio
24	1 2 1 2 6	Bajo	2 1 1 2 6	Bajo	2 1 1	2 6	Bajo	18	Bajo	3		_	10	Medio	2 3				edio	2 3			9	Medio	29	Medio
25	1 1 1 4 7	Bajo	3 1 1 4 9	Medio		4 7	Bajo	23	Bajo	3		_	13	Alto	3 3				lto	3 3		•	13	Alto	39	Alto
26	2 2 2 2 8	Medio	2 1 2 2 7	Bajo		2 7	Bajo	22	Bajo	2		_	8	Medio		3 2			edio	2 3			9	Medio	26	Medio
27	1 1 1 4 7	Bajo	3 1 1 4 9	Medio	1 1 1	4 7	Bajo	23	Bajo	3		_	13	Alto	3 3				lto	3 3			13	Alto	39	Alto
28	2 2 1 2 7	Bajo	2 2 1 2 7	Bajo	2 2 1	2 7	Bajo	21	Bajo	2	2 3	_	9	Medio	2 2				edio	2 3			9	Medio	27	Medio
29	1 1 1 4 7	Bajo	3 1 1 4 9	Medio	1 1 1	4 7	Bajo	23	Bajo	3	3 3	_	13	Alto	3 3				lto	3 3			13	Alto	39	Alto
30	1 1 1 4 7	Bajo	3 1 1 4 9	Medio	1 1 1	4 7	Bajo	23	Bajo	3		_	13	Alto	3 3				lto	3 3		·	13	Alto	39	Alto
31	2 2 1 2 7	Bajo	2 2 1 2 7	Bajo	2 2 1	2 7	Bajo	21	Bajo	4	4 4		14	Alto	2 2				edio	2 3			9	Medio	32	Medio
32	3 3 3 4 13	Alto	3 1 1 4 9	Medio	1 1 1	4 7	Bajo	29	Medio	3		_	13	Alto	3 3	_	4 1		lto	3 3	_	_	13	Alto	39	Alto
33	3 2 3 2 10	Medio	2 3 3 2 10	Medio		2 10	Medio	30	Medio	3		_	10	Medio	2 3	_			edio	2 1	2		7	Bajo	27	Medio
34	3 2 3 2 10	Medio	2 3 3 2 10	Medio	2 3 3	2 10	Medio	30	Medio	3		_	10	Medio	2 3				edio	2 1	2		7	Bajo	27	Medio
35	3 3 3 4 13	Alto	3 3 3 4 13	Alto	3 3 3	4 13	Alto	39	Alto	3	3 3	4	13	Alto	3 2	2 2	2 !	M	edio	3 3	3 4	. 3	13	Alto	35	Medio

		Estudio de las redes de agua			Indian's add the san DVO						Diseño de agua potable para consumo														
N	Situación actual de las redes de agua	Diseño de la línea de conducción	Estrategias de participación ciudadana	ST1	V1	ı	nsta		de tub 30 442	erías PVC 2		С	alic	dad	de ma	iteriales			ſ	Mano	de	obra		ST2	V2
	1 2 3 4 S1 D1	5 6 7 8 S2 D2	5 6 7 8 S3 D3			1	2	3 4	S4	D4			5 7	7 8	S5	D5	9	10	1			S6	D6		
	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3		_			Alto	3				_	13	Alto	39	Alto
37	2 3 2 1 8 Medio	2 3 2 1 8 Medio	2 3 2 1 8 Medio	24	Medio	2		2 1	8	Medio	2		_	_	Ü	Medio	2	2	_			8	Medio	24	Medio
38	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3				. •	Alto	3	3	_		_	13	Alto	39	Alto
39	2 2 1 2 7 Bajo	2 2 1 2 7 Bajo	2 2 1 2 7 Bajo	21	Bajo	2		1 2	7	Bajo	2		_	_		Medio	2	_1	1		2	7	Bajo	22	Bajo
40	2 3 3 3 11 Medio	3 2 3 3 11 Medio	3 2 3 3 11 Medio	33	Medio	2		3 3	11	Medio	3		_	_	_	Medio	1	1	_		-	8	Medio	30	Medio
41	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3		_	_		Alto	3		_		_	13	Alto	39	Alto
42	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3		_			Alto	3					13	Alto	39	Alto
43	3 3 3 12 Alto	3 3 3 12 Alto	3 3 3 12 Alto	36	Alto	3		3 3	12	Alto	3				_	Alto	2		_		_	9	Medio	33	Medio
44	3 2 3 2 10 Medio	2 3 3 2 10 Medio	2 3 3 2 10 Medio	30	Medio			3 2		Medio			3			Medio	2		_		_	7	Bajo	27	Medio
45	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3		_			Alto	3	3	_		_	13	Alto	39	Alto
46 47	2 2 2 2 8 Medio 3 3 3 4 13 Alto	2 3 2 2 9 Medio 3 3 3 4 13 Alto	2 3 2 2 9 Medio 3 3 3 4 13 Alto	26 39	Medio Alto	2		2 2	8	Medio Alto	2	3		_	_	Medio Alto	2	1	2		3	12	Bajo Alto	24 39	Medio
				21		4		3 4	13	Alto			_				2	3	- 4		_	13			Alto
48 49	2 2 1 2 7 Bajo 3 3 3 4 13 Alto		2 2 1 2 7 Bajo 3 3 3 4 13 Alto	39	Bajo Alto	3		4 2	14	Alto	3			1 2	_	Bajo Alto	3	3			3	12	Bajo Alto	28 39	Medio Alto
50	3 3 3 4 13 Alto 3 2 3 2 10 Medio	3 3 3 4 13 Alto 2 3 3 2 10 Medio	3 3 3 4 13 Alto 2 3 3 2 10 Medio	30	Medio	3		3 4 3 2	13	Medio	2					Medio	2		- 2		2	13	Baio	27	Medio
51	3 2 3 2 10 Medio	2 3 3 2 10 Medio	2 3 3 2 10 Medio	30	Medio	3		3 2	10	Medio	2		_			Medio	2	1	- 4		2	7	Вајо	27	Medio
				39	Alto	3		3 4	13	Alto	3		_	_		Medio	3	3	_		_	12	Alto	35	
52 53	3 3 3 4 13 Alto 3 3 3 4 13 Alto	3 3 3 4 13 Alto 3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3		_	_	_	Alto	3	3				13 13	Alto	39	Medio Alto
54	2 3 2 1 8 Medio	2 3 2 1 8 Medio	2 3 2 1 8 Medio	24	Medio	2		2 1	8	Medio	2		_		8	Medio	2	2			_	8	Medio	24	Medio
55	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3				_	Alto	3		_			13	Alto	39	Alto
56	2 2 1 2 7 Bajo	2 2 1 2 7 Bajo	2 2 1 2 7 Bajo	21	Bajo	2		1 2	7	Baio	2		_			Medio	2	_	- 2		2	7	Baio	22	Bajo
57	2 3 3 3 11 Medio	3 2 3 3 11 Medio	3 2 3 3 11 Medio	33	Medio	2		3 3	11	Medio		2			-	Medio	1	1	_			8	Medio	30	Medio
58	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3		_	_	_	Alto	3		_		_	13	Alto	39	Alto
59	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3		_		_	Alto	3		_		_	13	Alto	39	Alto
60	2 2 1 2 7 Bajo	2 2 1 2 7 Baio	2 2 1 2 7 Bajo	21	Baio	4		4 2	14	Alto	2			_		Baio	2		_		_	7	Baio	28	Medio
61	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3				_	Alto	3				_	13	Alto	39	Alto
62	3 2 3 2 10 Medio	2 3 3 2 10 Medio	2 3 3 2 10 Medio	30	Medio		_	3 2	10	Medio	2		_			Medio	2	1	_		2	7	Bajo	27	Medio
63	3 2 3 2 10 Medio	2 3 3 2 10 Medio	2 3 3 2 10 Medio	30	Medio	3		3 2	10	Medio	2					Medio	2	1	2		2	7	Bajo	27	Medio
64	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3	2	2	2 2	9	Medio	3	3	4	4 .	3	13	Alto	35	Medio
65	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3	3	3 4	13	Alto	3	3	3	3 4	13	Alto	3	3	- /	4 3		13	Alto	39	Alto
66	2 3 2 1 8 Medio	2 3 2 1 8 Medio	2 3 2 1 8 Medio	24	Medio	2		2 1	8	Medio	2		3 2	2 1	8	Medio	2	2	1	1 7	3	8	Medio	24	Medio
67	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3	3	3 4	13	Alto	3	3	3 3	3 4	13	Alto	3	3		4 3	3	13	Alto	39	Alto
68	2 2 1 2 7 Bajo	2 2 1 2 7 Bajo	2 2 1 2 7 Bajo	21	Bajo	2	2	1 2	7	Bajo	2	2	2 2	2 2	8	Medio	2	1	2	2 7	2	7	Bajo	22	Bajo
69	2 3 3 3 11 Medio	3 2 3 3 11 Medio	3 2 3 3 11 Medio	33	Medio	2	3	3 3	11	Medio	3	2	2 3	3	11	Medio	1	1	1	3 3	3	8	Medio	30	Medio
70	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3	3	3 4	13	Alto	3	3	3	3 4	13	Alto	3	3	4	4 3	3	13	Alto	39	Alto
71	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3		3 4	13	Alto	3		3	3 4	13	Alto	3	3	4	4 3	3	13	Alto	39	Alto
72	3 3 3 12 Alto	3 3 3 3 12 Alto	3 3 3 12 Alto	36	Alto	3	3	3 3	12	Alto	3	3	3	3	12	Alto	2	1		3 3	3	9	Medio	33	Medio
73	2 2 1 2 7 Bajo	2 2 1 2 7 Bajo	2 2 1 2 7 Bajo	21	Bajo	4		4 2	14	Alto	2			1 2	7	Bajo	2	1	2	2 7	2	7	Bajo	28	Medio
74	3 3 3 4 13 Alto	3 3 3 4 13 Alto	3 3 3 4 13 Alto	39	Alto	3	3	3 4	13	Alto	3	3	3	3 4	13	Alto	3	3	i	4 3	3	13	Alto	39	Alto

							E	Estu	ıdio	de	e la	s rec	les de ag	ua p	ota	ble													Dise	ño	de a	igua	pot	able para	cons	sum	0						
N		Situ	acio		ıal d agua	e las redes			Dis			e la li lucci	nea de ón		E	stra	•		de par dadan	ticipación a	ST1	V1	ı	nsta	alac		de tub O 4422	erías PVC 2		Cal	idad	d de	mat	eriales			N	lanc	de	obra		ST2	V2
	1	2	3	4	S1	D1	5	5 6	3 7	7	8	S2	D2		5	6	7	8	S 3	D3			1	2	3	4	S4	D4	5	6	7	8	S5	D5	9	10	1′	1 1	12	S6	D6	1	
75	3	2	3	2	10	Medio	2		3 3	3 :	2	10	Medio)	2	3	3	2	10	Medio	30	Medio	3	2	3	2	10	Medio	2	3	3	2	10	Medio	2	1	2	<u>:</u>	2	7	Bajo	27	Medio
76	_		3	2	10	Medio		2 3	_	_	2	10	Medio	_	2	3	-	2	10	Medio	30	Medio	3		3	2	10	Medio	2	3	3	2	10	Medio	2	1	2	<u>- -</u>	2	7	Bajo	27	Medio
77		_	3	4	13	Alto	3	_		_	4	13	Alto	_	3	3	3	4	13	Alto	39	Alto	3	_	3	4	13	Alto	3	2	_	2	9	Medio	3	3	4	_	3	13	Alto	35	Medio
78	_	_	3	4	13	Alto	_	3	_	3 4	4	13	Alto	_	3	3	3	4	13	Alto	39	Alto	3	_	3	4	13	Alto	3	3	3	4	13	Alto	3	3	4		3	13	Alto	39	Alto
79	_	3	2	1	8	Medio	_	2 3	3 2	2	1	8	Medio	_	2	3	2	1	8	Medio	24	Medio	2	3	2	1	8	Medio	2	3	2	1	8	Medio	2	2	1		3	8	Medio	24	Medio
80	_	3	3	4	13	Alto	_	3	3 3	_	4	13	Alto	_	3	3	3	4	13	Alto	39	Alto	3	3	3	4	13	Alto	3	3	3	4	13	Alto	3	3	4		3	13	Alto	39	Alto
81	_	2	1	2	7	Bajo	2		2 1		2	7	Bajo	_	2	2	'	2	7	Bajo	21	Bajo	2	2	1	2	7	Bajo	2	2	2	2	8	Medio	2	_1	2	<u>'</u>	2	7	Bajo	22	Bajo
82	_		3	3	11	Medio	_	3 2	2 3	_	3	11	Medio	_	3	2	3	3	11	Medio	33	Medio	2	3	3	3	11	Medio	3	2	3	3	11	Medio	1	1	3		3	8	Medio	30	Medio
83	_	_	3	4	13	Alto	_	3		_	4	13	Alto		3	3	3	4	13	Alto	39	Alto	3		3	4	13	Alto	3	3	3	4	13	Alto	3	3	4	_	3	13	Alto	39	Alto
84	_	3	3	4	13	Alto	_	3	3 3	_	4	13	Alto	_	3	3	3	4	13	Alto	39	Alto	3	3	3	4	13	Alto	3	3	3	4	13	Alto	3	3	4	,	3	13	Alto	39	Alto
85	_	2	1	2	7	Bajo	2	_	2 1		2	7	Bajo	_	2	2	1	2	7	Bajo	21	Bajo	4	4	4	2	14	Alto	2	2	1	2	7	Bajo	2	1	2	1	2	7	Bajo	28	Medio
86	_	3	3	4	13	Alto	_	3	3 3	3 4	4	13	Alto	_	3	3	3	4	13	Alto	39	Alto	3	_	3	4	13	Alto	3	3	3	4	13	Alto	3	3	4		3	13	Alto	39	Alto
87	_	2	3	2	10	Medio	2	_	3 3	3 :	2	10	Medio		2	3	3	2	10	Medio	30	Medio	3		3	2	10	Medio	2	3	3	2	10	Medio	2	1	2	<u> </u>	2	7	Bajo	27	Medio
88	_		3	2	10	Medio		2 3	3 3	3 :	2	10	Medio		2	3	3	2	10	Medio	30	Medio	3		3	2	10	Medio	2	3	3	2	10	Medio	2	1	2	<u>'</u>	2	7	Bajo	27	Medio
89	3	3	3	4	13	Alto	_	3	3 3	3 4	4	13	Alto		3	3	3	4	13	Alto	39	Alto	3		3	4	13	Alto	3	2	2	2	9	Medio	3	3	4	,	3	13	Alto	35	Medio
90	- 3	3	3	4	13	Alto	_	3	3 3	3 4	4	13	Alto	_	3	3	3	4	13	Alto	39	Alto	3	_	3	4	13	Alto	3	3	3	4	13	Alto	3	3	4	<u>, L</u>	3	13	Alto	39	Alto
91	2	3	2	1	8	Medio	2	_	3 2	2	1	8	Medio	_	2	3	2	1	8	Medio	24	Medio	2	3	2	1	8	Medio	2	3	2	1	8	Medio	2	2	1		3	8	Medio	24	Medio
92	3	3	3	4	13	Alto	3	3	3 3	3 4	4	13	Alto		3	3	3	4	13	Alto	39	Alto	3	3	3	4	13	Alto	3	3	3	4	13	Alto	3	3	4	, [3	13	Alto	39	Alto
93	2	2	1	2	7	Bajo	2	2 2	2 1	1	2	7	Bajo		2	2	1	2	7	Bajo	21	Bajo	2	2	1	2	7	Bajo	2	2	2	2	8	Medio	2	1	2	<u>, </u>	2	7	Bajo	22	Bajo

PERÚ: POBLACIÓN TOTAL AL 30 DE JUNIO, POR GRUPOS QUINQUENALES DE EDAD, SEGÚN DEPARTAMENTO, PROVINCIA Y DISTRITO, 2015.

DEPARTAMENTO,		GRUPOS QUINQUENALES DE EDAD																
PROVINCIA Y DISTRITO	Total	0 - 4	5 - 9	10 - 14	15 - 19	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49	50 - 54	55 - 59	60 - 64	65 - 69	70 - 74	75 - 79	80 y más
HUAURA	219059	18193	18541	20931	20245	19697	16509	15704	15638	13504	12333	11085	9425	7891	6368	5330	3731	3934
HUACHO AMBAR CALETA DE	58532 2737	4333 269	4374 347	5079 305	5009 210	5089 220	4280 166	4096 168	4232 163	3798 134	3571 152	3442 135	2876 110	2356 103	1934 92	1624 67	1184 44	1255 52
CARQUIN CHECRAS	6801 1781	594 130	552 138	563 166	570 108	662 72	601 88	586 81	501 122	473 111	361 105	346 138	275 102	217 105	197 85	134 113	80 62	89 55
HUALMAY HUAURA	28589 35373	2330 3001	2378 3122	2750 3693	2585 3798	2566 3362	2155 2761	2062 2590	2096 2476	1852 2137	1546 1930	1440 1629	1281 1297	1030 1046	867 858	635 756	487 465	529 452
LEONCIO PRADO PACCHO SANTA I FONOR	1980 2189 1455	203 159 106	223 184 138	160 190 172	150 121 107	170 130 92	147 119 67	123 132 71	125 142 91	104 141 87	117 123 90	113 120 100	72 115 69	72 141 78	60 128 56	56 107 54	40 72 43	45 65 34
SANTA MARIA SAYAN	33496 24095	2797 2214	2917 2280	3277 2404	3079 2327	2907 2320	2463 1987	2436 1840	2491 1740	2008 1377	1787 1332	1556 1043	1466 884	1262 743	942 563	819 468	583 305	706 268 384
SANTA LEONOR SANTA MARIA	1455 33496	106 2797	138 2917	172 3277	107 3079	92 2907	67 2463	71 2436	91 2491	87 2008	90 1787	100 1556	69 1466	78 1262	56 942	54 819	43 583	7

Fuente: INEI 2015

PERÚ: POBLACIÓN TOTAL AL 30 DE JUNIO, POR GRUPOS QUINQUENALES DE EDAD, SEGÚN DEPARTAMENTO, PROVINCIA Y DISTRITO, 2015.

DEPARTAMENTO,	Total -										
PROVINCIA Y DISTRITO	TOLAI	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49	50 - 54	55 - 59	60 - 64	65 - 69
HUAURA	219059	19697	16509	15704	15638	13504	12333	11085	9425	7891	6368
	0.505.4	=000	4000	4000	4000	0700	0==4	0.4.40	0070	22.52	4004
HUACHO	35674	5089	4280	4096	4232	3798	3571	3442	2876	2356	1934
AMBAR	1443	220	166	168	163	134	152	135	110	103	92
CALETA DE CARQUIN	4219	662	601	586	501	473	361	346	275	217	197
CHECRAS	1009	72	88	81	122	111	105	138	102	105	85
HUALMAY	16895	2566	2155	2062	2096	1852	1546	1440	1281	1030	867
HUAURA	20086	3362	2761	2590	2476	2137	1930	1629	1297	1046	858
LEONCIO PRADO	1103	170	147	123	125	104	117	113	72	72	60
PACCHO	1291	130	119	132	142	141	123	120	115	141	128
SANTA LEONOR	801	92	67	71	91	87	90	100	69	78	56
SANTA MARIA	19318	2907	2463	2436	2491	2008	1787	1556	1466	1262	942
SAYAN	13829	2320	1987	1840	1740	1377	1332	1043	884	743	563
VEGUETA	12486	2107	1675	1519	1459	1282	1219	1023	878	738	586

Fuente: INEI 2015

- Horning maij

M(o) GOÑY AMERI CARLOS FRANCISCO ASESOR

Confe Son -

M(o) MENDOZA FLORES CRISTIAN MILTON PRESIDENTE

Cuf

M(o). CABELLO BLANCO JAQUELINE SECRETARIO

Alle

M(o) DE LA CRUZ VEGA SLEYTHER ARTURO VOCAL