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NOMENCLATURE 

E  Modulus of elasticity of the material 

G  Shear modulus of the material 

𝐾𝑏  Flexural stiffness 

𝐾𝑠  Shear stiffness 

𝐾𝑏1  Global bending stiffness 

𝐾𝑏2  Stiffness to local bending 

𝐾𝑠1  Global shear stiffness 

𝐾𝑠2  Local shear stiffness 

𝐾𝜃  Torsional stiffness 

𝐺𝑒𝑞  Equivalent stiffness of the connecting beam 

𝐼𝑤  Moment of inertia of the shear wall 

𝐼𝑐  Moment of inertia of the column 

𝐼𝑏  Moment of inertia of the beam 

𝐼𝑤  Warping torsion constant 

𝐽  Saint-Venant torsion constant 

𝐽 ̅ Constant that represents the effect of the connection beam 

𝐴𝑤  Cross-sectional area of the shear wall 

𝐴𝑐  Cross-sectional area of the column 

𝐴0  Area enclosed by the mean center lines of the thin wall sections 

𝑘  Form factor 

ℎ  Floor height 
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ABSTRACT 

The structural analysis of a tall building can be solved by a local or global analysis. It is 

known that the global response is not the simple superposition of responses of the individual 

structural systems and is important to carry out a global structural analysis of the tall building that 

considers the complex three-dimensional interaction between the structural systems. Although 

technological advancement has made a full structural analysis using commercial finite element 

packages easy to obtain, at an early stage of the project structural engineers need to make quick 

decisions and the use of complex 3D models can be time consuming, be impractical and expensive. 

In contrast, the use of approximate methods such as the continuous method and the transfer matrix 

method substituting a tall building as an equivalent replacement beam drastically reduces the 

degrees of freedom of the structure, involves a minimal amount of time, and allows concentrate 

the analysis on the most important structural features and ignore those that have no significant (and 

sometimes no) influence on the structural response. 

The main objective of this research project is to develop and propose an analytical 

procedure for the global structural analysis of the tall building that involves a static, dynamic and 

stability analysis based on the continuous method and the transfer matrix method using an energy 

formulation. The mathematical formulation using the continuum method provides closed form 

solutions for the static, dynamic and stability structural analysis of regular tall buildings and the 

joint use of the continuum method and the transfer matrix method allows to evaluate the structural 

analysis of tall buildings that present structural variability in height. The simplified model is used 

to calculate the lateral displacement profile, the maximum displacement, the interstory drifts and 

the global drift in the static case; to calculate the frequencies and periods in the dynamic case and 

to calculate the global critical buckling load in the stability case. 

This investigation is divided into two parts. The first part presents the mathematical 

procedure that leads to closed solutions of the static, dynamic and stability structural analysis of 

replacement beam models suitable for each structural element such as frames, shear walls, coupled 

shear walls, cores and strategies are also analyzed to represent the tall building by a single 

replacement beam with its characteristic stiffnesses. The second part presents an analysis of the 
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accuracy and reliability of the models developed by comparing the results of the continuous 

method and the transfer matrix method with the finite element method. The results of the 

investigation demonstrate excellent accuracy and reliability of the application of the continuous 

models developed for the structural systems and for the tall building. 

As a general conclusion, the analytical procedure proposed in this thesis for the global 

structural analysis of the tall building has proven to be a very reliable procedure in its precision 

and involves a reduced processing time, which makes it convenient to be implemented in 

engineering offices such as an excellent alternative for structural analysis of tall buildings at a 

preliminary stage and as a verification method at the final stage of the project. 

 

 

Keywords: Tall building, replacement beam, continuous method, transfer matrix method, energy 

formulation, Hamilton's principle, static structural analysis, dynamic structural analysis, structural 

stability analysis. 
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RESUMEN 

El análisis estructural de un edificio alto puede resolverse mediante un análisis local o 

global. Se conoce que la respuesta global no es la simple superposición de respuestas de los 

sistemas estructurales individuales y es importante realizar un análisis estructural global del 

edificio alto que considere la compleja interacción tridimensional entre los sistemas estructurales. 

A pesar de que el avance tecnológico ha contribuido a que un análisis estructural completo 

utilizando paquetes comerciales de elementos finitos sea fácil de obtener, en una etapa temprana 

del proyecto los ingenieros estructurales necesitan tomar decisiones rápidas y el uso de modelos 

tridimensionales complejos pueden demandar mucho tiempo y resultar poco práctico y costoso. 

Por el contrario, el uso de métodos aproximados como el método continuo y el método de matriz 

de transferencia que sustituye un edificio alto como una viga de reemplazo equivalente, reduce 

drásticamente los grados de libertad de la estructura, involucra una mínima cantidad de tiempo y 

permite concentrar el análisis en las características estructurales más importantes e ignorar aquellas 

que no tienen una influencia importarte (y a veces nula) en la respuesta estructural. 

El objetivo principal de este proyecto de investigación es desarrollar y proponer un 

procedimiento analítico para el análisis estructural global del edificio alto que involucra un análisis 

estático, dinámico y de estabilidad basado en el método continuo y el método de matriz de 

transferencia utilizando una formulación energética. La formulación matemática utilizando el 

método continuo proporciona soluciones de forma cerrada para el análisis estructural estático, 

dinámico y de estabilidad de edificios altos regulares y la utilización  conjunta del método continuo 

y el método de matriz de transferencia permite evaluar el análisis estructural de los  edificios altos 

que presentan variabilidad estructural en altura. El modelo simplificado se utiliza para calcular el 

perfil de desplazamiento lateral, el desplazamiento máximo, las derivas de entrepiso y la deriva 

global en el caso estático; para calcular las frecuencias y los periodos en el caso dinámico y para 

calcular la carga crítica global de pandeo en el caso de estabilidad.  

Esta investigación se divide en dos partes. La primera parte presenta el procedimiento 

matemático que conduce a soluciones cerradas del análisis estructural estático, dinámico y de 

estabilidad de modelos de vigas de reemplazo adecuados a cada elemento estructural como 
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pórticos, muros de corte, muros de corte acoplado, núcleos y también se analiza estrategias para 

representar al edificio alto mediante una sola viga de reemplazo con sus rigideces características. 

La segunda parte presenta un análisis de precisión y fiabilidad de los modelos desarrollados 

comparando los resultados del método continuo y método de matriz de transferencia con el método 

de elementos finitos. Los resultados de la investigación demuestran una excelente precisión y 

fiabilidad de la aplicación de los modelos continuos desarrollados para los sistemas estructurales 

y para el edificio alto.  

Como conclusión general, el procedimiento analítico propuesto en este proyecto de 

investigación para el análisis estructural global del edificio alto ha demostrado ser un 

procedimiento muy confiable en su precisión e involucra un reducido tiempo de procesamiento, lo 

que lo hace conveniente para implementarse en las oficinas de ingeniería como una excelente 

alternativa para el análisis estructural de edificios altos en una etapa preliminar y como un método 

de verificación en la etapa final del proyecto. 

 

 

Palabras claves: Edificio alto, viga de reemplazo, método continuo, método de matriz de 

transferencia, formulación energética, principio de Hamilton, análisis estructural estático, análisis 

estructural dinámico, análisis estructural de estabilidad. 
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INTRODUCTION 

Numerous approximate and exact analysis methods have been developed in the literature 

to assess the overall structural analysis of tall buildings. In this research project an analytical 

procedure is presented that allows the static, dynamic and stability structural analysis of the tall 

building to be carried out in a practical way and in a shorter time using the continuous method and 

the transfer matrix method with an energetic formulation. 

The continuous method leads to closed solutions of structural analysis for buildings that 

are regular in height; that is, whose structural properties do not change along the height of the 

building. However, not all tall buildings are regular in height for structural, aesthetic, and cost 

reasons. The joint application of the continuous method and the transfer matrix method allows 

evaluating the structural analysis of tall buildings that present structural variability in height. In 

this way, the analytical procedure developed in this research project allows to evaluate the global 

structural analysis of tall buildings that are regular and irregular in height. 

This research project is divided into seven chapters, where each one is dedicated to a 

particular aspect of the research; however, chapter four "results" contains all the mathematical 

support of this research. 

Chapter 1 covers the problem statement, which describes the problematic reality, the 

formulation of the problem, the objectives, the justification and the delimitation of the research 

study. 

Chapter 2 contains the theoretical framework, which describes the background of the 

research where an exhaustive study of international research related to the analysis of tall buildings 

has been carried out through the continuous method and the transfer matrix method, given the 

theoretical bases that provide an overview of the tall building and the structural systems to be 

studied, the existing replacement beam models in the literature are described and the concepts 

associated with the study of this research project are described. 
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Chapter 3 describes the methodology applied to this research project, which contains the 

design, the population, the sample, the data collection and information processing techniques. 

Chapter 4 presents the results of the research on the global structural analysis of the 

replacement beams and the tall building and is divided into five parts: 

 Static analysis of individual structural systems. The mathematical development of 

the static analysis of thirteen uniform and staggered replacement beams that 

represent the behavior of structural systems is presented. The static analysis has as 

main objective to calculate the lateral displacement profile, the maximum 

displacement, the drifts of stories and the global drift of the replacement beams 

subjected to a general lateral load. 

 Dynamic analysis of individual structural systems. The mathematical development 

of the dynamic analysis of thirteen uniform and stepped replacement beams that 

represent the behavior of the structural systems is presented. The main objective of 

the dynamic analysis is to calculate the frequency, the period, the eigenvalues and 

the mode shapes of the replacement beams subjected to a vertical load that can be 

uniform or variable in height.  

 Stability analysis of individual structural systems. The mathematical development 

of the stability analysis of thirteen uniform and stepped replacement beams that 

represent the behavior of the structural systems is presented. The stability analysis 

has as its only primary objective to calculate the global critical buckling load of the 

replacement beams subjected to a vertical load that can be uniform or variable in 

height.  

 Global analysis of the tall building. The mathematical development to represent the 

entire tall building by a single suitable replacement beam is presented and its 

characteristic stiffnesses are calculated. The analysis is applied directly to buildings 

that are symmetrical in plan (they do not present torsion effects); However, in the 

case of asymmetrical buildings (they present torsion effects), the analogy known as 

“Vlasov analogy” is used. 



 

 

xxvi 

 Numerical applications. To demonstrate the efficiency of the proposed analytical 

procedure, the global analysis of structural systems and tall buildings is developed. 

The comparison of the results of the approximate method and the finite element 

method demonstrate the efficiency of the proposed formulation. 

Chapter 5 presents the discussion of the research results. 

Chapter 6 is dedicated to the conclusions and a description of the results achieved, referring 

to personal contributions and possible future research. 

Finally chapter 7 contains the extensive source of information. It was important to give 

ample space to the bibliographical references in order to provide the reader with an efficient 

starting point to deepen future research topics.
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1 STATEMENT OF THE PROBLEM 

1.1 DESCRIPTION OF THE PROBLEMATIC REALITY 

Tall buildings have become increasingly popular in densely populated cities and have 

represented the symbol of urban development of nations in many countries around the world; this 

popularity is mainly due to the rapid growth of economic activities, high demand for housing and 

limited land. Even with the technological advances in computer analysis, such as increasingly 

powerful computers and sophisticated software packages, high computational effort and high 

economic resources are required to perform the structural analysis of a tall building. Furthermore, 

the horizontal stiffness of a tall building cannot be considered as the simple sum of the individual 

stiffnesses of the structural elements because the overall stiffness of the tall building ensures that 

the structural elements work together and develop a complex structural interaction. As a 

consequence, it is of great interest to develop a structural analysis methodology with a global 

approach where the tall building can be idealized as a continuous beam and where the stiffnesses 

and kinematic fields associated to the continuous beam can represent as real as possible the 

structural characteristics and behavior of the tall building. 

The global structural analysis of tall buildings can be solved by two different types of 

methods: the exact method (full model) and the approximate method (condensed model). The exact 

method is based on a mathematical model as accurate as possible considering many individual 

structural elements, material properties, and geometric and stiffness characteristics, resulting in a 

highly redundant indeterminate structure. On the other hand, the approximate method must be 

based on the most important structural features and ignore those that do not have a significant (and 

sometimes zero) influence on the structural response. The finite element method is an example of 

the exact method (full model). In contrast, one of the most commonly used approximate methods 

(condensed model) is the continuous method and the transfer matrix method. 
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The continuous method (CM) assumes that all horizontal elements connecting the vertical 

components are effectively connected over the height of the building to produce a continuous 

connecting means; i.e., the connecting beams are replaced by a system of uniformly distributed 

plates (Figure 1). As a consequence, the three-dimensional (3D) structure leads to a replacement 

beam (RB) that is characterized by equivalent stiffnesses and kinematic fields (Figure 2). It has 

been widely used in the literature to analyze structures whose structural properties do not vary with 

building height. The transfer matrix method (TMM) has been widely used to solve differential 

equations with discontinuities, applied to the structural field it allows to analyze continuous 

systems with varying and/or discontinuous structural properties with the height of the building by 

transforming the boundary conditions into initial conditions and thus allows to express the 

equations as a function of the initial constants. 

At an early stage of the structural project, engineers need to make quick decisions and often 

opt for complex three-dimensional models that are impractical. Analyzing tall buildings using the 

continuous method and the transfer matrix method is justified because it drastically reduces the 

degrees of freedom of the structure. Any errors in the structural modelling and the introduction of 

the applied loads will lead to erroneous and inaccurate results of the analysis; moreover, in 

complex structures, depending on the experience of the structural engineer, it becomes difficult to 

investigate and find the errors within the massive output data of the discrete method results (finite 

element method). In addition to this point, the structural analysis by the continuous method allows 

for verifying the results obtained from the discrete method, which is advantageous because both 

methods follow a different mathematical nature. 

Perhaps the best way to analyze structures is to employ both methods: in the preliminary 

design phase, the continuous method and the transfer matrix method can quickly help identify key 

project parameters and establish structural dimensions. In contrast, in the final design phase, the 

discrete method allows for more detailed analysis through more accurate calculations. 

In this sense, the use of approximate methods such as the continuous medium method and 

the transfer matrix method allows the analysis of the structures with a global approach in a 

relatively simple way. It allows the structural engineer to understand the correct complex 

behaviour of tall buildings and to know which key parameters and characteristics have a dominant 

role in the behaviour of the tall building. 
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Figure 1. Coupled shear wall. a) With discrete connecting beams, b) With continuous connecting beams 

(Migliorati & Mangione, 2015). 

 

Figure 2. RB idealization process from 3D model to 1D model (Moghadasi, 2015). 

Within this context, this research thesis focuses on five main topics within the global 

structural analysis of tall buildings: the development of continuous models that will lead to a 

replacement beam (RB), the development of a methodology for the static structural analysis of the 

tall building, the development of a methodology for the dynamic structural analysis of the tall 

building, the development of a methodology for the structural stability analysis of the tall building, 

and the definition of damage indicators for the assessment of the vulnerability of the tall building. 
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1.2 FORMULATION OF THE PROBLEM 

1.2.1 General problem 

 Will it be possible to develop a methodology for global structural analysis of tall buildings 

by the continuous method and the transfer matrix method using an energy formulation? 

1.2.2 Specific problems 

 Will it be possible to develop a methodology for global static structural analysis of the tall 

building by the continuous method and the transfer matrix method using an energy 

formulation? 

 Will it be possible to develop a methodology for dynamic global structural analysis of the 

tall building by the continuous method and the transfer matrix method using an energy 

formulation? 

 Will it be possible to develop a global structural analysis methodology of tall building 

stability by the continuous method and the transfer matrix method using an energy 

formulation? 

1.3 RESEARCH OBJECTIVES 

1.3.1 General Objective 

 Develop a methodology for global structural analysis of tall buildings by the continuous 

method and the transfer matrix method using an energy formulation. 

1.3.2 Specific objectives 

 Develop a methodology for global static structural analysis of the tall building by the 

continuous method and the transfer matrix method using an energy formulation. 

 Develop a methodology for dynamic global structural analysis of the tall building by the 

continuous method and the transfer matrix method using an energy formulation. 

 Develop a methodology for global structural analysis of tall building stability by the 

continuous method and the transfer matrix method using an energy formulation. 
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1.4 JUSTIFICATION FOR THE RESEARCH 

 Theoretical justification. One of the problems faced by the structural engineer when 

analyzing tall buildings is the problem of horizontal lateral loads. While it is true that these 

lateral loads are small compared to gravity loads, the transfer of these loads to the 

foundation requires special design work.  Tall buildings are very sensitive to dynamic 

vibrations due to their height and slenderness; and, therefore, to perform accurate structural 

analysis using the finite element method requires a great technological and economic effort. 

This research project proposes an accurate and reliable approximate method based on the 

continuum method and the transfer matrix method using an energy formulation to calculate 

lateral and torsional deflections, periods, uncoupled and coupled frequencies, and critical 

loads in tall buildings. 

 Methodological justification. To meet the objectives of this research project, the 

continuous method and the transfer matrix method with an energy formulation will be used. 

The continuous method assumes that all horizontal elements connecting the vertical 

components are effectively connected over the height of the building to produce a 

continuous connecting means, i.e., the connecting beams are replaced by a uniformly 

distributed sheeting system. As a consequence of the continuous method, the three-

dimensional (3D) structure leads to a replacement beam (RB) which is characterized by 

equivalent properties 𝐾𝑖  that attempt to adequately represent the actual stiffness of the 

structural system. It is important to mention that in order to obtain more accurate RB 

systems for the structural analysis of tall buildings, a mathematical model with additional 

kinematic fields and stiffness properties to those existing in the literature is going to be 

used. In order to develop a comprehensive methodology and to take into account the 

vertical discontinuities existing in many tall buildings, it was decided not to limit to tall 

buildings with regular structural systems and the transfer matrix method was implemented 

to the continuous method. 

 Practical justification. The author hopes that the results of this research project will help 

engineering offices specialized in the development of structural projects in tall buildings, 

to minimize cost and time in computational technology and human resources by focusing 

primarily on the choice of optimal structural systems for each structural project. In addition, 
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it is expected that the methodology developed will be taken into account so that the 

academic community can continue developing more structural analysis using approximate 

methods focused on other structural problems of interest. 

 Social justification. The results of this research are primarily beneficial to the structural 

engineer; however, society in general can also benefit when a large-scale evaluation of a 

structural strengthening plan for existing structures is required prior to a natural disaster 

such as earthquakes. 

1.5 DELIMITATIONS OF THE STUDY 

The development of the research project comprises the following elements: the geographic 

space, the subjects participating in the research and the content. 

 Geographic space. The research has a worldwide geographical space due to the fact that 

currently all countries have tall buildings. The research project is limited to the study of 

linear systems, the need to study the nonlinear response of structures is recognized; 

however, previous studies have shown that a greater increase in seismic forces is perceived 

in the linear range with respect to the nonlinear range. As a consequence, the linear 

approach can be considered conservative for nonlinear systems. The slabs are considered 

to be rigid in their plane and only transfer horizontal forces, i.e., they do not transfer vertical 

or bending forces. In addition, the research project focuses on a global analysis that is not 

limited to structural systems that are regular, allowing the analysis of structural systems 

with vertical discontinuities in the building height. 

 Subjects who will participate in the study. The study population is made up of tall 

buildings. In this regard, there is no universally recognized definition of a tall building, 

because height is a relative parameter.  For the purposes of the research project, the 

minimum height to be considered is that corresponding to a 4-story building, because in 

order to use the continuous method it is necessary to have enough connecting beams to 

consider a continuous connection between the vertical components. 
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 Contents. To carry out the operationalization of the variables, we will work with the 

independent variable "continuous method and transfer matrix method" and with the 

dependent variable "global structural analysis of tall buildings". 
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2 STATE OF THE ART 

2.1 RESEARCH BACKGROUND 

2.1.1 International Research 

To summarize a complete chronology on the study of the structural analysis of tall 

buildings using the continuous method and the transfer matrix method would be too extensive. 

Therefore, a review of the research most relevant to the topic of study of the present research 

project will be made. 

The use of the continuous medium technique in structural engineering dates back to the 

work of Jacobsen, L. (1930), who modeled the underlying soil as a shear beam, with the objective 

of evaluating the site response. Somewhat later, Biot, M. (1933) and Westergaard, H. (1933) 

considered the same continuous model to estimate the building behavior.  

The continuous connection method was probably created by Chitty, L. (1947), who 

proposed the first formulation of the continuous connection method using a shear beam and a 

bending beam coupled by rigid bars. He investigated parallel beams interconnected by cross bars, 

subjected to a uniform lateral load, and established the differential equation that solves the 

problem. In a later work Chitty, L. and Wan, W. (1948) applied the continuous medium technique 

to analyze tall buildings subjected to a wind load uniformly distributed in height. 

Rosenblueth, E. and Holtz, I. (1960), used a shear beam to relate slope to bending moment 

and drift. They solved the shear distribution between the wall and the portal frame using a method 

of successive approximations. 

Vlasov, V. (1961), was the originator of the theory of sectoral areas. He was the first to 

combine the thin-walled open section theory with the continuum approach to analyze the torsional 

behavior of three-dimensional shear walls, defining the tendency of the bimoment action as a result 

of this deformation. Based on this theory, many researchers introduced continuous formulations 

for the case of closed and open sections.  

Khan, F. and Sbarounis, J. (1964), used the coupling of a shear beam and a bending beam 

and solved the interaction between shear walls and frames by a solution in which the shear wall is 
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treated as the primary system and the frame as the secondary system, or vice versa. The resulting 

deformations of the primary system are imposed on the secondary system. The resistance forces 

induced in the secondary system are taken as the correction load in the primary system. This 

process is repeated successively until convergence of equilibrium and compatibility of 

deformations is achieved.  

Glück, J. (1970), presented a three-dimensional continuous method for structures 

consisting of shear walls and portal frames arranged asymmetrically in the floor plane. He used 

the continuous approach and the theory of thin-walled sections of Vlasov, V. (1961). Based on 

compatibility and equilibrium conditions, he derived a set of coupled differential equations with 

translational and rotational displacement functions. However, this analysis did not include the 

effect of axial deformations of shear walls and portal frames.  

Glück, J. and Gellert, M. (1972), developed a more complete three-dimensional analysis 

of an asymmetric tall building including the influence of axial deformations in the portal frames 

and shear walls. They derived the inhomogeneous second-degree differential equations of the shear 

forces in the sheeting system. With the known basis functions, they established all the forces and 

internal displacements of the individual reinforcement elements.  

Tso, W. and Bismas, J. (1973), developed a method for the three-dimensional analysis of 

nonplanar coupled shear walls of arbitrary cross section and considered the axial deformations of 

the shear walls. Based on compatibility and equilibrium conditions, they derived a set of three 

coupled differential equations, which can be reduced to a single equation with rotational 

deformation as a variable.  

Heidebrecht, A. and Stafford, B. (1973), represented the shear wall by a bending beam and 

the portal frame by a shear beam, and connected them by an axially rigid linking means distributed 

along the height of the building. The columns of the portal frames were considered axially rigid. 

From that continuous representation, they proposed the solution for the deflections of uniform 

shear wall - portal frame structures based on the differential equation governing the system. 

Reinhorn, A. (1978), developed an approximate analytical model for the static structural 

analysis of structural elements based on the continuous method and included axial deformations 

through only three horizontal deformations (two translations and one rotation), for the case of 

staggered buildings he used the transfer matrix method. The developed model was part of a general 
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perturbative model, where the perturbative solution allowed to verify and correct errors if 

necessary. In addition, it investigated the influence of static loads and the effect of torsional 

translational coupling on the dynamic response.  

Nollet, M. (1979), provided a detailed exposition on the behavior of continuous and 

discontinuous shear-frame wall structures, considering the influence of horizontal interaction 

between shear walls and frames to stiffen the structure. He developed continuous solutions that 

allow generalizations on the behavior of a wide range of shear wall-frame structures. For stepped 

shear wall - portal frame structures, it is found that the walls can be reduced without significantly 

modifying the overall horizontal interaction and lateral stiffness.  

Stafford, S., Kuster, M. and Hoenderkamp, J. (1981), generalized the continuous medium 

technique that had been applied earlier to coupled shear wall structures so that it could be applied 

to any type of flexural and shear cantilevers. They defined the characteristic parameters αH and 

𝜅2, where 𝜅2 includes consideration of axial deformation of the vertical elements.  

Hoenderkamp, J. (1983), extended the continuous solution for asymmetric structures, 

proposed a generalized solution that included the axial deformations of shear walls and portal 

frames. The coupled torsion-bending differential equations were decoupled using an orthogonal 

transformation. 

Miranda, E. (1999), used the continuum model to estimate the maximum lateral 

displacement demands on tall buildings that respond primarily in a fundamental mode when 

subjected to seismic motions. This method allows rapid estimation of the maximum roof 

displacement and maximum interstitial drift for a given acceleration time history or for a given 

displacement response spectrum. The procedure is based on a simplified model of multistory 

buildings consisting of a combination of a flexural cantilever beam and a shear cantilever beam. 

The simplified model is used to investigate the relationship between spectral displacement and 

roof displacement and the ratio of maximum interstitial drift to roof drift ratio. However, it 

neglected axial deformations, which are important to consider in the structural analysis of slender 

buildings. 

Shiu Cho, N. (1999), based on the continuum method developed a general approximate 

solution based on the Galerkin method to the eigenvalue problem of complex structures in triple 

coupled vibrations. In addition, he developed a parametric study that allows to visualize how the 
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coupled frequencies and mode shapes are related to the key parameters of the dynamic behavior 

of the building; constructing several design plots useful for engineering offices. 

Kuang, J. and Ng, S. (2000), proposed a method to determine the interconnected modes 

and periods of asymmetric structures. The Galerkin approach was used to obtain the model. In an 

asymmetric structure that was examined in order to show the accuracy of the method, it was 

observed that the mode and periods obtained by the proposed method were close enough to the 

periods and modes found with finite elements. 

Wang, Q., Wang, L. and Liu, Q. (2001), based on the continuous method and the transfer 

matrix method, investigated the effect of shear wall height on the dynamic behavior of portal shear 

wall structural systems. It was shown that the shear wall height does not influence the dynamic 

behavior except in very special cases and that it is not necessary to extend the shear wall over the 

entire height. 

Hans, S. (2002), developed an experimental program on buildings before and after 

demolition of a 16-story shear wall building with the objective of gathering information to 

integrate it into a seismic vulnerability diagnosis of existing buildings. Results of the information 

collected allowed characterizing the dynamic behavior of the buildings by means of simple shear 

beam, bending beam and Timoshenko beam models. In addition, it demonstrated on the basis of 

the information collected that the discrete-means homogenization method provides a theoretical 

justification for the use of continuous beam models to characterize the dynamic behavior of real 

structures.   

Potzta, G. (2002), developed a whole building replacement beam model using a sandwich 

beam with an energy approach and derived the three characteristic stiffnesses of the sandwich by 

applying a sinusoidal displacement and balancing the total deformation energy of the building with 

the sum of the deformation energies of each structural scheme. They used this replacement beam 

model for wind, earthquake, and building stability analyses. 

Rafezy, B. (2004), presented two global analysis approaches for the calculation of 

frequencies of tall buildings. Both methods assume rigid floor diaphragms and require knowledge 

of the static eccentricity of the building at each floor level. Because the methods for calculating 

static eccentricity are complicated, a practical calculation method and a small parametric study are 
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presented. An accuracy analysis confirms that the proposed methods can yield results of sufficient 

accuracy for engineering calculations. 

Takabatake, H. and Satoh, H. (2006) proposed an analytical method that replaces the 

building by a continuous equivalent rod for the dynamic analysis of tall buildings consisting of 

doubly symmetric frame tubes with or without bracing. The solution of the differential equations 

are based on the finite difference method; the suitability of the method was verified with four 

different types of buildings analyzed with the finite element method. In addition, the effect of soil-

structure interaction is discussed using the proposed method. 

Espezúa, C. (2009), used an analysis method based on the continuous medium technique 

to study the static and dynamic behavior of tall buildings against earthquakes. The approximation 

of the method was compared with the results of a finite element analysis with the SAP 2000 

program, obtaining values with an acceptable approximation for engineering terms. 

Jigorel, S. (2009), developed different continuous models using the discrete periodic means 

homogenization method to represent the dynamic behavior of buildings. He highlighted a new 

generic equation from which the other particular behaviors are derived, finding a new parameter 

that measures the contrast of shear stiffnesses between shear walls and floors. 

Bozdoğan, K. (2010), used the continuum method and the transfer matrix method for static, 

dynamic and stability analysis of the tall building whose geometric, material and loading properties 

vary along the height modeling the building as a sandwich replacement beam. For the case of 

asymmetric structures, it neglected the shear stiffness of the walls and the axial deformations of 

the portal frames and coupled shear walls. 

Chesnais, C. (2010), studied the dynamic behaviors of a family of lattice structures, formed 

by a network of beams using the method of homogenization of discrete periodic media (HMPD) 

allowing to construct an equivalent continuous medium at macroscopic scale that allows to 

represent buildings when the cell size is very small compared to the wavelength. He developed 

different generalized continuous models and generalized the sandwich beam model by including 

the local shear stiffness for the case of buildings with shear walls of significant camber. 

Pârv, B. (2012), developed calculation programs based on global analysis of tall buildings 

and spatial analysis based on matrix formulations using Matlab language. In addition, he 
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performed a sensitivity analysis to develop a structural optimization program using genetic 

algorithms.  

Lavan, O. (2012), adopted a continuum approach to model the structure and rigorously 

evaluate the efficiency of viscous dampers connecting two walls to result in viscously coupled 

shear walls. He found that under certain considered approximations, the damping ratio of the 

system is a simple compact convenient parameter that controls the reduction of the response of an 

undamped system. Furthermore, it reveals the efficiency of the added damping in reducing not 

only displacements, interstory drifts, and wall moments, but also absolute accelerations, wall shear, 

total shear, and total overturning moments. 

Cammarano, S. (2014), proposed a synthetic three-dimensional approach based on the 

continuous method and Vlasov's theory of sectorial areas. This approximate approach is adaptable 

to the static and dynamic analysis of uniform or staggered tall buildings in building height. In 

addition, it performs an experimental test to measure the effect of thin-walled beams subjected to 

torsion. 

Huang, K. (2009), found that pushover analysis underestimates drift in the upper stories 

and is deficient in predicting overturning moments, shear forces because they neglect high modes 

of vibration. To overcome that problem he developed a simplified continuum model for seismic 

analysis of tall shear wall - portal frame structures designed for wind loads. In addition, he verified 

the accuracy of the model by investigating three tall portal frame-shear wall buildings, with 

satisfactory results compared to the pushover analysis. 

Tuncay, A. (2014), developed a continuous method to determine the effects of non-uniform 

Vlasov torsion caused by horizontal loads in tall buildings. As a result of a sensitivity analysis, a 

good accuracy of the model was obtained and showed that non-uniform torsion is of great 

importance, which should not be neglected in the analysis of tall buildings that is very common in 

design offices.  

Moghadasi, H. (2015), proposed two replacement beams based on the continuous method 

for structural analysis of tall buildings. The first beam consists of parallel coupling of two 

Timoshenko beams and takes into account the four characteristic stiffnesses of a tall building, and 

is applicable to all structural systems. The second beam consists of the parallel coupling of an 

extensible Timoshenko beam and a continuous core as a supporting rotation constraint. Due to the 
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complexity of the coupled differential equations, he developed a one-dimensional finite element 

formulation evaluating the static and dynamic responses. In addition, using a discrete system of 

coupled shear walls he theoretically established the distributed internal viscous damping of the 

Kelvin-Voigt type with the bending and shear mechanisms. 

Lavan, O. and Abecassis, D. (2015), studied the seismic behavior of a continuous shear 

wall - portal frame system in the context of retrofitting existing portal frame structures. They first 

identified the controlling non-dimensional parameters of such systems. This is followed by a 

rigorous and extensive parametric study revealing the pros and cons of the new system versus wall-

frame systems. The effects of the control parameters on the behavior of the new system are 

analyzed and discussed.  

Aydin, S. (2016), developed a methodology to calculate the critical buckling loads of 

buildings on elastic and rigid foundations by solving the stability equations expressed by 

differential equations with the Differential Transform Method. 

Migliorati, L. and Mangione, M. (2015), using the continuum method modeled each 

structural system differently and studied their three-dimensional combination. They developed a 

coupled continuous Timoshenko - Vlasov model and a discrete model to account for local bending 

effects. Due to the complexity of the coupling between the differential equations, they formulated 

a one-dimensional finite element model for static and dynamic analysis of tall buildings.  

Puthanpurayil, A., Lavan, O., Carr, A. and Dhakal, R. (2016), adopted the local continuous 

damping model for simian analysis by applying the Galerkin procedure. Two local continuous 

damping models used in the linear dynamic analysis regime are adapted and extended to the 

nonlinear dynamic analysis scenario. In addition, schemes for implementing the models using the 

classical Newmark framework were presented. They showed that all the proposed models appear 

to produce more reliable results than the global models without increasing the computational 

demand.  

Anesi, R. (2018), developed a simple methodology to address the problem of defining the 

dominant action between wind and earthquake, with special reference to the case of structures 

located in a low seismicity zone, as well as to refine this procedure by adopting an analytical 

continuous replacement beam model consisting of the parallel coupling of a bending and shear 
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beam. As a result of three reference structures, a greater influence of the earthquake on the 

dominant action definition was highlighted when higher order modes are taken into account. 

Kara, D. (2019), in order to study soil-structure interaction, investigated the dynamic 

behavior of buildings standing on five different soil classes. He determined that the shear beam 

model representing soil provides consistent and engineering acceptable results. In addition, this 

model is suitable for understanding the soil-structure interaction behavior with fewer parameters 

than those used with the finite element method. 

Zalka, K. (2020), based on the continuous approach developed closed form equations for 

two categories of analysis: a) An individual analysis and b) A three-dimensional analysis (global 

approach), where he developed closed form equations for displacements presenting two 

methodologies: the simple method and the precise method (using the interaction between bending 

and shear deformations), stability, frequency and critical load of whole buildings. In addition, he 

introduced the "global critical load ratio" which acts as a generic characteristic with which the 

designer can monitor the overall performance of the whole building. 

Dinh, H. (2020), based on the homogenization method of discrete periodic means (HMPD) 

established a practical method that estimates the dynamic behavior of buildings using general beam 

models and integrated these models to include viscous dampers in the analysis. He concluded that 

the addition of viscous dampers only modifies the shear parameter in the generic beam models. 

Franco, C. (2021), based on the homogenization method (HM) and the multifiber finite 

element method, proposed a strategy to improve the integration of local and global scales in the 

definition of damage indicators in building response. He implemented the homogenization method 

in complex multi-frame structures, described single-story numerical modeling (MEM), and 

proposed a novel strategy that could be used in the future as damage criteria. 

Gungor, Y. and Bozdogan, K. (2021), using the continuous method and differential 

transformation method adapted a Timoshenko type replacement beam for dynamic analysis of steel 

plate shear wall systems (SPSW). In addition, based on the dynamic characteristics they performed 

a response spectrum analysis by finding the displacement, shear force and bending moments. 
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2.1.2 National Research 

An exhaustive search for similar research in Peru has been carried out. No research related 

to this research project has been found. 

2.2 THEORETICAL BASIS 

Since time immemorial, man has wanted to build structures beyond his means to 

demonstrate power and wealth; to honor religious leaders and beliefs; and even simply as an 

objective of competition between owners, families, architects and builders. 

Structures such as the Tower of Babel (Figure 3) to which the Bible refers: "And they said, 

Let us build us a city and a tower, whose top may reach unto heaven; and let us make us a name, 

lest we be scattered abroad upon the face of the earth" (Genesis (11:4), 2019). The sons of men 

seemed to be affronting or rivaling God, for they wanted to build a tower whose top would reach 

to heaven. Moreover, they hoped to make a name for themselves that would be remembered by 

men through time, leaving as a legacy this monument symbol of their pride, their ambition and 

their folly. However, to this day there is no book of history in which a single name of these builders 

of the tower of Babel is remembered. Paradoxically, Babel means confusion; this should remind 

us that those who are ambitious for a great name, ordinarily come out with a bad name. 

 

Figure 3. The Tower of Babel (Brueghel, 1563) 
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The factors that contributed decisively to the development of tall buildings occurred in the 

19th century. The first was the creation of the safe elevator in 1853 by American inventor Elisha 

Graves Otis (figure 4), who developed a safety device that prevented traditional elevators from 

falling when the cable broke, shortly after which the first passenger elevator opened to the public 

in the E. V. Haughwout building in New York. Haughwout building in New York; the second 

factor was the devastating fire in Chicago in 1871 (figure 5), where contrary to common sense the 

city experienced exponential growth, only nine years later, the land available for the construction 

of new buildings could not meet the demand which led as the only option to build in height. 

According to Dario Trabucco: "The poorest people used to live on the highest floors, but 

the elevator changed this scenario and high floors soon became fashionable as they offered more 

natural light, cleaner air and less traffic noise". New construction methods made it possible to 

reach ever greater heights, the skyscraper was born, thus beginning the race for the tallest building. 

 

Figure 4. Patent drawing of the elevator (Otis, 1861). 
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Figure 5. Chicago in flames - The race for lives over the Randolph Street Bridge (Chapin, 1871). 

Today, the world is witnessing rapid population growth. In the last 200 years, the world's 

population has grown from 1 billion in 1800 to 7.9 billion by the beginning of 2022. This pattern 

of development is based on an inexhaustible supply of arable land, water and energy that cannot 

be sustained in the coming years. While it is true that buildings are not the only source of 

environmental pollution, where we build, how we build and how we move are the main causes of 

climate change. One way to solve this challenge is to design intelligent forms of human settlement 

that are dense, compact and highly livable. A clear example of sustainability and zero pollution is 

the Q'eswachaka bridge (Figure 6), located over the Apurimac River in Cusco Peru. De Wolf 

(2015) states, "the materials grow naturally, are locally sourced, and their construction by hand 

does not pollute, so it is a historical process that should inspire today's engineers." 

However, the rapid growth in height of tall buildings appears to be directly related to 

economic downturns. In 1999, economist Andrew Lawrence (Thornton, 2005) created the 

"skyscraper index", which aimed to show that the construction of the world's tallest skyscrapers 

coincides with economic cycles. He concluded that the construction of the world's tallest building 

is a good indicator for determining the onset of major economic crises. 
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Figure 6. Q'eswachaka bridge at present (Palomo, 2020). 

Looking at Table 1, it is clear to state that the index's ability to predict economic collapse 

is astounding. For example, the Panic of 1907 was foreshadowed by the Singer Building and the 

Metropolitan Life Building; the Great Depression was accurately foreshadowed by the Crysler 

Building, Empire State Building and the 40 Wall Tower; the stagflation suffered by the United 

States between 1970 and 1982 were surprisingly foreshadowed by the World Trade Center (one 

and two) and the Sears Tower; the completion of the Petronas Tower in 1997 marked the beginning 

of the extreme slump in Malaysia's stock market, the rapid depreciation of its currency and 

widespread social unrest, spreading these economic problems to all economies in the region (Asian 

contagion) and Dubai's Burj Khalifa which was completed in 2010 shortly after the country went 

into financial crisis. However, there are important exceptions to the index's ability to predict an 

economic downturn, clear examples being the construction of the Woolworth Building (apparently 

not a complete exception due to World War I not providing enough time for the economic 

depression to deepen) and Japan's continued economic recession since 1990. This does not suggest 

that the heights of tall buildings should be limited to avoid economic crises, as proposed by 

Thornton (2005) the institutions that regulate debt financing should be re-evaluated or changed to 

more efficient and stabilizing institutions. 

Studies show that vanity is the main justification that leads investors to risk resources to 

the construction of very tall buildings. In 1998, yet to become the former President of the United 

States of America, Donald Trump, stated as justification for the construction of his Trump Tower 

a financially meaningless phrase: "I think New York should have the biggest building in the world" 

(Lawrence, 1998). 
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Tabla.1 Skyscrapers and economic crises (Thornton, 2005) 

 

Knutsen, C. (2011) in his doctoral thesis conjectured that skyscrapers could give us clues 

about who built them. He states, "autocratic regimes tend to build such more excessive buildings 

and, in contrast to democracies, tend to build skyscrapers regardless of whether the country is 

urbanized or not." Gjerlow, H. and Knutsen, C. (2017) state, "autocracies build more skyscrapers 

than democracies and autocracies build more wasteful skyscrapers than democracies." They 

further noted that subsidizing such projects will often detract resources from more mundane 

investments in local roads, schools, or health clinics throughout the country; this is important in 

poor and developing countries (such as Peru) where resources are scarce and where the population 

tends to limit the construction of very tall buildings. 

It is worth noting that the Council on Tall Buildings and Urban Habitat (CTBUH), 

classifies the tallest buildings in the world by height and pinnacle, noting that several buildings 

appear higher in the classification than they would be due to their spires, masts and extra structures 

that they add to the buildings with the sole purpose of gaining height. In this regard Gjerlow, H. 

and Knutsen, C. (2017), state, "Vanity height, are more present in autocracies than in 

democracies." As an example, the tallest building in the world today, the 828-meter tall Burj 

Khalifa, located in the United Arab Emirates, has an excessive unoccupied area of 30% and what 

would likely be the next tallest building in the world, the 1000-meter-tall Jeddah Tower 

(potentially realizing Ludwig Mies van der Rohe's 1920s "Impossible Dream" and Frank Lloyd 

Wright's 1956 "Mile High Illinois" (Skelton, 2016)), located in Saudi Arabia, will have 37% of the 

total height unoccupiable. Analyzing these data, it is hard not to wonder about the exaggerated role 

vanity plays in the most spectacular building decisions of recent years.  
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Figure 7. The 10 tallest buildings in the world with the highest number of meters of vanity (CTBUH, 2013). 

 Definition of Tall Building 

There is no universally recognized definition of a tall building, because height is a relative 

parameter.  Historically, low-rise buildings have been defined as those with less than 8 stories, 

mid-rise buildings as those with between 8 and 20 stories, and tall buildings as those with more 

than 20 stories. 

When we analyze in more detail what seems obvious to us, certain doubts begin to arise. 

If one were to ask a person what a tall building is, perhaps his immediate answer would be precisely 

that: "A tall building is a tall building, that is, a building with many floors". The question that 

should really be asked is: What is a tall building in a historical, regional and global context? 

Nowadays, people can hardly call a 20-story building a tall building anymore, if it is to be 

compared to the tallest buildings in the world. The definition that comes closest to this clarification 

is Stafford and Coull (1991), which states that it is not safe to indicate how many stories are needed 

to define a tall building because this is conditioned by the historical period in which the structure 

is located, as well as the type of buildings that are present in the city where the building is located. 
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According to the Council on Tall Buildings and Urban Habitat (CTBUH), the authority 

that announces the title of "World's Tallest Building," the classification of tall structures is 

subjective and depends on the height of a building in relation to the context in which it is located, 

its proportion (or slenderness) and adopted height-related technologies. In that sense, for a building 

to be considered a tall building, it must have one of the following characteristics: 

 Height relative to context: when a building is clearly taller than the average value of the 

heights of the surrounding buildings. 

 Proportion: when the building is slender enough to give the impression of verticality of a 

tall building. 

 Tall building technologies: the building contains technologies that are a product of 

building height, such as specific vertical transportation technologies and structural bracing 

against wind. 

As defined by the Council on Tall Buildings and Urban Habitat (CTBUH), a building that 

is 14 stories tall or has a height of 50 m or more is typically considered a tall building. Structures 

whose height exceeds 300 m are classified as supertall and those exceeding 600 m are classified 

as megatall. The same principle of measuring the height of a straight building applies to leaning 

buildings, meaning that the height is measured vertically from the base to the top. 

Günel, M. and Ilgin, H. (2014) defined tall buildings according to specialty: by structural 

designers as buildings that require an unusual structural system and where wind loads are 

prominent in the analysis and design; by architectural designers as buildings that require 

interdisciplinary work, particularly with structural designers, and with experts in the fields of 

aerodynamics, mechanics, and urban planning that affect design and use; and by civil engineers as 

buildings that need unusual and sophisticated construction techniques. 

From the above, from a structural engineer's point of view, we can define a structure as a 

tall building when the first priority in structural analysis and design consideration is the lateral 

stability system, because its structural analysis and design are mainly affected by lateral loads such 

as wind and earthquake. 

We cannot forget that, although the height of tall buildings is an important parameter 

because it determines the lateral forces distributed in height, slenderness is perhaps the 
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fundamental parameter in terms of structural engineering because it conditions the distribution of 

loads on the structural elements. Defined as the ratio between height and structural width, it 

conditions many aspects related to the effects of horizontal actions.  

 Structural Systems of Tall Buildings 

The key characteristic of a tall building from a structural analysis and design point of view 

is its lateral stability structural system. There have been several attempts over the years to classify 

the structural systems that are appropriate for tall buildings.  

Fazlur Khan (1969), considered as "the Einstein of structural engineering", "the best 

structural engineer of the 20th century" and "the father of tubular systems", classified structural 

systems for tall buildings in relation to their heights with structural efficiency considerations in the 

form of diagrams: "Heights for Structural Systems". He later developed new diagrams based on 

the structural material used: structural steel, reinforced concrete and composite systems.  

Although Fazlur Khan initially worked on prestressed structures, when faced with the 

challenge of analyzing and designing tall buildings, he focused on them with a passion. With an 

intuitive understanding of the technical aspects of structures, Khan set out to find the right 

structural system for tall buildings. 

He argued that the rigid portal frame that had dominated tall building design and 

construction for so long was not the only structural system suitable for tall buildings and that 

structural systems could be analyzed three-dimensionally, rather than as a series of flat systems. 

The viable structural systems he mentioned are: Rigid portal frame, shear walls, shear wall - portal 

frame and tubular systems. 
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Figure 8. Fazlur Khan and Bruce Graham (from left to right) next to the Hancock Center model (Khouyali, 

2021). 

There are several ways to combine structural systems to achieve adequate performance. 

For example, at the beginning of the 20th century, the structural system that governed the analysis 

and design of tall buildings was the rigid reinforced concrete portal frame system; this system 

consists of columns and beams that are rigidly connected at their nodes, which provides the 

advantage of reducing the bending moment and buckling length of the columns. However, this 

system does not provide adequate stiffness which limited the height of tall buildings. To overcome 

this problem, the shear wall and portal frame structural system was developed, which combined 

the advantages of the rigid portal frame with the shear wall; with this new structural system, it was 

possible to achieve sufficient horizontal stiffness while retaining the flexibility of the spaces to 

achieve greater heights. As cities grew, this new height limit was no longer sufficient. To build 

even taller structures, the central structural system was invented, which is often combined with 

other more basic structural systems such as portal frames or bracing around the perimeter of the 

building to provide lateral stability to the building.  
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(a) 

 

(b) 

 

(c) 

Figure 9. Classification of structural systems of tall buildings according to Fazlur Khan. (a) Steel structural 
systems, (b) Reinforced concrete structural systems, (c) Composite structural systems (structural steel + 

reinforced concrete) (Sarkisian, 2016) (Sarkisian, 2016). 
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In 2007, Mir M. and Kyoung, S. (2007) developed a new classification based on lateral 

load bearing capacities.  He divided the structural systems of tall buildings into two broad 

categories: interior structures and exterior structures. A system is classified as an interior structure 

when the majority of the lateral load resisting system is located inside the interior of the building, 

similarly, if the majority of the lateral load resisting system is located on the perimeter of the 

building, a system is classified as an exterior structure. It is important to mention that it is desirable 

to place as many resisting elements as possible as far as possible close to the perimeter of the 

building to efficiently resist lateral and torsional forces together. 

 

(a) 
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(b) 

Figure 10. Classification of tall building structures according to Mir M. Ali. (a) Interior systems, (b) Exterior 

systems (Mir & Kyoung, 2007). 

There are several factors to consider when selecting a structural system for tall buildings: 

safety, occupant comfort, economy, intended function, architectural considerations, internal traffic 

flow, height and load intensity. 

It is important to mention that only systems that are suitable and economical for tall 

buildings will be investigated in this research project. Therefore, systems specified for very tall 

buildings are not the subjects of this research project. The structural systems considered in this 

section are the following: moment resisting portal frames, shear walls, coupled shear walls, dual 

systems (portal frame + shear wall) and cores. 

 Frame System 

The most common construction materials are steel and concrete. In this system, resistance 

to lateral loads is provided by the interaction of the beams and columns, i.e., by the bending and 

shear stiffness of the network of beams and columns (Figure 11). In general it works better in 

concrete than in steel because in steel the nodes are usually considered as semi-rigid, while in 

concrete they are usually considered as rigid, this characteristic in turn seems to be a disadvantage, 
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because the portal frame requires rigid connections which are usually expensive. It is required that, 

in the rigid node, the bending resistance of the columns be at least 20% greater than the bending 

resistance of the beams, to ensure that in the presence of cyclic loads (such as earthquake) the 

plastic hinges are generated in the beams and not in the columns. 

This structural system is generally chosen when the horizontal forces are not predominant 

compared to the vertical forces, because otherwise, this would imply an excessive increase in the 

dimensions of the structural elements. When designed for strength considerations alone, lateral 

drift causes discomfort to occupants and damage to non-structural elements, and the P-Delta effect 

causes additional bending in the building. 

The efficient design height without additional lateral load resisting systems is 30 stories in 

steel structures and 20 stories in reinforced concrete structures. Column spacing generally varies 

from approximately floor-to-floor height to twice the floor-to-floor height; in general the spacing 

ranges from 4.5 meters to 9 meters. 

       

(a)                                                             (b) 

Figure 11. Rigid frame system. (a) Three-dimensional structure, (b) Deformation and interaction of beams 

and columns (Taranath, 2016). 

Although the portal frame is usually the first option for tall buildings, since most tall 

buildings have it as a base; once a certain height is reached, lateral forces make the frame 

insufficient to work alone, an efficient way to overcome the height is to have braced elements 

completely changing its behavior since the building would behave as a truss, where the columns 

would be the chords, the beams the uprights and the bracings the diagonals that would transmit 

shear forces. This solution is interesting because the beams would not have a significant 
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participation, which would allow to uniform its section in height and to design it only for gravity 

loads. 

 Shear Wall System 

They are used in reinforced concrete structures. They can consist of simple (solid) shear 

walls and those with openings (coupled shear walls). Coupled shear walls (Figure 12) have been 

one of the most popular systems used for the construction of tall buildings to resist lateral forces 

such as wind and earthquake. In structures with residential programs, shear walls can be distributed 

throughout the floor plane resisting all loads in the building without columns. In some cases, these 

shear walls are eccentrically located in the floor plane producing significant torsion when the 

building is subjected to lateral loads due to the eccentricity generated between the center of mass 

and the center of stiffness. 

           

(a)                                                           (b) 

Figure 12. Shear wall system.(a) Simple (solid) shear wall, (b) Shear wall with openings (coupled shear 

walls) (Taranath, 2016). 

Buildings designed with shear walls are generally stiffer than rigid portal frame systems, 

thus reducing the possibility of excessive lateral deformations, and consequently, damage. They 

are referred to as shear walls because they absorb much of the total lateral shear force. Although 

the name is appropriate, shear behavior must be controlled, especially in the face of cyclic loading 

(inelastic behavior). In practice this is easily achieved because shear walls provide excellent 

stiffness, strength and ductility.  
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It is important to choose optimal shear wall locations. As many shear walls as possible 

should be located on the periphery of the building to obtain better torsional resistance and it is 

important that the shear walls carry a significant fraction of the gravity load to reduce the bending 

demand on the wall and reduce stresses in the foundation. 

The efficient design height is 35 stories for reinforced concrete structures and spacing 

locations are generally 9 m apart. Link beams, which interconnect shear wall segments where 

openings are required, are generally maximized to obtain the greatest shear and flexural strength.  

 Shear Wall - Frame System 

The above structural systems can be adopted together to increase the overall horizontal 

stiffness of the building and reduce lateral displacements. This effectiveness is due to the different 

characteristic deformation with which each of the subsystems responds in the presence of lateral 

loads. A portal frame deforms predominantly in shear, due to the bending of the web of beams and 

columns, while the shear wall responds with deformation in bending. As a consequence, when 

both subsystems work together, the shear wall supports the portal frame at the bottom, while the 

portal frame supports it at the top; thus the system exhibits a very impressive performance against 

lateral loads by reducing the overall deformation of the resisting system. 

The efficient design height is 50 stories for reinforced concrete structures and spacing 

locations are generally between 4.5 m and 9 m apart. Link beams, which interconnect shear wall 

segments where openings are required, are generally maximized to obtain the greatest shear and 

flexural strength. 

 

Figure 13. Behavior of the portal system - shear wall (Cammarano, 2014). 
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 Limitation of Structural Systems at Present 

Although today's structural systems already allow engineers to analyze, design and 

construct very tall buildings, there is still a limitation in terms of structural systems. Central core 

systems have sufficient horizontal stiffness to reach very tall heights, however, these central cores 

also take up a large amount of space on each floor. For aerodynamic reasons and to keep the 

structures stable, very tall buildings often reduce the building perimeter with increasing height. 

Then a problem appears, the core area increases with height and the building perimeter decreases 

with height; that is, after a certain height, buildings can no longer lift people to the top, as the core 

area required for the elevators will be even larger than the floor area. A clear example of this 

problem is the Burj Khalifa building, the tallest building in the world with a height of 828 m, where 

the actual occupied height is only 584 m. Therefore, one of the limitations of very tall buildings is 

that people cannot reach the top of the buildings. 

 The Building is as Tall as a Cantilevered Cantilever Beam. 

The fundamental conceptual simplification of the tall building is a vertical cantilever beam, 

and as a consequence, globally it is a statically determined beam where the approximate total forces 

are known a priori. This means that, at any height of the building, the total forces are generally 

known. As such, when faced with lateral forces, the total forces acting on the cantilever beam are 

in the form of shear forces and overturning moments resulting in shear and bending deformations. 

Gravity loads are the sum of everything above a given elevation, wind shears and overturning 

moments are integrated from top to bottom, and even seismic forces can be approximated in this 

manner. 

It is a structural irony that the taller the building, the purer the beam must be and, somehow, 

the simpler its solution. Illogical as it may seem smaller buildings can be conceptually more 

complex than tall buildings. Although they are cantilevered from the ground, the structural system 

is often a series of parallel systems or individual elements that behave with complicated three-

dimensional interaction. On the other hand, by taking something as large and complex as a tall 

building and imagining it as a simple cantilevered beam, the designer can design it in a rational 

and approximate manner. 
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Many successful tall building designs are based on the analogy that emerges between a tall 

building and a tree. Like a tall building, a tree is a very slender structure, with a trunk that emerges 

from the ground until it becomes a series of branches that cantilever from the trunk.  

Any structure that carries lateral forces to the ground must resist two structural phenomena: 

shear and bending. The taller and slimmer the building, the more efficient the shear resistance 

system must be, because it is essential to carry lateral loads to the vertical elements which, in turn, 

resist the overturning forces in the cantilever. A rigid shear system is necessary for the entire 

building to act as one giant beam rather than a collection of individual elements or subsystems. 

Because it is not possible to create a completely rigid shear system, there is a phenomenon called 

"shear lag." This occurs when the overturning stresses are not distributed linearly, resulting in less 

effective use of the vertical elements to resist the overturning moments in the structure.  

Although efficient and rigid shear resistance systems can reduce shear deflections to a 

small portion of the target deflections, it is not practical to do the same for bending deflections. 

Deflection can generally only be reduced at the cost of increasing the size of columns and/or walls. 

Beam deflection can be reduced, for example, by half by doubling the cross-sectional area. The 

great expense of reducing deflections by increasing the cross-sectional area of the vertical element 

imposes very practical limits on reducing deflection due to bending.  

 

Figure 14. Tall building considered as a cantilevered cantilever beam (Schmidts, 1998). 
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 Global Structural Analysis of Tall Buildings 

A global structural analysis of tall buildings involves numerical modeling and static, 

dynamic and stability characterization.  

First of all, numerical modeling becomes indispensable for an evaluation of the structural 

response. With the technological progress of recent years, finer methods such as the finite element 

method (FEM) have been developed and used to simulate the structural behavior of the building; 

however, due to the high computational and resource costs, interest has always been devoted to 

the development of simplified models that allow fast, low-cost analyses with an engineering 

acceptable accuracy. Two approaches have been proposed: idealizing the building as a system of 

one-dimensional concentrated masses and idealizing the building as a continuous system.  

A system of one-dimensional concentrated masses is connected by massless rods 

characterized by the stiffness of the floor. This model is widely known in earthquake engineering 

as the "shear beam model", where infinite bending stiffness is assumed and the vertical structural 

elements are considered to be inextensible; however, considering the vertical elements to be 

inextensible is not valid for slender buildings whose axial deformation is not negligible. In order 

to model the building as a system of concentrated masses and to take into account its most 

important characteristic stiffnesses, this research project will make use of the transfer matrix 

method to solve firstly buildings with vertical discontinuities that do not allow the development of 

a closed form equation and secondly uniform buildings in height as a verification to the continuous 

model with closed formulas.  

A continuous system connects two replacement beams by means of inextensible elements 

(rigid links) that transmit only horizontal loads. These models are widely used when sensitive 

parametric analysis or rapid estimation of building response is required. It is ideal for modeling 

buildings that do not have vertical discontinuities because they allow the development of closed 

formulas that are easy and quick to apply. Its formulation is fully analytical allowing to easily 

identify the key structural parameters that govern the building behavior drastically reducing the 

computational cost. 

Secondly, the static, dynamic and stability characterization allows to understand the 

behavior of the building. The static characterization allows the calculation of the static horizontal 

displacements of the building and consequently the drifts, thus allowing to verify the compliance 
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with the current regulations and above all to evaluate the performance of the building. The dynamic 

characterization allows the modal identification, thus providing the frequencies, periods and 

participatory mass factors for a spectral modal analysis; having as results global indicators such as 

dynamic displacements and drifts useful to determine the damage level of a structure. Stability 

characterization allows determining the global critical load of the building as a performance 

indicator; as mentioned by Zalka (2020) any weakness detected during stability analysis also leads 

to unfavorable behavior in the dynamic and static analysis of the building. 

 Continuous Method 

The continuous method assumes that all horizontal elements connecting the vertical 

components are effectively connected over the height of the building to produce a continuous 

connecting means, i.e., the connecting beams are replaced by a system of uniformly distributed 

sheets. As a consequence of the continuous method, the three-dimensional (3D) structure leads to 

a replacement beam (RB) which is characterized by equivalent properties 𝐾𝑖 that try to represent 

as best as possible the actual stiffness of the structural system. 

The basic assumptions of the method consider that the structural elements are elastic and 

linear, the diaphragms are considered rigid in their plane and only transfer horizontal forces, the 

midpoints of the connecting beams are considered points of contraflexure, the discrete shear forces 

in the connecting beams are replaced by an equivalent continuous shear flow along the midpoint 

of the connecting plates, the Bernoulli-Navier hypothesis is valid for the connection beams, the 

minimum number of floors of the building is four, the P-delta effects are negligible, the connection 

beams do not deform axially and we will replace the whole building (consisting of discrete 

elements) by a continuous beam and then analyze this continuous beam as a replacement of the 

building. 

 Continuous Replacement Beam (RB) Models 

The structural nature of a tall building is three-dimensional; however, representing the tall 

building by a suitable replacement beam is only possible if the complex combination between the 

structural systems can be drastically simplified while maintaining the behavior of the structure and 

with reasonable accuracy results. Therefore, it is important to choose suitable replacement beams 

for each structural system, which can adequately represent the predominant modes of behavior; 

and then combine them to account for the complex interaction between the structural systems. 



 

 

35 

The complete number of kinematic fields of plane systems connected to each other in 

parallel depend on the number of kinematic fields associated with each element (Figure 15). If 

each element contains three kinematic fields (transverse 𝑢𝑖, rotational  𝜗𝑖 and axial 𝑤𝑖), then the 

number of kinematic fields of the whole system is three times the number of elements. Since the 

elements are connected by inextensible rigid links, it is possible to assume an identical horizontal 

displacement field for the whole system (𝑢1 = 𝑢2… 𝑢𝑖−1 = 𝑢𝑖 = 𝑢), while the other kinematic 

fields may be different for each element. 

 

Figure 15. Continuous system consisting of several beam elements aligned in parallel (Moghadasi, 2015). 

Depending on the structural characteristics of the structural systems composing the 

building it is possible to use various RB models. The two main characteristics that define the 

appropriate idealization are: 

 The equivalent stiffness: bending stiffness 𝐾𝑓 and shear stiffness 𝐾𝑓.  

 The kinematic fields: transverse u and rotational 𝜃 and 𝜑. 

With respect to RB models applied in building analysis and the kinematic field point of 

view, current continuous models can be generally classified into three categories: one-field 

models, two-field models and two-field models. 
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a) Models of a Field 

The transverse deformation field is u and they are the simplest to formulate as RB systems. 

 Bending beam (EBB) 

Suitable for a first approach to the structural modeling of tall buildings, it is characterized 

by 𝐾𝑏 flexural behavior and stiffness, as a consequence it is suitable for modeling slender shear 

walls. The potential energy associated with this model is: 

𝜈𝐸𝐵𝐵 =
1

2
∫ 𝐾𝑏𝑢(𝑥)

′′ 2
𝐻

0

𝑑𝑥 
( 1 ) 

 Shear beam (SB) 

Characterized by a shear behavior and stiffness 𝐾𝑠. Suitable for modeling shear frames. 

The potential energy associated with this model is: 

𝜈𝑆𝐵 =
1

2
∫ 𝐾𝑠𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 2 ) 

 Two-beam coupling (CTB) 

It consists of the parallel coupling of a bending beam (EBB) and a shear beam (SB), they 

are connected by a continuous medium transmitting only horizontal forces and both beams 

experience a single kinematic field u. They are primarily suitable for modeling portal frames; and 

in lesser application for modeling coupled shear walls and shear wall - portal frame systems. As a 

particular case the CTB model approximates a bending beam and a shear beam when 𝐾𝑏 and 𝐾𝑠 

tend to infinity respectively. The potential energy associated with this model is: 

𝜈𝐶𝑇𝐵 =
1

2
∫ 𝐾𝑏𝑢(𝑥)

′′2
𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠𝑢(𝑥)

′2
𝐻

0

𝑑𝑥 
( 3 ) 

b) Two-Field Model 

The transverse deformation field is u and the rotation field is θ. 

 Timoshenko Beam (TB) 
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It is characterized by a series coupling between a bending beam (EBB) and a shear beam 

(SB). The potential energy associated with this model is: 

𝜈𝑇𝐵 =
1

2
∫ {𝐾𝑏𝜃(𝑥)

′ 2
+ 𝐾𝑠[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
} 𝑑𝑥

𝐻

0

 
( 4 ) 

It is important to mention that compared to the bending beam model (EBB), the 

Timoshenko beam (TB) model can be used to more accurately model a shear wall. This helps to 

account for shear deformation, where such deformation can be significant in relatively non-slender 

and ordinary walls. 

 

Figure 16. Schematic deformations of thin wall, non-thin wall and ordinary wall (Moghadasi, 2015). 

 Sandwich Beam (SWB) 

It is characterized by a parallel coupling between a Timoshenko beam (TB) and a bending 

beam (EBB). In the literature it is considered the most complete model using a single kinematic 

field u, because it is characterized by three different stiffnesses: local bending stiffness (𝐾𝑏1), 

global bending stiffness (𝐾𝑏2) and shear stiffness (𝐾𝑠1). This model is appropriate to correctly 

model portal frames and coupled shear walls. The potential energy associated with this model is: 

𝜈𝑆𝑊𝐵 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′2 + 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)
′ ]

2
} 𝑑𝑥

𝐻

0

+
1

2
∫ 𝐾𝑏2𝑢(𝑥)

′′2𝑑𝑥
𝐻

0

 
( 5 ) 

The RB sandwich beam model has been extensively studied in the literature because it is 

possible to represent all structural schemes by means of its three characteristic stiffnesses. 

Potzta, G. (2002) developed a whole building RB model using a SWB beam with an energy 

approach and derived the three characteristic stiffnesses of the SWB by applying a sinusoidal 

displacement and balancing the total deformation energy of the building with the sum of the 

deformation energies of each structural scheme. They used this SWB for wind, earthquake and 
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building stability analyses. Bozdogan, K. (2010) developed the lateral static, dynamic and stability 

analysis using a SWB beam and the transfer matrix method. Zalka, K. (2020) derived his solutions 

using the behavior of a portal frame as a basis because it has each of the three characteristic 

stiffnesses of a SWB. He provided a complete treatment for all structural schemes (lateral 

deflection, rotational, frequency and stability) and showed that these areas are closely related to 

each other. 

 Generalized Sandwich Beam (GSWB) 

A generalized SWB model, it is characterized by a parallel coupling between a Timoshenko 

beam (TB) and the coupling of two beams (CTB); that is, the parallel coupling of two beams 

characterized by the series coupling of their bending stiffness (𝐾𝑏1, 𝐾𝑏2) and shear stiffness (𝐾𝑠1, 

𝐾𝑠2). If the shear stiffness of the CTB (𝐾𝑠2) is neglected, the GSWB results in a SWB. The potential 

energy associated with this model is: 

𝜈𝐺𝑆𝑊𝐵 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
} 𝑑𝑥

𝐻

0

+
1

2
∫ [𝐾𝑏2𝑢(𝑥)

′′ 2
+ 𝐾𝑠2𝑢(𝑥)

′ 2
]𝑑𝑥

𝐻

0

 
( 6 ) 

c) Three-Field Model 

These models were proposed by Moghadasi, H. (2015). The transverse deformation field 

is u and the rotation field is 𝜃 and 𝜑. 

 Generalized Sandwich Beam (GSB) 

It is characterized by a parallel coupling between two Timoshenko beams (TB); that is, the 

coupling of two beams characterized by a series coupling of their bending stiffness (𝐾𝑏1, 𝐾𝑏2) and 

shear stiffness (𝐾𝑠1, 𝐾𝑠2). Moghadasi, H. (2015) presented this GSB model and solved the static 

and dynamic analysis. Due to the complexity of the partial differential equations of motion, he 

discretized the differential equations to solve it numerically by one-dimensional finite element 

model by transforming the GSB (distributed parameter cantilever) to a multi-degree of freedom 

system. The potential energy associated with this model is: 

𝜈𝐺𝑆𝐵 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+𝐾𝑠1[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
} 𝑑𝑥

𝐻

0

+
1

2
∫ {𝐾𝑏2𝜓

′2 +𝐾𝑠2[𝑢(𝑥)
′ −𝜓(𝑥)]

2
} 𝑑𝑥

𝐻

0

 
( 7 ) 
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 Three-field extensible CTB 

Moghadasi, H. (2015) presented this three-field CTB model to adequately represent a 

coupled shear wall. This three-field CTB model is characterized by the parallel coupling between 

a tensile Timoshenko beam (TB) and a continuous core with a support rotation constraint (RC). 

The TB represents the condensed equivalence of the two walls and is characterized by its bending 

stiffness 𝐾𝑏1, its shear stiffness 𝐾𝑠1 and its axial stiffness 𝐾𝑎1; and the RC represents the continuous 

effect of the connecting beam and is characterized by its shear stiffness 𝐾𝑠2. The potential energy 

associated with this model is: 

𝜈𝐶𝑇𝐵−3 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+𝐾𝑎1𝑤(𝑥)

′ 2
+ 𝐾𝑠1[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
} 𝑑𝑥

𝐻

0

+
1

2
∫ 𝐾𝑠2𝛾𝑐

2𝑑𝑥
𝐻

0

 
( 8 ) 

 

 

Figure 17. Models of a field: a) EBB beam, b) SB beam and c) CTB beam. 
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Figure 18. Two-field models. a) TB beam, b) SWB beam and c) GSWB beam. 

 

 

Figure 19. Three-field models. a) GSB beam and b) three-field extensible CTB beam. 
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 Transfer Matrix Method 

There are several problems in engineering that are specified with boundary conditions, 

working with a high number of constants is not practical and is subject to possible calculation 

errors. In order to reduce calculation errors and work with the minimum number of constants, the 

transfer matrix method was implemented to mathematically reduce the boundary conditions 

problem to an initial conditions problem. 

The transfer matrix method involves constructing a relationship between the end nodes of 

a structural element. Its application in a building with structural properties that are uniform in each 

substructure is appropriate because it is possible to calculate the transfer matrix of each 

substructure and then assemble it into a single global transfer matrix of the entire structure. By 

eliminating internal nodes by condensation, the size of the transfer matrix is minimized and kept 

constant in the calculation process and equal to the order of the differential equation of the 

structure. 

 Structural Loads 

Tall and high-rise buildings are subjected primarily to vertical loads (dead and live) and 

horizontal loads (wind and seismic).  As the height of the building increases, the effect of 

horizontal loads also increases. Therefore, for tall buildings, it is important to choose structural 

systems that have sufficient horizontal stiffness. 

From a structural design point of view, tall buildings show greater sensitivity to wind-

induced lateral loads than medium- and low-rise buildings. While seismic loads increase with 

building weight, wind loads increase with building height. This results in the consequence that in 

certain cases, lateral drift due to wind is more critical than drift due to earthquake. 

2.3 DEFINITION OF BASIC TERMS 

In relation to the terminology applied to this research project, it is necessary to clarify that 

the term "system" is applied to refer to the complete three-dimensional structure, while "element" 

to the different flat structures studied, such as: frames, shear walls, coupled shear walls, cores etc. 

 Replacement beam: one-dimensional continuous equivalent resulting from the application 

of the continuous method to the structural analysis of a tall building (Moghadasi, 2015). 
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 Continuous method: Approximate method in which the discrete structure is represented by 

a continuous one, replacing the horizontal connecting beams and the frame by an 

equivalent continuous medium (Glück, Gellert, & Danay, 1972). The method requires 

characteristic stiffnesses, kinematic fields and external loads for use in the structural 

analysis of a tall building uniform in height. 

 Transfer matrix method: Method used in mathematics to solve differential equations 

containing discontinuities (Bozdogan, 2010). The method requires characteristic 

stiffnesses, kinematic fields and external loads for use in the structural analysis of a tall 

building with structural discontinuities in height. 

 Equivalent stiffness: Stiffness corresponding to a type of deformation of the structure (local 

bending, global bending, local shear and global shear). 

 Kinematic field: Independent degrees of freedom of a replacement beam (displacement and 

rotation). 

 External loads: External loads on the structure (lateral loads, distributed mass density and 

point loads). 

 Global structural analysis of tall buildings: Structural analysis of the building where the 

building is considered as a complete unit. It includes static, dynamic and stability structural 

analysis of the building. 

 Static analysis: The building is subjected to external lateral loads and as a consequence 

displacements, interstory drifts and rotations are obtained. 

 Dynamic analysis: The building is subjected to free vibration and as a result the frequencies 

and vibration periods are obtained. 

 Stability analysis: The building is subjected to uniformly distributed external vertical 

and/or point loads and as a result the critical buckling load of the building is obtained. 
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2.4 OPERATIONALIZATION OF THE VARIABLES 

Tabla.2 Description of variables and indicators. 

Variable Dimensions Indicators units 

V1 

Characteristic stiffness 

Local bending stiffness tn 

Continuous method / 
Transfer matrix method 

Global bending stiffness tn 

Local shear stiffness tn 

Global shear stiffness tn 

Kinematic field 
RB displacement m 

RB rotation rad 

Load 

Lateral loads tn/m 

Distributed mass density kg-masa/m 

Point load tn 

V2 

Static analysis 

Lateral displacement m 

Global structural analysis of 

tall buildings 

Floor drift m/m 

Rotation rad 

Dynamic analysis 
Frequency hz 

Period s 

Stability analysis Critical load tn 
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3 METHODOLOGY 

3.1 METHODOLOGICAL DESIGN 

It is a basic type of research, because it seeks to generate scientific knowledge to enrich 

theoretical and scientific knowledge, oriented to the knowledge of principles and laws 

(Valderrama, 2006). In this research project, the differential equations that govern the static, 

dynamic and stability behavior of novel replacement beams have been established and solved, 

generating new theoretical knowledge. 

The method used is deductive, because particular cases are analyzed from which 

conclusions of a general nature are drawn (Valderrama, 2006). In this research project to formulate 

and develop the generalized replacement beam, theories and indications left by other authors who 

studied the subject have been used. 

The design is of a non-experimental type, because it is a systematic and empirical 

investigation, in which the independent variables are not manipulated, because they are already 

given (Valderrama, 2006). In this research project, the precision and reliability analysis was carried 

out keeping the independent variables constant and only the height of the tall building was varied 

to vary the global parameters. 

In a first stage, the work will have a qualitative approach, because the phenomenon is 

described, understood and interpreted through the researcher's experience (Valderrama, 2006). In 

the research project, the qualitative approach will allow obtaining models of replacement beams 

for the structural systems (frames, shear walls, coupled shear walls and cores) and for the tall 

building. 

In a second stage, the work will have a quantitative approach, because theories are 

developed and tested; in addition, the collection, analysis and processing of data is used to answer 

the formulation of the problem (Valderrama, 2006). In the research project, the quantitative 

approach will allow an analysis of precision and sensitivity to evaluate the efficiency of the 

proposed methodology. 
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3.2 POPULATION AND SAMPLE 

3.2.1 Population 

 The study population comprises all tall buildings (structural systems). 

3.2.2 Sample 

 The study sample comprises a total of 1017 structural systems: 90 shear walls, 558 portal 

frames, 333 coupled shear walls, 36 tall buildings. 

3.3 DATA COLLECTION TECHNIQUES 

The data for the analysis of accuracy and reliability of the proposed methodology were 

based on the criteria of the author of the thesis and some structural plants used in the existing 

literature on the structural analysis of tall buildings. 

3.4 INFORMATION PROCESSING TECHNIQUES 

The computational technique was used to process the information. The instrument used 

was a personal computer, Microsoft Excel spreadsheet software and SAP 2000 and ETABS 2016 

finite element programs. 
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4 RESULTS 

4.1 STATIC ANALYSIS OF INDIVIDUAL STRUCTURAL SYSTEMS 

The horizontal stiffness of a tall building is composed of the contribution of different structural 

systems: shear walls, portal frames, coupled shear walls and cores. The contribution of each 

structural system to the horizontal stiffness of the building is distributed proportionally to its 

individual stiffness, but the nature of their behavior is somewhat different; therefore, it is essential 

for the engineer to know the behavior of each structural system in order to achieve a structure with 

optimum horizontal stiffness. 

It is common to assume a triangular load distribution for earthquake static analysis and a uniformly 

distributed load for wind static analysis. However, for the purpose of generalizing the analysis, 

two cases are proposed: 

 Case 1: A continuous analysis is considered because the method used is based solely on 

the continuous method; a general lateral load distributed over the height of the element is 

assumed. This load is dependent on a parameter 𝑎 that controls its shape in height. This 

general lateral load model was proposed by Miranda (1999). 

𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) 

( 9 ) 

Where 𝑊𝑚𝑎𝑥  is the intensity of the load distributed at the top of the model (𝑧 = 0) and 𝑎 

is a dimensionless parameter that controls the shape of the lateral load. As shown in Figure 

20, the extreme values of 𝑎 → ∞ and 𝑎 → 0 correspond to uniform and triangular load 

distributions, respectively. 

The main disadvantage is that it is only applicable to structures where the cross-section is 

uniform in height and the lateral load is continuous. The main advantage is that continuous 

closed-form solutions are obtained, allowing parametric analysis. 



 

 

47 

 

Figure 20. Effect of dimensionless parameter a on the shape of lateral load distribution for case 1. 

 

Figure 21. Structure subjected to lateral load. a) Structure and original load, b) case 1: replacement beam with 

continuous load and c) case 2: replacement beam with concentrated load. 
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 Case 2: A discrete analysis is considered because the methods used are the continuous 

method and the transfer matrix method; an arbitrary horizontal point load applied at floor 

level is assumed. These point loads can be the result of point loads directly applied at floor 

level or the result of loads transmitted from the facade to the floor slabs. 

The main disadvantage is that closed continuous solutions that allow parametric analysis 

are not obtained. The main advantage is that it allows to analyze structures whose cross 

section is not continuous in height and/or for structures where the loads are applied at floor 

level, whether their cross section is uniform or not; i.e., it is considered a case of general 

analysis because it even serves as a verification of case 1. 
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4.1.1 Bending Beam of a Field (EBB) 

This model is typically used for slender shear walls and/or columns of flat slab buildings, i.e., 

where the shear stiffness is infinite and therefore, their shear deformation can be considered 

negligible. The model takes into account a transverse motion u and a bending stiffness. 

 

Figure 22. Euler Bernoulli Beam of a field (EBB). a) Case 1, b) Case 2 and c) equivalent RB. 

4.1.1.1 Case 1 

The potential energy of the EBB model of a field is: 

𝑉 =
1

2
∫ 𝐾𝑏𝑢(𝑥)

′′ 2
𝐻

0

𝑑𝑥 
( 10 ) 

Where: 

𝐾𝑏 =∑𝐸𝐼𝑖 
( 11 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 12 ) 
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Consequently, the total potential energy of the EBB beam of a field subjected to a general lateral 

load distribution is expressed as: 

𝒰 =
1

2
∫ 𝐾𝑏𝑢(𝑥)

′′ 2
𝐻

0

𝑑𝑥 −∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 13 ) 

Closed-form solutions of the model on which a transverse load acts are achieved by solving the 

differential system arising from the stationarity of the equation. Stationarity due to equilibrium 

implies: 

𝛿𝒰 = ∫ 𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′′ 𝑑𝑥 −
𝐻

0

∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥 −∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 14 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′ ]
0

𝐻
− [𝐾𝑏𝑢(𝑥)

′′′ 𝛿𝑢(𝑥)]0
𝐻
+∫ [𝐾𝑏𝑢

′′′′ − 𝑓(𝑥)]𝛿𝑢(𝑥)𝑑𝑥
𝐻

0

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 15 ) 

Equating the terms to zero results in the following equation: 

𝐾𝑏𝑢(𝑥)
′′′′ − 𝑓(𝑥) = 0 ( 16 ) 

And boundary conditions: 

{
𝑢(0)
′′ = 0

𝑢(0)
′′′ = 0

} 
( 17 ) 

A fourth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′′ =

𝐻4

𝐾𝑏
𝑓(𝑧) 

( 18 ) 

Assuming a general lateral load (Miranda E. , 1999): 

𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 19 ) 

Replacing it in the differential equation: 
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𝑢(𝑧)
′′′′ = 𝜆(1 − 𝑒−𝑎+𝑎z) ( 20 ) 

Where: 

𝜆 =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏(1 − 𝑒
−𝑎)

 
( 21 ) 

The expression for 𝑢(𝑧) is proposed: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 +
𝜆

24
𝑧4 −

𝜆

𝑎4
𝑒−𝑎+𝑎z 

( 22 ) 

The constants are obtained by evaluating the relevant boundary conditions: 

{
 
 

 
 
𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝑢(0)
′′′ = 0}

 
 

 
 

→

{
 
 
 
 

 
 
 
 𝐶0 = 𝜆 [(

1

8
+
1

𝑎4
−
1

𝑎3
) + 𝑒−𝑎 (

1

2𝑎2
+
1

3𝑎
)]

𝐶1 = 𝜆 [(−
1

6
+
1

𝑎3
) − 𝑒−𝑎 (

1

𝑎2
+
1

2𝑎
)]

𝐶2 = 𝜆
𝑒−𝑎

2𝑎2

𝐶3 = 𝜆
𝑒−𝑎

6𝑎 }
 
 
 
 

 
 
 
 

 

( 23 ) 

The lateral displacement is obtained by rewriting the expression for 𝑢(𝑧): 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏(1 − 𝑒−𝑎)
{
1

24
𝑧4 +

𝑒−𝑎

6𝑎
𝑧3 +

𝑒−𝑎

2𝑎2
𝑧2 + [(−

1

6
+
1

𝑎3
) − 𝑒−𝑎 (

1

𝑎2
+
1

2𝑎
)] 𝑧

+ [(
1

8
+
1

𝑎4
−
1

𝑎3
) + 𝑒−𝑎 (

1

2𝑎2
+
1

3𝑎
)] −

1

𝑎4
𝑒−𝑎+𝑎z} 

( 24 ) 

The maximum displacement is obtained by evaluating 𝑢(𝑧) at 0: 

𝑢(0) =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏(1 − 𝑒−𝑎)
{(
1

8
+
1

𝑎4
−
1

𝑎3
) + (

1

2𝑎2
+
1

3𝑎
−
1

𝑎4
) 𝑒−𝑎} 

( 25 ) 

The interstory drift can be obtained by deriving 𝑢(𝑧) once: 

∆𝑠=
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏(1 − 𝑒−𝑎)
{
1

6
𝑧3 +

𝑒−𝑎

2𝑎
𝑧2 +

𝑒−𝑎

𝑎2
𝑧 + [(−

1

6
+
1

𝑎3
) − 𝑒−𝑎 (

1

𝑎2
+
1

2𝑎
)] −

1

𝑎3
𝑒−𝑎+𝑎z} 

( 26 ) 

The global drift is obtained as the quotient between maximum displacement and total height: 



 

 

52 

∆𝑔=
𝑊𝑚𝑎𝑥𝐻

3

𝐾𝑏(1 − 𝑒
−𝑎)

{(
1

8
+
1

𝑎4
−
1

𝑎3
) + (

1

2𝑎2
+
1

3𝑎
−
1

𝑎4
) 𝑒−𝑎} 

( 27 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞): 

{
 
 
 
 

 
 
 
 𝑢(𝑧) =

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏
(
1

24
𝑧4 −

1

6
𝑧 +

1

8
)

𝑢(0) =
𝑊𝑚𝑎𝑥𝐻

4

8𝐾𝑏

∆𝑠=
𝑊𝑚𝑎𝑥𝐻

4

6𝐾𝑏
(𝑧3 − 1)

∆𝑔=
𝑊𝑚𝑎𝑥𝐻

3

8𝐾𝑏 }
 
 
 
 

 
 
 
 

 

( 28 ) 

According to the analysis of equations and graphs:  

 The stiffness is inversely proportional to the fourth power of its height. 

 The lateral displacement profile shows a behavior in favor of the lateral load (concavity to 

the right) with a tendency to reduce to an infinite slope at the base. 

 The interstory drift profile shows a behavior against lateral loading (concave to the left) 

with maximum efficiency in the lower zone of the beam with a tendency to zero at the base.  

 The normalized lateral displacement profile and the normalized interstory drift profile are 

practically identical for all cases and independent of the parameter 𝑎. 
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(a)                                                                                   (b) 

Figure 23. Effect of parameter 𝑎. a) Lateral displacement and b) Interstory drift. 

  

(a)                                                                           (b) 

Figure 24. Effect of parameter 𝑎. a) Normalized lateral displacement and b) Normalized interstory drift. 
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4.1.1.2 Case 2 

 Calculation of The Transfer Matrix 

According to the fourth order differential equation: 

𝑢(𝑥)
′′′′ =

1

𝐾𝑏
𝑓(𝑥) 

( 29 ) 

Assuming that the external loads act on the floors and not along the floor height, it is possible to 

write the equation as follows: 

𝑢(𝑧)
′′′′ = 0 ( 30 ) 

The expression for 𝑢(𝑧) and 𝑢(𝑧)
′  is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧

2 + 𝐶3𝑧
3

𝑢(𝑧)
′ = 𝐶1 + 2𝐶2𝑧 + 3𝐶3𝑧

2 } 
( 31 ) 

Internal forces such as bending moment and shear force result: 

{
𝑀(𝑧) = 𝐾𝑏𝑢(𝑧)

′′ = (2𝐾𝑏)𝐶2 + (6𝐾𝑏𝑧)𝐶3

𝑉(𝑧) = 𝐾𝑏𝑢(𝑧)
′′′ = (6𝐾𝑏)𝐶3

} 
( 32 ) 

Writing the equations in matrix form: 

{
 

 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑀𝑖(𝑧𝑖)
𝑉𝑖(𝑧𝑖)}

 

 
= 𝐾𝑖(𝑧𝑖){

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 33 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
1 𝑧𝑖 𝑧𝑖

2 𝑧𝑖
3

0 1 2𝑧𝑖 3𝑧𝑖
2

0 0 2𝐾𝑏 6𝐾𝑏𝑧𝑖
0 0 0 6𝐾𝑏 ]

 
 
 

𝑖

 

( 34 ) 

Evaluating at the base of the i-th floor; i.e., for 𝑧𝑖 = ℎ𝑖: 
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{
 

 
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

𝑀𝑖(ℎ𝑖)
𝑉𝑖(ℎ𝑖)}

 

 
= 𝐾𝑖(ℎ𝑖){

𝐶0
𝐶1
𝐶2
𝐶3

} → {

𝐶0
𝐶1
𝐶2
𝐶3

} = 𝐾𝑖
−1(ℎ𝑖)

{
 

 
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

𝑀𝑖(ℎ𝑖)

𝑉𝑖(ℎ𝑖)}
 

 

 

( 35 ) 

Replacing the vector of coefficients: 

{
 

 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑀𝑖(𝑧𝑖)

𝑉𝑖(𝑧𝑖)}
 

 

= 𝐾𝑖(𝑧𝑖)𝐾𝑖
−1(ℎ𝑖)

{
 

 
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

𝑀𝑖(ℎ𝑖)
𝑉𝑖(ℎ𝑖)}

 

 
= 𝑇𝑖(𝑧𝑖)

{
 

 
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

𝑀𝑖(ℎ𝑖)
𝑉𝑖(ℎ𝑖)}

 

 
 

( 36 ) 

Where: 

𝑇𝑖(z) = 𝐾𝑖(𝑧𝑖)𝐾𝑖
−1(ℎ𝑖) ( 37 ) 

If we evaluate the forces and displacements at the top of the i-th floor, we have: 

{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)

𝑉𝑖(0)}
 

 

= 𝑇𝑖(0)

{
 

 
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

𝑀𝑖(ℎ𝑖)
𝑉𝑖(ℎ𝑖)}

 

 
 

( 38 ) 

This equation shows the relationship of forces and displacements between the top and bottom of 

the i-th floor. 

 Static Analysis Under Static Point Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

For the j-th floor: 

𝑉𝑗+1 = 𝑉𝑗 − 𝑃𝑗 ( 39 ) 

i.e., 

{
 

 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝑀𝑖+1(0)

𝑉𝑖+1(0)}
 

 

= 𝑇𝑖(0)

{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)

𝑉𝑖(0)}
 

 

− {

0
0
0
𝑃𝑖

} 

( 40 ) 
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       (a)                                    (b) 

Figure 25. a) Static equilibrium at the j-th level and b) Structural segments of variable properties. 

For the first floor: 

{
 

 
𝑢1(0)

𝑢1
′ (0)

𝑀1(0)

𝑉1(0)}
 

 
= 𝑇1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
− 𝑇1(0) {

0
0
0
𝑃0

} − {

0
0
0
𝑃1

} 

( 41 ) 

For the second floor: 

{
 

 
𝑢2(0)

𝑢2
′ (0)

𝑀2(0)

𝑉2(0)}
 

 
= 𝑇2(0)𝑇1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
− 𝑇2(0)𝑇1(0) {

0
0
0
𝑃0

} − 𝑇2(0) {

0
0
0
𝑃1

} − {

0
0
0
𝑃2

} 

( 42 ) 

For the third floor: 

{
 

 
𝑢3(0)

𝑢3
′ (0)

𝑀3(0)

𝑉3(0)}
 

 

= 𝑇3(0)𝑇2(0)𝑇1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
− 𝑇3(0)𝑇2(0)𝑇1(0) {

0
0
0
𝑃0

}− 𝑇3(0)𝑇2(0) {

0
0
0
𝑃1

}

− 𝑇3(0) {

0
0
0
𝑃2

}− {

0
0
0
𝑃3

} 

( 43 ) 

For the n-th floor (top of the beam): 
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{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= 𝑇𝑛(0) …𝑇2(0)𝑇1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
− 𝑇𝑛(0)…𝑇2(0)𝑇1(0) {

0
0
0
𝑃0

}

− 𝑇𝑛(0)…𝑇2(0) {

0
0
0
𝑃1

}− 𝑇𝑛(0)…𝑇3(0) {

0
0
0
𝑃2

} −⋯− 𝑇𝑛(0) {

0
0
0

𝑃𝑛−1

} − {

0
0
0
𝑃𝑛

} 

( 44 ) 

Expressing the equation between product and sum symbols: 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
−∏𝑇𝑘(0)

𝑛

𝑘=1

{

0
0
0
𝑃0

} −∏𝑇𝑘(0)

𝑛

𝑘=2

{

0
0
0
𝑃1

}−∏𝑇𝑘(0)

𝑛

𝑘=3

{

0
0
0
𝑃2

}

−∏𝑇𝑘(0)

𝑛

𝑘=4

{

0
0
0
𝑃3

}−⋯−∏𝑇𝑘(0)

𝑛

𝑘=𝑛

{

0
0
0

𝑃𝑛−1

} − {

0
0
0
𝑃𝑛

} 

( 45 ) 

i.e., 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 46 ) 

Defining two additional parameters: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 47 ) 

Replacing these two parameters: 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= t

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
+ 𝑓 

( 48 ) 
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This equation expresses the relationship between the part forces and displacements of the top and 

the base of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant for all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 
𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝑢(0)
′′′ = 0}

 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 49 ) 

Replacing: 

{

𝑢𝑛(0)

𝑢𝑛
′ (0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} + {

𝑓1
𝑓2
𝑓3
𝑓4

} 

( 50 ) 

By clearing the bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓3
𝑓4
} → {

𝑀1(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} 

( 51 ) 

The lateral displacement and its derivative at the top of the model: 

{
𝑢𝑛(0)

𝑢𝑛
′ (0)

} = [
𝑡1,3 𝑡1,4
𝑡2,3 𝑡2,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓1
𝑓2
} 

( 52 ) 

Substituting internal forces: 

{
𝑢𝑛(0)

𝑢𝑛
′ (0)

} = − [
𝑡1,3 𝑡1,4
𝑡2,3 𝑡2,4

] [
𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} + {

𝑓1
𝑓2
} 

( 53 ) 
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4.1.2 Shear Beam of a Field (SB) 

This model is usually used to model portal frames having beams and columns with infinite bending 

stiffness and negligible axial deformations of the columns. The model takes into account a 

transverse motion u and a shear stiffness. 

 

Figure 26. Shear beam of a field (SB). a) Case 1, b) Case 2 and c) equivalent RB. 

4.1.2.1 Case 1 

The total potential energy of the SB beam of a field subjected to a general lateral load distribution 

is expressed as: 

𝑉 =
1

2
∫ 𝐾𝑠𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 54 ) 

Where: 

{𝐾𝑠 = (𝐾𝑏
−1 +𝐾𝑐

−1)
−1
=

𝐾𝑏 𝐾𝑐
𝐾𝑏 + 𝐾𝑐

, 𝐾𝑏 =∑
12𝐸𝐼𝑏,𝑖
𝑙ℎ

, 𝐾𝑐 =∑
12𝐸𝐼𝑐,𝑖
ℎ2

} 
( 55 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 56 ) 
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Consequently, the total potential energy of the SB beam of a field subjected to a general lateral 

load distribution is expressed as: 

𝒰 =
1

2
∫ 𝐾𝑠𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 −∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 57 ) 

Closed-form solutions of the model on which a transverse load acts are achieved by solving the 

differential system arising from the stationarity of the equation. Stationarity due to equilibrium 

implies: 

𝛿𝒰 = ∫ 𝐾𝑠𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ 𝑑𝑥 −
𝐻

0

∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥 −∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 58 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑠𝑢(𝑥)
′ 𝛿𝑢(𝑥)]

0

𝐻
−∫ [𝐾𝑠𝑢(𝑥)

′′ + 𝑓(𝑥)]𝛿𝑢(𝑥)

𝐻

0

∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 59 ) 

Equating the terms to zero results in the following equation: 

𝐾𝑠𝑢(𝑥)
′′ + 𝑓(𝑥) = 0 ( 60 ) 

And border condition: 

𝑢(0)
′ = 0 ( 61 ) 

A second order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′ = −

𝐻2

𝐾𝑠
𝑓(𝑧) 

( 62 ) 

Assuming a general lateral load (Miranda E. , 1999): 

𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 63 ) 

Replacing it in the differential equation: 
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𝑢(𝑧)
′′ = −𝛾(1 − 𝑒−𝑎+𝑎z) ( 64 ) 

Where: 

𝛾 =
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠(1 − 𝑒
−𝑎)

 
( 65 ) 

The expression for 𝑢(𝑧) is proposed: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 −
𝛾

2
𝑧2 +

𝛾

𝑎2
𝑒−𝑎+𝑎𝑧 

( 66 ) 

The constants are obtained by evaluating the relevant boundary conditions: 

{
𝑢(1) = 0

𝑢(0)
′ = 0

} → {
𝐶0 = 𝛾 [(

1

2
−
1

𝑎2
) +

𝑒−𝑎

𝑎
]

𝐶1 = −𝛾
𝑒−𝑎

𝑎

} 

( 67 ) 

The lateral displacement is obtained by rewriting the expression for 𝑢(𝑧): 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠(1 − 𝑒−𝑎)
[−
1

2
𝑧2 −

𝑒−𝑎

𝑎
𝑧 + (

1

2
−
1

𝑎2
+
𝑒−𝑎

𝑎
) +

𝑒−𝑎+𝑎𝑧

𝑎2
] 

( 68 ) 

The maximum displacement is obtained by evaluating 𝑢(𝑧) at 0: 

𝑢(0) =
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠(1 − 𝑒−𝑎)
[(
1

2
−
1

𝑎2
) + (

1

𝑎
+
1

𝑎2
) 𝑒−𝑎] 

( 69 ) 

The insterstory drift can be obtained by deriving 𝑢(𝑧) once: 

∆𝑠=
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠(1 − 𝑒−𝑎)
(−𝑧 −

𝑒−𝑎

𝑎
+
𝑒−𝑎+𝑎𝑧

𝑎
) 

( 70 ) 

The global drift is obtained as the quotient between maximum displacement and total height: 

∆𝑔=
𝑢(0)

𝐻
=

𝑊𝑚𝑎𝑥𝐻

𝐾𝑠(1 − 𝑒−𝑎)
[(
1

2
−
1

𝑎2
) + (

1

𝑎
+
1

𝑎2
) 𝑒−𝑎] 

( 71 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞): 
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{
  
 

  
 𝑢(𝑧) =

𝑊𝑚𝑎𝑥𝐻
2

2𝐾𝑠
(1 − 𝑧2) → 𝑢(0) =

𝑊𝑚𝑎𝑥𝐻
2

2𝐾𝑠

∆𝑠= −
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠
𝑧

∆𝑔=
𝑊𝑚𝑎𝑥𝐻

2𝐾𝑠 }
  
 

  
 

 

( 72 ) 

According to the analysis of equations and graphs: 

 The stiffness is inversely proportional to the second power of its height. 

 The lateral displacement profile shows a behavior against lateral loading (concavity to the 

left). 

 The interstory drift profile shows maximum efficiency at the top of the beam with a 

tendency to zero at the roof of the building. 

 The normalized lateral displacement profile and the normalized interstory drift profile are 

dependent on the parameter 𝑎. 

  

(a)                                                                                   (b) 

Figure 27. Effect of parameter 𝑎. a) Lateral displacement and b) Interstory drift. 
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(a)                                                                                   (b) 

Figure 28. Effect of parameter 𝑎. a) Normalized lateral displacement and b) Normalized interstory drift. 

4.1.2.2 Case 2 

 Calculation of the Transfer Matrix 

According to the second order differential equation and assuming that the external loads act on the 

floors and not along the floor height, it is possible to write it as follows: 

𝑢(𝑧)
′′ = 0 ( 73 ) 

The expression for 𝑢(𝑧) and  𝑢(𝑧)
′  is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧

𝑢(𝑧)
′ = 𝐶1

} 
( 74 ) 

Writing the equation in matrix form: 

{
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

} = 𝐾𝑖(𝑧𝑖) {
𝐶0
𝐶1
} 

( 75 ) 

Where: 
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𝐾𝑖(𝑧𝑖) = [
1 𝑧𝑖
0 1

]
𝑖
 

( 76 ) 

Evaluating at the base of the i-th floor; i.e., for 𝑧𝑖 = ℎ𝑖: 

{
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

} = 𝐾𝑖(ℎ𝑖) {
𝐶0
𝐶1
} → {

𝐶0
𝐶1
} = 𝐾𝑖

−1(ℎ𝑖) {
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

} 
( 77 ) 

Replacing the vector of coefficients: 

{
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

} = 𝐾𝑖(𝑧𝑖)𝐾𝑖
−1(ℎ𝑖) {

𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

} = 𝑇𝑖(𝑧𝑖) {
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

} 
( 78 ) 

Where: 

𝑇𝑖(z) = 𝐾𝑖(𝑧𝑖)𝐾𝑖
−1(ℎ𝑖) ( 79 ) 

If we evaluate the forces and displacements at the top of the i-th floor, we have: 

{
𝑢𝑖(0)

𝑢𝑖
′(0)

} = 𝑇𝑖(0) {
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

} 
( 80 ) 

This equation shows the relationship of forces and displacements between the top and bottom of 

the i-th floor. 

 

 Static Analysis Under Static Point Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

{
𝑢𝑛(0)

𝑢𝑛
′ (0)

} =∏𝑇𝑘(0)

𝑛

𝑘=1

{
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

} −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 81 ) 

Expressing it in simplified form: 

{
𝑢𝑛(0)

𝑢𝑛
′ (0)

} = t {
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

} + 𝑓 
( 82 ) 
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Where: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 83 ) 

This equation expresses the relationship between the part forces and displacements of the top and 

the base of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant for all floors. 

According to the boundary conditions defined in case 1: 

{
𝑢(1) = 0

𝑢(0)
′ = 0

} → {
𝑢(ℎ1) = 0

𝑢(0)
′ = 0

} 
( 84 ) 

Replacing: 

{𝑢𝑛
(0)

0
} = [

𝑡1,1 𝑡1,2
𝑡2,1 𝑡2,2

] {
0

𝑢1
′ (ℎ1)

} + {
𝑓1
𝑓2
} 

( 85 ) 

Clearing the slope at the base of the model: 

0 = 𝑡2,2𝑢1
′ (ℎ1) + 𝑓2 → 𝑢1

′ (ℎ1) = −𝑡2,2
−1𝑓2 ( 86 ) 

The lateral displacement at the top of the model is obtained by substituting the displacement at the 

top of the beam: 

𝑢𝑛(0) = −𝑡1,2𝑡2,2
−1𝑓2 + 𝑓1 ( 87 ) 
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4.1.3 Timoshenko Beam of Two Field (TB) 

Numerous investigations in the literature have used simplified bending or shear beam models to 

model buildings; however, other studies have shown that not considering shear or bending stiffness 

simultaneously in the model is inappropriate, as the margin of error exceeds engineering 

acceptance criteria.  

By considering an infinite shear stiffness in the bending beam (EBB) and consequently zero shear 

deformation, it was assumed that the plane cross-sections perpendicular to the beam axis remain 

plane and perpendicular to the axis after deformation; however, in the case of structural elements 

such as shear walls and/or non-slender cores, this effect cannot be neglected and must be taken 

into account. To overcome this problem the Timoshenko Beam (TB) is developed, which results 

from an extension of the bending beam (EBB) to allow for the effect of shear deformation.  

 

Figure 29. Timoshenko beam of two-field (TB). a) Case 1, b) Case 2 and c) equivalent RB and d) TB 

stiffness idealization. 

The stiffness of the TB beam results from a series coupling of the bending and shear stiffness; that 

is, the total deformation of the TB beam results from the combination of the bending and shear 

deformation. The TB beam model takes into account a single transverse motion u and a rotation 

field 𝜃 with stiffnesses 𝐾𝑏 and 𝐾𝑠 as bending and shear stiffness, respectively. 
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4.1.3.1 Case 1 

The potential energy of the TB model is expressed as: 

𝑉 =
1

2
∫ {𝐾𝑏𝜃(𝑥)

′ 2
+ 𝐾𝑠[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 
( 88 ) 

Where: 

{𝐾𝑏 =∑𝐸𝐼𝑤,𝑖 , 𝐾𝑠 = 𝑘∑𝐺𝐴𝑤,𝑖} ( 89 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 90 ) 

Consequently, the total potential energy of the two-field TB beam subjected to a general lateral 

load distribution is expressed as: 

𝒰 =
1

2
∫ {𝐾𝑏𝜃(𝑥)

′ 2
+ 𝐾𝑠[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 −∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 91 ) 

Closed-form solutions of the model on which a transverse load acts are achieved by solving the 

differential system arising from the stationarity of the equation. Stationarity due to equilibrium 

implies: 

𝛿𝒰 = ∫ {𝐾𝑏𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ + 𝐾𝑠[𝑢(𝑥)
′ − 𝜃(𝑥)][𝛿𝑢(𝑥)

′ − 𝛿𝜃(𝑥)]}𝑑𝑥 −
𝐻

0

∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 92 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏𝜃(𝑥)
′ 𝛿𝜃(𝑥)]

0

𝐻
+ {𝐾𝑠[𝑢(𝑥)

′ − 𝜃(𝑥)]𝛿𝑢}
0

𝐻
−∫ {𝐾𝑏𝜃(𝑥)

′′ + 𝐾𝑠[𝑢(𝑥)
′ − 𝜃(𝑥)]}𝛿𝜃(𝑥)

𝐻

0

−∫ {𝐾𝑠[𝑢(𝑥)
′′ − 𝜃(𝑥)

′ ] + 𝑓(𝑥)}𝛿𝑢(𝑥)

𝐻

0

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 93 ) 
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Equating the terms to zero results in the following equations: 

{
𝐾𝑏𝜃(𝑥)

′′ + 𝐾𝑠[𝑢(𝑥)
′ − 𝜃(𝑥)] = 0

𝐾𝑠[𝑢(𝑥)
′′ − 𝜃(𝑥)

′ ] + 𝑓(𝑥) = 0
} 

( 94 ) 

And boundary conditions: 

{
𝜃(0)
′ = 0

𝑢(0)
′ − 𝜃(0) = 0

} 

( 95 ) 

Using the method of differential operators for the solution of the system of equations: 

{
𝑢(𝑥)
𝜃(𝑥)

} = − [
𝐾𝑠𝐷 𝐾𝑏𝐷

2 −𝐾𝑠
𝐾𝑠𝐷

2 −𝐾𝑠𝐷
]
−1

{
0
𝑓(𝑥)

} 
( 96 ) 

i.e., 

{
𝑢(𝑥)
′′′′

𝜃(𝑥)
′′′′} =

{
 

 
1

𝐾𝑏
𝑓(𝑥) −

1

𝐾𝑠
𝑓(𝑥)
′′

1

𝐾𝑏
𝑓(𝑥)
′

}
 

 

 

( 97 ) 

A fourth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′′ =

𝐻4

𝐾𝑏
𝑓(𝑧) −

𝐻2

𝐾𝑠
𝑓(𝑧)
′′  

( 98 ) 

Assuming a general lateral load (Miranda E. , 1999): 

𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 99 ) 

Replacing it in the differential equation: 

𝑢(𝑧)
′′′′ = 𝜆 + 𝜆 (

𝑎2 − 𝛼2

𝛼2
) 𝑒−𝑎+𝑎z 

( 100 ) 

Where: 
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{𝛼 = 𝐻√
𝐾𝑠
𝐾𝑏
 , 𝜆 =

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏(1 − 𝑒
−𝑎)

} 

( 101 ) 

The expression for 𝑢(𝑧) is proposed: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 +
𝜆

24
𝑧4 +

𝜆(𝑎2 − 𝛼2)

𝑎4𝛼2
𝑒−𝑎+𝑎𝑧 

( 102 ) 

The constants are obtained by evaluating the relevant boundary conditions: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝑢(1)
′ = −

𝜆

𝛼2
(1 −

1

𝑎
+
𝑒−𝑎

𝑎
)

𝑢(0)
′′ = −

𝜆

𝛼2
(1 − 𝑒−𝑎)

𝑢(0)
′′′ =

𝜆

𝛼2
(𝑎𝑒−𝑎) }

 
 
 

 
 
 

→

{
 
 
 
 

 
 
 
 𝐶0 = 𝜆 [(

1

8
+
1

𝑎4
−
1

𝑎3
) +

𝑒−𝑎

𝑎
(
1

2𝑎
+
1

3
+
1

𝛼2
) +

1

𝛼2
(
1

2
−
1

𝑎2
)]

𝐶1 = 𝜆 [(−
1

6
+
1

𝑎3
) −

𝑒−𝑎

𝑎
(
1

𝑎
+
1

2
+
1

𝛼2
)]

𝐶2 = −
𝜆

2𝛼2
(1 −

𝛼2

𝑎2
𝑒−𝑎)

𝐶3 = 𝜆
𝑒−𝑎

6𝑎 }
 
 
 
 

 
 
 
 

 

( 103 ) 

The lateral displacement is obtained by rewriting the expression for 𝑢(𝑧): 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏(1 − 𝑒−𝑎)
{
1

24
𝑧4 +

𝑒−𝑎

6𝑎
𝑧3 + (

𝑒−𝑎

2𝑎2
−

1

2𝛼2
) 𝑧2 + [(−

1

6
+
1

𝑎3
) − 𝑒−𝑎 (

1

𝑎2
+
1

2𝑎
+

1

𝑎𝛼2
)] 𝑧

+ [(
1

8
+
1

𝑎4
−
1

𝑎3
) + 𝑒−𝑎 (

1

2𝑎2
+
1

3𝑎
) +

1

𝛼2
(
1

2
−
1

𝑎2
+
𝑒−𝑎

𝑎
)] +

(𝑎2 − 𝛼2)

𝑎4𝛼2
𝑒−𝑎+𝑎z} 

After some simple manipulations, the displacement 𝑢(𝑧) can be expressed as the sum of the bending 

and shear displacement: 

𝑢(𝑧) = 𝑢𝑓𝑙𝑒𝑥𝑖𝑜𝑛 + 𝑢𝑠ℎ𝑒𝑎𝑟  

Where: 

{
  
 

  
 

{
 

 𝑢𝑓𝑙𝑒𝑥𝑖𝑜𝑛 =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏(1 − 𝑒−𝑎)
{
1

24
𝑧4 +

𝑒−𝑎

6𝑎
𝑧3 +

𝑒−𝑎

2𝑎2
𝑧2 + [(−

1

6
+
1

𝑎3
) − 𝑒−𝑎 (

1

𝑎2
+
1

2𝑎
)] 𝑧

+ [(
1

8
+
1

𝑎4
−
1

𝑎3
)+ 𝑒−𝑎 (

1

2𝑎2
+
1

3𝑎
)] −

1

𝑎4
𝑒−𝑎+𝑎z} }

 

 

𝑢𝑠ℎ𝑒𝑎𝑟 =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏(1 − 𝑒−𝑎)

1

𝛼2
[−
1

2
𝑧2 −

𝑒−𝑎

𝑎
𝑧 + (

1

2
−
1

𝑎2
+
𝑒−𝑎

𝑎
)+

𝑒−𝑎+𝑎𝑧

𝑎2
]

}
  
 

  
 

 

( 104 ) 

The maximum displacement is obtained by evaluating 𝑢(𝑧) at 0: 
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𝑢(0) =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏(1 − 𝑒
−𝑎)

{(
1

8
+
1

𝑎4
−
1

𝑎3
)+ 𝑒−𝑎 [

1

2𝑎2
+
1

3𝑎
−
1

𝑎4
+
1

𝛼2
(
1

𝑎2
+
1

𝑎
)]+

1

𝛼2
(
1

2
−
1

𝑎2
)} 

( 105 ) 

The interstory drift can be obtained by deriving 𝑢(𝑧) once: 

∆𝑠=
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏(1 − 𝑒−𝑎)
{
1

6
𝑧3 +

𝑒−𝑎

2𝑎
𝑧2 + (

𝑒−𝑎

𝑎2
−
1

𝛼2
) 𝑧 + [(−

1

6
+
1

𝑎3
) − 𝑒−𝑎 (

1

𝑎2
+
1

2𝑎
+

1

𝑎𝛼2
)]

+
(𝑎2 − 𝛼2)

𝑎3𝛼2
𝑒−𝑎+𝑎z} 

( 106 ) 

The global drift is obtained as the quotient between maximum displacement and total height: 

∆𝑔=
𝑊𝑚𝑎𝑥𝐻

3

𝐾𝑏(1 − 𝑒−𝑎)
{(
1

8
+
1

𝑎4
−
1

𝑎3
)+ 𝑒−𝑎 [

1

2𝑎2
+
1

3𝑎
−
1

𝑎4
+
1

𝛼2
(
1

𝑎2
+
1

𝑎
)]+

1

𝛼2
(
1

2
−
1

𝑎2
)} 

( 107 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞): 

{
 
 
 
 

 
 
 
 𝑢(𝑧) =

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏
(
1

24
𝑧4 −

1

6
𝑧 +

1

8
) +

𝑊𝑚𝑎𝑥𝐻
2

2𝐾𝑠
(1 − 𝑧2)

𝑢(0) =
𝑊𝑚𝑎𝑥𝐻

4

8𝐾𝑏
+
𝑊𝑚𝑎𝑥𝐻

2

2𝐾𝑠

∆𝑠= −[
𝑊𝑚𝑎𝑥𝐻

4

6𝐾𝑏
(1 − 𝑧3) +

𝑊𝑚𝑎𝑥𝐻
2

𝐾𝑠
𝑧]

∆𝑔=
𝑊𝑚𝑎𝑥𝐻

3

8𝐾𝑏
+
𝑊𝑚𝑎𝑥𝐻

2𝐾𝑠 }
 
 
 
 

 
 
 
 

 

( 108 ) 

According to the analysis of equations and graphs: 

 Being dependent on the parameter α, it allows taking into account the shear deformation 

and modeling a shear wall more accurately. It is known that for slender shear walls the 

lateral displacement is practically independent of the parameter 𝛼 because it is deformed 

only by bending; however, for a non-slender or ordinary shear wall the shear deformation 

can become significant and important.  

 Displacement, interstory drift and global drift result from the sum of the contribution by 

bending and shear. 
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 The parameter α conditions the lateral displacement profile and the interstory drift profile; 

that is, the parameter α determines the predominant type of behavior of the beam. For a 

value of = 0.3 (𝐻 𝐿⁄ ≈ 0.15), it shows pure shear behavior; a value of 𝛼 = 3 

(𝐻 𝐿⁄ ≈ 1.45), it shows intermediate behavior between shear and bending; and a value of 

𝛼 = 30 (𝐻 𝐿⁄ ≈ 14.5), it shows pure bending behavior. 

 As the value of parameter 𝛼 increases the influence of parameter a on the normalized lateral 

displacement profile becomes less and less, and for a value of 𝛼 = 30 (𝐻 𝐿⁄ ≈ 14.5), the 

normalized lateral displacement profile is practically independent of parameter 𝑎, as is the 

case in the flexural beam.  

 The normalized lateral displacement profile and the normalized interstory drift profile are 

practically identical for all cases and independent of the parameter 𝑎. 

 The shear contribution can be safely ignored when 𝛼 has a value greater than about 8.70, 

corresponding to a contribution of 5%.  For a value of 𝛼 = 6, a 10% contribution is 

obtained and for a value of 𝛼 = 4 one has a 20% contribution. 

 It is irresponsible to neglect the contribution of the shear when 𝛼 has a value less than 8.70 

because it drastically modifies the behavior of the beam and is on the side of insecurity. 

 The contribution of shear is practically independent of the parameter 𝑎. 

 

Figure 30. Bending, shear and total displacement for 𝛼 = 3. 
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Figure 31. Lateral displacement of the beam and effect of parameter 𝑎. 
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Figure 32. Beam interstory drift and effect of parameter 𝑎. 
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Figure 33. Effect of parameter 𝑎 on the normalized lateral displacement profile. 
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Figure 34. Effect of parameter 𝑎 on the interstory drift profile. 
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Figure 35. Influence of shear displacement. 

4.1.3.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations and assuming that the external loads act on the 

floors and not along the floor height, it is possible to write it as follows: 

{
𝐾𝑏𝜃(𝑥)

′′ + 𝐾𝑠[𝑢(𝑥)
′ − 𝜃(𝑥)] = 0

𝐾𝑠[𝑢(𝑥)
′′ − 𝜃(𝑥)

′ ] = 0
} 

( 109 ) 

The expression for 𝑢(𝑧) and 𝜃(𝑧) is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧

2 + 𝐶3𝑧
3

𝜃(𝑧) = 𝐶4 + 𝐶5𝑧 + 𝐶6𝑧
2 } 

( 110 ) 

Expressing the coefficients of the function 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 
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𝜃(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧
2 + 6

𝐾𝑏
𝐾𝑠
)𝐶3 

( 111 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result: 

{
𝑀(𝑧) = 𝐾𝑏𝜃(𝑧)

′ = (2𝐾𝑏)𝐶2 + (6𝐾𝑏𝑧)𝐶3

𝑉(𝑧) = 𝐾𝑠[𝑢(𝑧)
′ − 𝜃(𝑧)] = (−

6

𝛼∗2
𝐾𝑠) 𝐶3

} 

( 112 ) 

Writing the equations in matrix form: 

{

𝑢𝑖(𝑧𝑖)
𝜃𝑖(𝑧𝑖)

𝑀𝑖(𝑧𝑖)
𝑉𝑖(𝑧𝑖)

} = 𝐾𝑖(𝑧𝑖){

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 113 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
1 𝑧𝑖 𝑧𝑖

2 𝑧𝑖
3

0 1 2𝑧𝑖 3𝑧𝑖
2 +

6

𝛼∗2

0 0 2𝐾𝑏 6𝐾𝑏𝑧𝑖

0 0 0 −
6

𝛼∗2
𝐾𝑠 ]
 
 
 
 
 

𝑖

 

( 114 ) 

 Static Analysis Under Static Point Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

{
 

 
𝑢𝑛(0)

𝜃𝑛(0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 115 ) 

Expressing it in simplified form: 

{
 

 
𝑢𝑛(0)

𝜃𝑛(0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= t

{
 

 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
+ 𝑓 

( 116 ) 
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Where: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 117 ) 

This equation expresses the relationship between the part forces and displacements of the top and 

the base of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant for all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝜃(1) = 0

𝜃(0)
′ = 0

𝑢(0)
′ − 𝜃(0) = 0}

 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝜃1(ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 118 ) 

Replacing: 

{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} + {

𝑓1
𝑓2
𝑓3
𝑓4

} 

( 119 ) 

By clearing the bending moment and the shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓3
𝑓4
} → {

𝑀1(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} 

( 120 ) 

Substituting the internal forces gives the displacement and rotation at the top: 

{
𝑢𝑛(0)

𝜃𝑛(0)
} = −[

𝑡1,3 𝑡1,4
𝑡2,3 𝑡2,4

] [
𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} + {

𝑓1
𝑓2
} 

( 121 ) 
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4.1.4 Parallel Coupling of Bending Beam and Shear Beam of a Field (CTB) - 
Translational Behavior 

The CTB beam is developed, which considers that the structure consists of a parallel coupling of 

a bending beam and a shear beam with bending and shear deformation respectively. The beams 

are assumed to be coupled in parallel by axially stiff members that only transmit horizontal forces 

and do not deform. 

The CTB beam is more efficient than the EBB and SB beam due to the interaction between the 

displacement profiles. The EBB beam shows a displacement profile that is in favor of the lateral 

load, with a maximum slope at the bottom; while the SB beam shows a displacement profile that 

is against the lateral load, with a maximum slope at the top. Joining both beams by means of axially 

stiff members that only transmit horizontal forces conditions the EBB and SB beam to develop 

identical lateral displacement; resulting in a bending displacement profile at the bottom 

constraining displacements at the bottom floors and a shear displacement profile at the top 

constraining displacements at the top floors. This horizontal interaction effect contributes to 

increase the lateral stiffness of the structure, making the total stiffness of the structure greater than 

the sum of the lateral stiffnesses of the EBB and SB beam individually. 

 

Figure 36. Flexural and shear beam coupling (CTB) of a field. a) Case 1, b) Case 2, c) Equivalent RB and d) 

Idealization of CTB stiffness. 

The CTB beam model takes into account a single transverse motion u with stiffnesses 𝐾𝑏 and  𝐾𝑠 

as local bending and shear stiffnesses, respectively; that is, it ignores the global bending stiffness 

and consequently does not take into account axial deformations as an additional kinematic field. 
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This model is suitable for modeling dual frame and shear wall structures; and frames where the 

effect of global bending is not predominant and therefore can be neglected. 

4.1.4.1 Case 1 

The potential energy of the CTB model of a field is expressed as: 

𝑉 =
1

2
∫ [𝐾𝑏𝑢(𝑥)

′′ 2
+ 𝐾𝑠𝑢(𝑥)

′ 2
]

𝐻

0

𝑑𝑥 
( 122 ) 

Where: 

{

𝐾𝑏 =  𝑟∑𝐸𝐼𝑤,𝑐  , 𝐾𝑠 = (𝐾𝑏
−1 +𝐾𝑐

−1)
−1

𝐾𝑐 =∑
12𝐸𝐼𝑤,𝑐
ℎ2

 , 𝐾𝑏 =∑
12𝐸𝐼𝑏
𝑙ℎ

 , 𝑟 =
𝐾𝑐

𝐾𝑐 +𝐾𝑏

, } 

( 123 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 124 ) 

Consequently, the total potential energy of the CTB beam of a classical field subjected to a general 

lateral load distribution is expressed as: 

𝒰 =
1

2
∫ [𝐾𝑏𝑢(𝑥)

′′ 2
+ 𝐾𝑠𝑢(𝑥)

′ 2
]

𝐻

0

𝑑𝑥 − ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 125 ) 

Closed-form solutions of the model on which a transverse load acts are achieved by solving the 

differential system arising from the stationarity of the equation. Stationarity due to equilibrium 

implies: 

𝛿𝒰 = ∫ {𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′′ +𝐾𝑠𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ }𝑑𝑥 − ∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥
𝐻

0

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 126 ) 

After integrating by parts and replacing them in the equation, we order the common terms: 
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𝛿𝒰 = [𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′ ]
0

𝐻
− {[𝐾𝑏𝑢(𝑥)

′′′ −𝐾𝑠𝑢(𝑥)
′ ]𝛿𝑢(𝑥)}0

𝐻

+∫ [𝐾𝑏𝑢(𝑥)
′′′′ −𝐾𝑠𝑢(𝑥)

′′ − 𝑓(𝑥)]𝛿𝑢(𝑥)𝑑𝑥
𝐻

0

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 127 ) 

Equating the terms to zero results in the following equation: 

𝐾𝑏𝑢(𝑥)
′′′′ −𝐾𝑠𝑢(𝑥)

′′ − 𝑓(𝑥) = 0 ( 128 ) 

And boundary conditions: 

{
𝑢(0)
′′ = 0

𝐾𝑏𝑢(0)
′′′ −𝐾𝑠𝑢(0)

′ = 0
} 

( 129 ) 

A fourth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′′ − 𝐻2

𝐾𝑠
𝐾𝑏
𝑢(𝑧)
′′ =

𝐻4

𝐾𝑏
𝑓(𝑧) 

( 130 ) 

Assuming a general lateral load (Miranda E. , 1999): 

𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 131 ) 

Replacing it in the differential equation: 

𝑢(𝑧)
′′′′ − 𝛼2𝑢(𝑧)

′′ = 𝜆(1 − 𝑒−𝑎+𝑎z) ( 132 ) 

Donde: 

{𝛼 = 𝐻√
𝐾𝑠
𝐾𝑏
 , 𝜆 =

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏(1 − 𝑒−𝑎)
} 

( 133 ) 

The expression for 𝑢(𝑧) is proposed: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(𝛼𝑧) + 𝐶3 sinh(𝛼𝑧) −
𝜆

2𝛼2
𝑧2 −

𝜆

𝑎2(𝑎2 − 𝛼2)
𝑒−𝑎+𝑎z 

( 134 ) 



 

 

82 

The constants are obtained by evaluating the relevant boundary conditions: 

{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝑢(0)
′′′ − 𝛼2𝑢(0)

′ = 0}
 
 

 
 

 

( 135 ) 

Constants: 

{
 
 
 
 

 
 
 
 𝐶0 = 𝜆 [

1

2𝛼2
+

1

𝑎2(𝑎2 − 𝛼2)
] − (𝐶1 + 𝐶2 cosh 𝛼 + 𝐶3 sinh𝛼)

𝐶1 = −
𝜆𝑒−𝑎

𝑎𝛼2

𝐶2 =
𝜆

𝛼2
(
1

𝛼2
+

𝑒−𝑎

𝑎2 − 𝛼2
)

𝐶3 =
1

𝛼 cosh𝛼
{𝜆 [

1

𝛼2
+

1

𝑎(𝑎2 − 𝛼2)
] − (𝐶1 + 𝐶2𝛼 sinh𝛼)} }

 
 
 
 

 
 
 
 

 

( 136 ) 

The maximum displacement is obtained by evaluating 𝑢(𝑧) at 0: 

𝑢(0) = 𝐶0 + 𝐶2 −
𝜆

𝑎2(𝑎2 − 𝛼2)
𝑒−𝑎 

( 137 ) 

The instertory drift can be obtained by deriving 𝑢(𝑧) once: 

∆𝑠= 𝐶1 + 𝐶2𝛼 sinh(𝛼𝑧) + 𝐶3𝛼 cosh(𝛼𝑧) −
𝜆

𝛼2
𝑧 −

𝜆

𝑎(𝑎2 − 𝛼2)
𝑒−𝑎+𝑎z 

( 138 ) 

The global drift is obtained as the quotient between maximum displacement and total height: 

∆𝑔= 𝐶0 + 𝐶2 −
𝜆

𝑎2(𝑎2 − 𝛼2)
𝑒−𝑎 

( 139 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞): 
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{
 
 
 
 

 
 
 
 𝑢(𝑧) =

𝑊𝑚𝑎𝑥𝐻
2

𝐾𝑠
(
1 − 𝑧2

2
) +

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏
{
𝛼[sinh(𝛼𝑧) − sinh𝛼] − 1 + cosh[𝛼(𝑧 − 1)]

𝛼4 cosh𝛼
}

𝑢(0) =
𝑊𝑚𝑎𝑥𝐻

2

2𝐾𝑠
−
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏
(
𝛼 sinh𝛼 + 1 − cosh𝛼

𝛼4 cosh𝛼
)

∆𝑝= −
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠
𝑧 +

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏
{
𝛼 cosh(𝛼𝑧) + sinh[𝛼(𝑧 − 1)]

𝛼3 cosh𝛼
}

∆𝑔=
𝑊𝑚𝑎𝑥𝐻

2𝐾𝑠
−
𝑊𝑚𝑎𝑥𝐻

3

𝐾𝑏
(
𝛼 sinh𝛼 + 1 − cosh𝛼

𝛼4 cosh𝛼
)

}
 
 
 
 

 
 
 
 

 

( 140 ) 

We will consider some special cases of analysis: 

 When 𝐾𝑏 → 0. This situation occurs in few-story coupled pent and/or shear walls where 

the local bending stiffness is small and can be neglected. Applying limits: 

lim
𝐾𝑏→0

[𝐾𝑏𝑢(𝑧)
′′′′ −𝐻2𝐾𝑠𝑢(𝑧)

′′ ] = lim
𝐾𝑏→0

[𝑤𝐻4] → 𝑢(𝑧)
′′ = −

𝑤𝐻2

𝐾𝑠
 

( 141 ) 

This equation shows that shear is dominant in the structure and is identical to the 

differential equation of a shear beam (SB). 

 When 𝐾𝑠 → 0. This situation occurs in frames and/or coupled shear walls of few stories 

where the shear stiffness is small and can be neglected. Applying limits: 

lim
𝐾𝑠→0

[𝐾𝑏𝑢(𝑧)
′′′′ − 𝐻2𝐾𝑠𝑢(𝑧)

′′ ] = lim
𝐾𝑠→0

[𝑤𝐻4] → 𝑢(𝑧)
′′′′ =

𝑤𝐻4

𝐾𝑏
 

( 142 ) 

This equation shows that shear is dominant in the structure and is identical to the 

differential equation for a bending beam (EBB). 
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Figure 37. Lateral displacement of the beam and effect of the parameter 𝑎. 
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Figure 38. Beam interstory drift and effect of parameter 𝑎. 
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Figure 39. Effect of parameter 𝑎 on the normalized lateral displacement profile. 
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Figure 40. Effect of parameter 𝑎 on the interstory drift profile. 
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Figure 41. Effect of parameter α on the normalized lateral displacement profile for a uniformly distributed 

load (𝑎 = 2000). 

 

Figure 42. Variation of 𝛼 vs. drift ratio ∆𝑔 ∆𝑠⁄  for various cases of 𝑎. 
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According to the analysis of equations and graphs: 

 Displacement, interstory distortion and global distortion result from the sum of the shear 

contribution and the interaction between bending and shear. 

 The contribution of bending is not used directly as is the effect of shear, because axial 

deformations have been ignored and the effect of bending is taken into account indirectly 

in the interaction effect between bending and shear. 

 Since both beams coupled in parallel must move the same, the bending restrains the shear 

in the lower floors and the shear restrains the bending in the upper floors. As a consequence 

of this interaction between the two beams, the lateral stiffness increases, concluding that 

the stiffness of the system is greater than the sum of the bending and shear stiffnesses 

separately. Furthermore, the degree of interaction between bending and shear is strongly 

influenced by the parameter 𝛼. 

 The parameter α conditions the lateral displacement profile and the interstory distortion 

profile; that is, the parameter α determines the predominant type of behavior of the beam. 

For a value of 𝛼 = 0.3, it shows a pure bending behavior; a value of 𝛼 = 3, shows an 

intermediate behavior between shear and bending; and a value of 𝛼 = 30, shows a behavior 

tending to pure shear. 

 As the value of parameter α decreases the influence of parameter a on the normalized lateral 

displacement profile becomes less and less, and for a value of 𝛼 = 0.3, the normalized 

lateral displacement profile is practically independent of parameter a, as is the case in the 

flexural beam.  

 The normalized lateral displacement profile and the normalized interstory distortion profile 

are dependent on the parameter 𝑎. This dependence decreases with increasing value of 

parameter α. 

 It is possible to determine the value of α as a function of ∆𝑔 ∆𝑠,𝑚𝑎𝑥⁄ , which for a preliminary 

analysis can be assumed based on current code provisions. Calculated the value of 𝛼, the 

influence of the interaction between shear and bending can be evaluated. 

 The inflection point coinciding with the point of maximum interstory distortion has a slight 

influence of parameter 𝑎 and stabilizes as the value of 𝛼 increases. 
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 Parametric Analysis 

The inflection point in the deflection curve of the portal frame subjected to lateral loads is a key 

parameter in defining whether shear or bending behavior is dominant. The portion of the equivalent 

column below the inflection point represents the bending behavior and the upper portion represents 

the shear behavior. The dominant behavior is defined by the dimensionless parameters 𝛼 and 𝑘.  

The inflection point coincides with the maximum drift level 𝑑𝑦 𝑑𝑧⁄  and is calculated by equating 

the curvature of the portal deflection to zero. The location of the inflection point is found by 

iterative analysis, taking into account eq: 

𝐶2𝛼
2 cosh(𝛼𝑧) + 𝐶3𝛼

2 sinh(𝛼𝑧) + 2𝐶4 + 𝐶5𝑎
2𝑒−𝑎+𝑎𝑧 = 0 ( 143 ) 

For the particular case of a uniformly distributed lateral load: 

−
1

𝛼2
𝑧 +

𝛼2cosh(𝛼𝑧) −𝛼 sinh(𝛼 − 𝛼𝑧)

𝛼5 cosh(𝛼)
= 0 

( 144 ) 

 

Figure 43. Location of the inflection point. 
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 Values of 1.5 < 𝛼 < 10: It is influenced by the shear stiffness. Its location is generally 

between 0.25 and 0.65 of the height. It is therefore possible that CTB beams in this range 

represent an apparently balanced behavior, where the interaction between flexural and 

shear behavior has a high degree of influence.  

 Values of 10 < 𝛼 < 30: The location of the inflection point practically stabilizes and is no 

longer influenced by the increase in shear stiffness (increase of 𝛼). The CTB beam behaves 

predominantly in shear. 

4.1.4.2 Case 2 

 Calculation of the Transfer Matrix 

According to the differential equation and since it is assumed that the external loads act on the 

floors and not along the floor height, it is possible to write it as follows: 

𝐾𝑏𝑢(𝑥)
′′′′ −𝐾𝑠𝑢(𝑥)

′′ = 0 ( 145 ) 

The expression for 𝑢(𝑧) and 𝑢′(𝑧) is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(𝛼

∗𝑧) + 𝐶3 sinh(𝛼
∗𝑧)

𝑢(𝑧)
′ = 𝐶1 + 𝐶2𝛼

∗ sin(𝛼∗𝑧) + 𝐶3𝛼
∗ cosh(𝛼∗𝑧)

} 
( 146 ) 

Where: 

𝛼∗ = √
𝐾𝑠
𝐾𝑏

 

( 147 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result: 

{
𝑀(𝑧) = 𝐾𝑏𝑢(𝑧)

′′ = 𝛼∗2 cosh(𝛼∗𝑧)𝐾𝑏𝐶2 + 𝛼
∗2 sinh(𝛼∗𝑧)𝐾𝑏𝐶3

𝑉(𝑧) = 𝐾𝑏𝑢(𝑧)
′′′ − 𝐾𝑠𝑢(𝑥)

′ = (−𝛼∗2𝐾𝑏)𝐶1
} 

( 148 ) 

Writing the equations in matrix form: 
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{
 

 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑀𝑖(𝑧𝑖)
𝑉𝑖(𝑧𝑖)}

 

 
= 𝐾𝑖(𝑧𝑖) {

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 149 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
1 𝑧𝑖 cosh(𝛼∗𝑧) sinh(𝛼∗𝑧)

0 1 𝛼∗ sin(𝛼∗𝑧) 𝛼∗ cosh(𝛼∗𝑧)

0 0 𝛼∗2 cosh(𝛼∗𝑧)𝐾𝑏 𝛼∗2 sinh(𝛼∗𝑧)𝐾𝑏
0 −𝛼∗2𝐾𝑏 0 0 ]

 
 
 

𝑖

 

( 150 ) 

 Static Analysis Under Static Point Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 151 ) 

Expressing it in simplified form: 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= t

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
+ 𝑓 

( 152 ) 

Where: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 153 ) 

This equation expresses the relationship between the part forces and displacements of the top and 

the base of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant for all floors.Según las condiciones de contorno definidas en el caso 1: 
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{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝐾𝑏𝑢(0)
′′′ −𝐾𝑠𝑢(0)

′ = 0}
 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 154 ) 

Replacing: 

{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} + {

𝑓1
𝑓2
𝑓3
𝑓4

} 

( 155 ) 

By clearing the bending moment and the shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓3
𝑓4
} → {

𝑀1(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} 

( 156 ) 

Substituting the internal forces gives the displacement and slope at the top: 

{
𝑢𝑛(0)

𝑢𝑛
′ (0)

} = −[
𝑡1,3 𝑡1,4
𝑡2,3 𝑡2,4

] [
𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} + {

𝑓1
𝑓2
} 

( 157 ) 
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4.1.5 Parallel Coupling of Bending Beam and Shear Beam of a Field (CTB) - 
Torsional Behavior 

Torsional behavior is suitable for modeling cores, because once a certain number of floors are 

reached the cores become necessary due to the fact that they create three-dimensional units such 

as elevators. In the two main directions they act as shear walls and have significant torsional 

resistance which can constitute an important resistance with respect to the overall torsion of the 

building.  

Cores can be considered as thin-walled open cross-section elements with a particular uncommon 

behavior. In the presence of bending moments and axial loading the behavior is similar to that of 

a solid beam, but in the presence of torsional moments the relative axial displacement of the beam 

complicates its behavior.  The main characteristic of thin-walled beams is that they can undergo 

longitudinal extension as a result of torsion; consequently, longitudinal normal stresses are created 

that are proportional to the deformations, leading to an internal equilibrium of the longitudinal 

forces in each cross-section. These stresses, which arise as a result of relative section deformation 

and which are not examined in Saint Venant's pure torsion theory, can reach very large values in 

thin-walled beams (Vlasov, 1961). 

 Saint Venant's Theory (Uniform Torsion) 

In the case of uniform torsion, the value of rotation and longitudinal displacement of the beam is 

constant throughout the element. This occurs if the constant torsional moment is applied in 

opposite directions at the ends of the free beam so that it does not distort. The torsional stiffness 

affecting the rotation of the beam is defined as 𝐺𝐽 and can be calculated for open and closed 

sections: 

a) For cores of open sections, the stress distribution is very similar to that of thin rectangular 

sections. Therefore, the shear stresses are parallel to the section walls and change linearly 

along the thickness. To calculate J, the Bredt-Batho formula is used: 

𝐽 =
1

3
∑ℎ𝑖𝑣𝑖

3

𝑚

𝑖=1

 

( 158 ) 
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b) For cores with closed sections, there are significant increases in torsional stiffness with 

respect to the open section and the shear stress distribution is constant.  The following 

formula is used to calculate 𝐽: 

𝐽 =
4𝐴0

2

∑
ℎ𝑖
𝑣𝑖

𝑚
𝑖=1

 

( 159 ) 

 

                                  (a)                                                          (b) 

Figure 44.  (a) Closed section structural core, and (b) Open section structural core (Zalka, 2020). 

 

 Vlasov's Theory (Non-Uniform Torsion) 

In the case of non-uniform torsion, according to Vlasov's theory the rotation of the beam is variable 

throughout the element. When sections are free to deform, a beam responds in uniform torsion, on 

the contrary, if the deformation is restricted, due to the complex distribution of longitudinal forces, 

the shear forces in the cross-section can be related to two different modes of torsional behavior. 

One due to uniform torsion, and the other due to deformation torsion. Therefore, its torsional 

stiffness originates from two sources: Saint Venant's pure torsional stiffness (𝐺𝐽) and deformation 

torsional stiffness (𝐸𝐼𝑤). 

For pure Saint Venant torsional stiffness, the torsional constant (𝐺𝐽) is defined in closed form, but 

for deformation stiffness the calculation of the deformation constant (𝐼𝑤) is much more 

complicated. There is no generally valid procedure for the calculation of the deformation constant, 

but closed-form solutions exist for several known cross-sections. 
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4.1.5.1 Case 1 

 

Figure 45. Core subjected to a uniformly distributed torsional moment. 

The torsional moment is equal to the sum of uniform torsion and non-uniform torsion: 

𝐸𝐼𝑤𝜑(𝑥)
′′′′ − 𝐺𝐽𝜑(𝑥)

′′ = 𝑀(𝑥) ( 160 ) 

A case of special interest to the structural engineer is cores that are partially enclosed by slabs or 

floor beams, such as elevators. The effect of connecting elements can always be safely ignored, 

but their contribution is usually significant and in some cases needs to be taken into account for 

economic reasons. Connecting elements prevent the core section from deforming and increase its 

torsional stiffness. Investigations by Vlasov (1961) show that the phenomenon is taken into 

account by modifying the torsional differential equation. 

𝐸𝐼𝑤𝜑(𝑥)
′′′′ − 𝐺𝐽∗𝜑(𝑥)

′′ = 𝑀(𝑥) ( 161 ) 

Where: 

{
 

 
𝐽∗ = 𝐽 + 𝐽̅

𝐽 ̅ =
4𝐴0

2

𝑙3𝑠𝐺
12𝐸𝐼𝑏

+
1.2𝑙𝑠
𝐴𝑏

, 𝐴𝑏 = 𝑡𝑏𝑑, 𝐼𝑏 =
𝑡𝑏𝑑

3

12
}
 

 

 

( 162 ) 
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Figure 46. Core partially enclosed by slabs and/or beams (Zalka, 2020). 

However, numerical investigations show that when the depth of the connecting beam (𝑑) is 

relatively large, the effect of the connecting beams tends to be overestimated and may result in a 

value for the torsional stiffness that is greater than that of a completely closed core, which is clearly 

impossible.  

Taking this observation into account, (Zalka, 2020) proposes to use the following equation as a 

conservative approximation: 

𝐽 ̅ =
4ℎ2𝑏2

2𝑏 − 1
𝑡𝑤

+
𝑙
𝑡𝑤∗
+
2ℎ
𝑡𝑓

 

( 163 ) 

Where: 

𝑡𝑤
∗ =

𝑑

𝑠
𝑡𝑏 

( 164 ) 

The above observation is shown in the graph for values of 𝑏 = ℎ = 5𝑚, 𝑠 = 3𝑚, 𝐿 = 1.80𝑚, 𝑡𝑤 =

𝑡𝑓 = 0.25𝑚, 𝑡𝑏 = 0.20𝑚,𝐸 = 23000
𝑀𝑁

𝑚2
𝑦 𝐺 = 9580

𝑀𝑁

𝑚2
. As can be seen, the formula proposed 

by Vlasov overestimates the torsional stiffness for relatively large values of d⁄s. In structural 

engineering practice, overestimating the torsional stiffness can give a false sense of security to the 
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engineer. However, Vlasov's formula seems to be more accurate than the formula proposed by Dr. 

Zalka at an initial stage (𝑑 𝑠⁄ < 0.3), but then Vlasov's formula starts to overestimate the torsional 

stiffness moderately and dangerously. 

 

Figure 47. Comparison of the torsional parameter 𝐽. 

Assuming a general torsional load (Miranda E. , 1999): 

𝑀(𝑥) =
𝑀𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑀(𝑧) =

𝑀𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 165 ) 

Replacing it in the differential equation: 

𝜑(𝑧)
′′′′ − 𝛽2𝜑(𝑧)

′′ = 𝜆(1 − 𝑒−𝑎+𝑎z) ( 166 ) 

Where: 

𝛽 = 𝐻√
𝐺𝐽∗

𝐸𝐼𝑤
 , 𝜆 =

𝑀𝑚𝑎𝑥𝐻
4

𝐸𝐼𝑤(1 − 𝑒
−𝑎)

 

( 167 ) 

If the torsional stiffnesses 𝐸𝐼𝑤 and 𝐺𝐽∗ are replaced by their lateral equivalents 𝐾𝑏 and 𝐾𝑠 

respectively, it follows that the translational and torsional CTB equations are identical; that is, the 
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same conclusions obtained for the CTB beam subjected to a general lateral load are applicable for 

the CTB beam subjected to a general torsional load. 

𝜑(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(𝛽𝑧) + 𝐶3 sinh(𝛽𝑧) −
𝜆

2𝛽2
𝑧2 −

𝜆

𝑎2(𝑎2 − 𝛽2)
𝑒−𝑎+𝑎z 

( 168 ) 

Where: 

{
 
 
 
 

 
 
 
 𝐶0 = 𝜆 [

1

2𝛽2
+

1

𝑎2(𝑎2 − 𝛽2)
] − (𝐶1 + 𝐶2 cosh𝛽 + 𝐶3 sinh𝛽)

𝐶1 = −𝜆 (
𝑒−𝑎

𝑎𝛽2
)

𝐶2 =
𝜆

𝛽2
(
1

𝛽2
+

𝑒−𝑎

𝑎2 − 𝛽2
)

𝐶3 =
1

𝛽 cosh 𝛽
{𝜆 [

1

𝛽2
+

1

𝑎(𝑎2 − 𝛽2)
] − (𝐶1 + 𝐶2𝛽 sinh𝛽)} }

 
 
 
 

 
 
 
 

 

( 169 ) 

For the case of a uniformly distributed torsional load (𝑎 → ∞), the expression for 𝜑(𝑧) results: 

𝜑(𝑧) =
𝑀𝑚𝑎𝑥𝐻

2

𝐺𝐽∗
(
1− 𝑧2

2
) +

𝑀𝑚𝑎𝑥𝐻
4

𝐸𝐼𝑤
{
𝛽[sinh(𝛽𝑧) − sinh𝛽] − 1+ sinh(𝛽 − 𝛽𝑧)

𝛽4 cosh 𝛽
} 

( 170 ) 

This deflection expression clearly shows how the bending and shear contributors interact, 

producing an interaction between them. 

{
 
 

 
 𝜑(𝑠ℎ𝑒𝑎𝑟) =

𝑀𝑚𝑎𝑥𝐻
2

𝐺𝐽∗
(
1 − 𝑧2

2
)

𝜑(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) =
𝑀𝑚𝑎𝑥𝐻

4

𝐸𝐼𝑤
{
𝛽[sinh(𝛽𝑧) − sinh𝛽] − 1 + sinh(𝛽 − 𝛽𝑧)

𝛽4 cosh 𝛽
}
}
 
 

 
 

 

( 171 ) 

Evaluating the maximum deflection when z = 0: 

𝜑(𝑧) =
𝑀𝑚𝑎𝑥𝐻

2

2𝐺𝐽∗
+
𝑀𝑚𝑎𝑥𝐻

4

𝐸𝐼𝑤
[
(1 − 𝛽) sinh𝛽 − 1

𝛽4 cosh𝛽
] 

( 172 ) 

4.1.5.2 Case 2 

 Calculation of the Transfer Matrix 
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According to the differential equation and assuming that the external loads act on the floors and 

not along the floor height, it is possible to write it as follows: 

𝐸𝐼𝑤𝜑(𝑥)
′′′′ − 𝐺𝐽∗𝜑(𝑥)

′′ = 0 ( 173 ) 

The expression for 𝜑(𝑧) and 𝜑(𝑧)
′  is proposed: 

{
𝜑(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(𝛼𝜑

∗ 𝑧) + 𝐶3 sinh(𝛼𝜑
∗ 𝑧)

𝜑(𝑧)
′ = 𝐶1 + 𝐶2𝛼𝜑

∗ sin(𝛼𝜑
∗ 𝑧) + 𝐶3𝛼𝜑

∗ cosh(𝛼𝜑
∗ 𝑧)

} 
( 174 ) 

Where: 

𝛼𝜑
∗ = √

𝐺𝐽∗

𝐸𝐼𝑤
 

( 175 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result: 

{
𝑀(𝑧) = 𝐸𝐼𝑤𝜑(𝑧)

′′ = 𝛼𝜑
∗2 cosh(𝛼𝜑

∗ 𝑧)𝐸𝐼𝑤𝐶2 + 𝛼𝜑
∗2 sinh(𝛼𝜑

∗ 𝑧) 𝐸𝐼𝑤𝐶3

𝑉(𝑧) = 𝐸𝐼𝑤𝜑(𝑧)
′′′ − 𝐺𝐽∗𝜑(𝑥)

′ = (−𝛼𝜑
∗2𝐸𝐼𝑤)𝐶1

} 
( 176 ) 

Writing the equations in matrix form: 

{
 

 
𝜑𝑖(𝑧𝑖)

𝜑𝑖
′(𝑧𝑖)

𝑀𝑖(𝑧𝑖)

𝑉𝑖(𝑧𝑖)}
 

 
= 𝐾𝑖(𝑧𝑖) {

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 177 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
1 𝑧𝑖 cosh(𝛼𝜑

∗ 𝑧) sinh(𝛼𝜑
∗ 𝑧)

0 1 𝛼𝜑
∗ sin(𝛼𝜑

∗ 𝑧) 𝛼∗ cosh(𝛼𝜑
∗ 𝑧)

0 0 𝛼𝜑
∗2 cosh(𝛼𝜑

∗ 𝑧) 𝐸𝐼𝑤 𝛼𝜑
∗2 sinh(𝛼𝜑

∗ 𝑧) 𝐸𝐼𝑤

0 −𝛼𝜑
∗2𝐸𝐼𝑤 0 0 ]

 
 
 
 

𝑖

 

( 178 ) 

 Static Analysis Under Static Point Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 
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{
 

 
𝜑𝑛(0)

𝜑𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝜑1(ℎ1)

𝜑1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 179 ) 

Expressing it in simplified form: 

{
 

 
𝜑𝑛(0)

𝜑𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= t

{
 

 
𝜑1(ℎ1)

𝜑1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
+ 𝑓 

( 180 ) 

Where: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 181 ) 

This equation expresses the relationship between the part forces and displacements of the top and 

the base of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant for all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝜑(1) = 0

𝜑(1)
′ = 0

𝜑(0)
′′ = 0

𝐸𝐼𝑤𝜑(0)
′′′ − 𝐺𝐽∗𝜑(0)

′ = 0}
 
 

 
 

→

{
 

 
𝜑1(ℎ1) = 0

𝜑1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 

 

( 182 ) 

Replacing: 

{

𝜑𝑛(0)

𝜑𝑛
′ (0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

]{

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} + {

𝑓1
𝑓2
𝑓3
𝑓4

} 

( 183 ) 

By clearing the bending moment and the shear force at the base of the model: 
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{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓3
𝑓4
} → {

𝑀1(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} 

( 184 ) 

Substituting the internal force gives the rotation and its slope at the top of the beam: 

{
𝜑𝑛(0)

𝜑𝑛
′ (0)

} = − [
𝑡1,3 𝑡1,4
𝑡2,3 𝑡2,4

] [
𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} + {

𝑓1
𝑓2
} 

( 185 ) 
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4.1.6 Sandwich Beam of Two-Field (SWB) 

The sandwich beam (SWB) is developed, which considers that the structure consists of a parallel 

coupling of a Timoshenko beam (TB) and a bending beam (EBB) with deformation by global 

bending and shear; and local bending respectively. The beams are assumed to be coupled in parallel 

by axially stiff members that only transmit horizontal forces and do not deform. 

This model is suitable for modeling coupled portal frames and shear walls. The SWB beam model 

takes into account two kinematic fields: a transverse motion (𝑢) and a rotational motion (𝜃); with 

stiffnesses 𝐾𝑏1, 𝐾𝑠 and 𝐾𝑏2 as global bending, shear and local stiffnesses, respectively.  

The great acceptance that the literature has applied to the sandwich beam (SWB) to analyze 

structures such as portal frames, coupled shear walls and even buildings in global form, is due to 

its ability to correctly describe the three fundamental deformations of any structure; that is: shear 

deformation, global bending deformation, and local bending deformation. 

 

Figure 48. Sandwich beam of two-field (SWB). a) Case 1, b) Case 2, c) equivalent RB and d) Idealization of 

SWB stiffness. 

4.1.6.1 Case 1 

The potential energy of the two-field SWB model is expressed as follows: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+ 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑏2𝑢(𝑥)

′′ 2
𝐻

0

𝑑𝑥 
( 186 ) 

The characteristic stiffnesses are evaluated according to the structural element: 
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 Coupled shear wall: 

{
  
 

  
 𝐾𝑏1 =∑𝐸𝐴𝑤,𝑖𝑐𝑖

2

𝑤

𝑖=1

, 𝐾𝑏2 = 𝑟∑𝐸𝐼𝑤,𝑖

𝑤

𝑖=1

, 𝐾𝑠1 = (𝐾𝑏
−1 +𝐾𝑤

−1)
−1

𝐾𝑏 =∑
6𝐸𝐼𝑏,𝑖[(𝑙

∗ + 𝑆1)
2 + (𝑙∗ + 𝑆2)

2]

𝑙∗3ℎ (1 + 12
𝑘𝐸𝐼𝑏,𝑖
𝑙∗2𝐺𝐴𝑏,𝑖

)

𝑏

𝑖=1

 , 𝐾𝑤 =∑
12𝐸𝐼𝑤,𝑖
ℎ2

𝑤

𝑖=1

, 𝑟 =
𝐾𝑐

𝐾𝑐 +𝐾𝑏
 

}
  
 

  
 

 

( 187 ) 

 Frame: 

{
 
 

 
 𝐾𝑏1 =∑𝐸𝐴𝑐,𝑖𝑐𝑖

2

𝑐

𝑖=1

, 𝐾𝑏2 = 𝑟∑𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

, 𝐾𝑠1 = (𝐾𝑏
−1 +𝐾𝑐

−1)
−1

𝐾𝑏 =∑
12𝐸𝐼𝑏,𝑖
𝑙ℎ

𝑏

𝑖=1

, 𝐾𝑐 =∑
12𝐸𝐼𝑐,𝑖
ℎ2

𝑐

𝑖=1

, 𝑟 =
𝐾𝑐

𝐾𝑐 +𝐾𝑏 }
 
 

 
 

 

( 188 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 189 ) 

Consequently, the total potential energy of the two-field SWB beam subjected to a general lateral 

load distribution is expressed as: 

𝒰 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+ 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
+𝐾𝑏2𝑢(𝑥)

′′ 2
}

𝐻

0

𝑑𝑥 −∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 190 ) 

Closed-form solutions of the model on which a transverse load acts are achieved by solving the 

differential system arising from the stationarity of the equation. Stationarity due to equilibrium 

implies: 

𝛿𝒰 = ∫ {𝐾𝑏1𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ +𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)
′ ]𝛿𝜃(𝑥) −𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]𝛿𝑢(𝑥)
′

𝐻

0

+𝐾𝑏2𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′′ }𝑑𝑥 − ∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥 − ∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 191 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 
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𝛿𝒰 = [𝐾𝑏1𝜃(𝑥)
′ 𝛿𝜃(𝑥)]

0

𝐻
− {𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ] + 𝐾𝑏2𝑢(𝑥)
′′′ }𝛿𝑢(𝑥)0

𝐻
+ [𝐾𝑏2𝑢(𝑥)

′′ 𝛿𝑢(𝑥)
′ ]

0

𝐻

+∫ {𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)
′ ] − 𝐾𝑏1𝜃(𝑥)

′′ }𝛿𝜃(𝑥)𝑑𝑥
𝐻

0

+∫ {𝐾𝑠1[𝜃(𝑥)
′ − 𝑢(𝑥)

′′ ] + 𝐾𝑏2𝑢(𝑥)
′′′′ − 𝑓(𝑥)}𝛿𝑢(𝑥)𝑑𝑥

𝐻

0

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 192 ) 

Equating the terms to zero results in the following equations: 

{
𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ] − 𝐾𝑏1𝜃(𝑥)
′′ = 0

𝐾𝑠1[𝜃(𝑥)
′ − 𝑢(𝑥)

′′ ] + 𝐾𝑏2𝑢(𝑥)
′′′′ − 𝑓(𝑥) = 0

} 
( 193 ) 

And boundary conditions: 

{

𝜃(0)
′ = 0

𝑢(0)
′′ = 0

𝐾𝑠1[𝜃(0) − 𝑢(0)
′ ] + 𝐾𝑏2𝑢(0)

′′′ = 0

} 

( 194 ) 

Using the method of coefficients for the solution of the system of equations: 

{
𝑢(𝑥)
𝜃(𝑥)

} = [
−𝐾𝑠1𝐷 𝐾𝑠1 −𝐾𝑏1𝐷

2

𝐾𝑠1𝐷
2 −𝐾𝑏2𝐷

4 𝐾𝑠1𝐷
]
−1

{
0
𝑓(𝑥)

} 
( 195 ) 

I.e., 

{
 

 𝑢(𝑥)
′′′′′′ − (

𝐾𝑠1
𝐾𝑏1

+
𝐾𝑠1
𝐾𝑏2

) 𝑢(𝑥)
′′′′

𝜃(𝑥)
′′′′′′ − (

𝐾𝑠1
𝐾𝑏1

+
𝐾𝑠1
𝐾𝑏2

) 𝜃(𝑥)
′′′′

}
 

 

=

{
 

 
1

𝐾𝑏2
[𝑓(𝑥)
′′ −

𝐾𝑠1
𝐾𝑏1

𝑓(𝑥)]

−
𝐾𝑠1

𝐾𝑏1𝐾𝑏2
𝑓(𝑥)
′

}
 

 

 

( 196 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′′′′ − [(

𝐾𝑠1
𝐾𝑏1

+
𝐾𝑠1
𝐾𝑏2

)𝐻2] 𝑢(𝑧)
′′′′ =

𝐻4

𝐾𝑏2
[𝑓(𝑧)
′′ −𝐻2

𝐾𝑠1
𝐾𝑏1

𝑓(𝑧)] 
( 197 ) 

Defining three parameters: 
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{𝛼 = 𝐻√
𝐾𝑠1
𝐾𝑏2

 , 𝜅 = √1 +
𝐾𝑏2
𝐾𝑏1

, 𝜆 =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2(1 − 𝑒
−𝑎)

} 

( 198 ) 

Replacing the first two parameters: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ =
𝐻4

𝐾𝑏2
[𝑓(𝑧)
′′ − 𝛼2(𝜅2 − 1)𝑓(𝑧)] 

( 199 ) 

Assuming a general lateral load (Miranda E. , 1999): 

𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 200 ) 

Replacing the lateral load and the third parameter: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ = −𝜆𝛼2(𝜅2 − 1) + 𝜆[𝛼2(𝜅2 − 1) − 𝑎2]𝑒−𝑎+𝑎𝑧  ( 201 ) 

The expression for 𝑢(𝑧) is proposed: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼𝜅𝑧) + 𝐶5 sinh(𝛼𝜅𝑧) +
𝜆(𝜅2 − 1)

24𝜅2
𝑧4

+
𝜆[𝛼2(𝜅2 − 1) − 𝑎2]

𝑎4[𝑎2 − (𝛼𝜅)2]
𝑒−𝑎+𝑎𝑧 

( 202 ) 

The constants are obtained by evaluating the relevant boundary conditions (the origin of x is at the 

base of the model): 

{
 
 
 

 
 
 

𝑢(1) = 0, 𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝑢(1)
′′′ = 𝜆 (1 −

1

𝑎
+
𝑒−𝑎

𝑎
)

𝑢(0)
′′′′ = 𝜆(1 − 𝑒−𝑎)

𝑢(1)
′′′′′ = 𝜆 [𝛼2 (1 −

1

𝑎
+
𝑒−𝑎

𝑎
) − 𝑎]}

 
 
 

 
 
 

 

( 203 ) 

Constants: 
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{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

{
 
 

 
 𝐶0 = −(𝐶1 + 𝐶2 + 𝐶3) − 𝐶4 sech(𝛼𝜅) −

𝜆𝛼2

(𝛼𝜅)5
tanh(𝛼𝜅) [(1 −

1

𝑎
+
𝑒−𝑎

𝑎
) +

𝑎

𝑎2 − (𝛼𝜅)2
]

−𝜆 {
1

24
(1 −

1

𝑘2
) +

𝛼2(𝜅2 − 1) − 𝑎2

𝑎4[𝑎2 − (𝛼𝜅)2]
}

}
 
 

 
 

𝐶1 = −(2𝐶2 + 3𝐶3) −
𝜆𝛼2

(𝛼𝜅)4
[(1 −

1

𝑎
+
𝑒−𝑎

𝑎
) +

𝑎

𝑎2 − (𝛼𝜅)2
] − 𝜆 {

1

6
(1 −

1

𝑘2
) +

𝛼2(𝜅2 − 1) − 𝑎2

𝑎3[𝑎2 − (𝛼𝜅)2]
}

𝐶2 = −𝐶4
(𝛼𝜅)2

2
+
𝜆𝑒−𝑎

2𝑎2
[1 +

𝛼2

𝑎2 − (𝛼𝜅)2
]

𝐶3 =
𝜆𝑒−𝑎

6𝑎
(1 −

1

𝑘2
)

𝐶4 =
𝜆

(𝛼𝜅)4
[
1

𝑘2
+

𝑒−𝑎𝛼2

𝑎2 − (𝛼𝜅)2
]

𝐶5 = −𝐶4 tanh(𝛼𝜅) +
𝜆𝛼2

(𝛼𝜅)5
sech(𝛼𝜅) [(1 −

1

𝑎
+
𝑒−𝑎

𝑎
) +

𝑎

𝑎2 − (𝛼𝜅)2
]

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 ( 204 ) 

The maximum displacement is obtained by evaluating 𝑢(𝑧) at 0: 

𝑢(0) = 𝐶0 + 𝐶4 +
𝜆[𝛼2(𝜅2 − 1) − 𝑎2]

𝑎4[𝑎2 − (𝛼𝜅)2]
𝑒−𝑎 

( 205 ) 

The interstory drift can be obtained by deriving 𝑢(𝑧) once: 

∆𝑠= 𝐶1 + 2𝐶2𝑧 + 3𝐶3𝑧
2 + 𝐶4(𝛼𝜅) sinh(𝛼𝜅𝑧) + 𝐶5(𝛼𝜅) cosh(𝛼𝜅𝑧) +

𝜆(𝜅2 − 1)

6𝜅2
𝑧3

+
𝜆[𝛼2(𝜅2 − 1) − 𝑎2]

𝑎3[𝑎2 − (𝛼𝜅)2]
𝑒−𝑎+𝑎𝑧 

( 206 ) 

The global drift is obtained as the quotient between maximum displacement and total height: 

∆𝑔= [𝐶0 + 𝐶4 +
𝜆[𝛼2(𝜅2 − 1) − 𝑎2]

𝑎4[𝑎2 − (𝛼𝜅)2]
𝑒−𝑎] 

( 207 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞), the constants result: 
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{
 
 
 
 
 

 
 
 
 
 𝐶0 = 𝜆 {−

1

𝛼3𝜅5 cosh(𝛼𝜅)
[
1

𝛼𝜅
+ sinh(𝛼𝜅)] +

1

2𝛼2𝜅4
+
1

8
(1 −

1

𝜅2
)}

𝐶1 = −𝜆
1

6
(1 −

1

𝜅2
)

𝐶2 = −𝜆
1

2𝛼2𝜅4

𝐶3 = 0

𝐶4 = 𝜆
1

𝛼4𝜅6

𝐶5 = 𝜆
1

𝛼3𝜅5 cosh(𝛼𝜅)
[1 −

sinh(𝛼𝜅)

(𝛼𝜅)
]

}
 
 
 
 
 

 
 
 
 
 

 

( 208 ) 

Replacing constants: 

{
 
 
 
 
 
 

 
 
 
 
 
 

{
 
 

 
 𝑢(𝑧) = 𝜆(

𝜅2 − 1

𝜅2
)(

1

24
𝑧4 −

1

6
𝑧 +

1

8
) +

1

2𝜅4𝛼2
𝜆(1 − 𝑧2)

−
1

𝜅2
𝜆 {
1 − cosh(𝛼𝜅𝑧 − 𝛼𝜅) − (𝛼𝜅)[sinh(𝛼𝜅𝑧) − sinh(𝛼𝜅)]

(𝛼𝜅)4 cosh(𝛼𝜅)
}
}
 
 

 
 

𝑢(0) = 𝜆(
𝜅2 − 1

8𝜅2
) +

1

2𝜅4𝛼2
𝜆 −

1

𝜅2
𝜆 [
1 − cosh(𝛼𝜅) + (𝛼𝜅) sinh(𝛼𝜅)

(𝛼𝜅)4 cosh(𝛼𝜅)
]

∆𝑝= 𝜆 (
𝜅2 − 1

6𝜅2
) (𝑧3 − 1) −

1

𝜅4𝛼2
𝜆𝑧 +

1

𝜅2
𝜆 [
sinh(𝛼𝜅𝑧 − 𝛼𝜅) + (𝛼𝜅) cosh(𝛼𝜅𝑧)

(𝛼𝜅)3 cosh(𝛼𝜅)
]

∆𝑔=
1

𝐻
{𝜆 (

𝜅2 − 1

8𝜅2
) +

1

2𝜅4𝛼2
𝜆 −

1

𝜅2
𝜆 [
1 − cosh(𝛼𝜅) + (𝛼𝜅) sinh(𝛼𝜅)

(𝛼𝜅)4 cosh(𝛼𝜅)
]}

}
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After some simple manipulations, the control parameters result: 

{
 
 
 
 
 

 
 
 
 
 

{
 
 

 
 𝑢(𝑧) =

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏1 +𝐾𝑏2
(
1

24
𝑧4 −

1

6
𝑧 +

1

8
) +

1

2𝑘4
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠1
(1 − 𝑧2)

−
1

𝜅2
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2
{
1 − cosh(𝛼𝜅𝑧 − 𝛼𝜅) − (𝛼𝜅)[sinh(𝛼𝜅𝑧) − sinh(𝛼𝜅)]

(𝛼𝜅)4 cosh(𝛼𝜅)
}
}
 
 

 
 

𝑢(0) =
𝑊𝑚𝑎𝑥𝐻

4

8(𝐾𝑏1 + 𝐾𝑏2)
+

1

2𝑘4
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠1
−
1

𝜅2
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2
[
1 − cosh(𝛼𝜅) + (𝛼𝜅) sinh(𝛼𝜅)

(𝛼𝜅)4 cosh(𝛼𝜅)
]

∆𝑝=
𝑊𝑚𝑎𝑥𝐻

4

6(𝐾𝑏1 +𝐾𝑏2)
(𝑧3 − 1) −

1

𝑘4
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠1
𝑧 +

1

𝜅2
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2
{
sinh(𝛼𝜅𝑧 − 𝛼𝜅) + (𝛼𝜅)[cosh(𝛼𝜅𝑧)]

(𝛼𝜅)3 cosh(𝛼𝜅)
}

∆𝑔=
𝑊𝑚𝑎𝑥𝐻

3

8(𝐾𝑏1 + 𝐾𝑏2)
+

1

2𝑘4
𝑊𝑚𝑎𝑥𝐻

𝐾𝑠1
−
1

𝜅2
𝑊𝑚𝑎𝑥𝐻

3

𝐾𝑏2
[
1 − cosh(𝛼𝜅) + (𝛼𝜅) sinh(𝛼𝜅)

(𝛼𝜅)4 cosh(𝛼𝜅)
]

}
 
 
 
 
 

 
 
 
 
 

 

 ( 210 ) 

It is important to note that in the shear deflection equation, the 1 𝜅4⁄  term generally tends to unity. 

It is noted that the lateral deflection equation obtained is identical to the equation proposed by 
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Nollet (1979) and Zalka (2020). This expression clearly shows how the bending and shear 

contributors interact; producing an interaction between them. 

{
  
 

  
 𝑢(𝑓𝑙𝑒𝑥𝑖ó𝑛) =

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏1 + 𝐾𝑏2
(
1

24
𝑧4 −

1

6
𝑧 +

1

8
)

𝑢(𝑠ℎ𝑒𝑎𝑟) =
1

2𝑘4
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠1
(1 − 𝑧2)

𝑢(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = −
1

𝜅2
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2
{
1 − cosh(𝛼𝜅𝑧 − 𝛼𝜅) − (𝛼𝜅)[sinh(𝛼𝜅𝑧) − sinh(𝛼𝜅)]

(𝛼𝜅)4 cosh(𝛼𝜅)
}
}
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And for the maximum deflection: 

{
  
 

  
 𝑢(𝑓𝑙𝑒𝑥𝑖ó𝑛) =

𝑊𝑚𝑎𝑥𝐻
4

8(𝐾𝑏1 + 𝐾𝑏2)

𝑢(𝑠ℎ𝑒𝑎𝑟) =
1

𝑘4
𝑊𝑚𝑎𝑥𝐻

2

2𝐾𝑠1

𝑢(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = −
1

𝜅2
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2
[
1 − 𝐶𝑜𝑠ℎ(𝛼𝜅) + (𝛼𝜅) sinh(𝛼𝜅)

(𝛼𝜅)4 cosh(𝛼𝜅)
]
}
  
 

  
 

 

( 212 ) 

We will consider some special cases of analysis: 

a) When 
𝐾𝑏2

𝐾𝑏1
→ 0 (𝐾𝑏1 → ∞, 𝐾𝑏2 → 0). This situation occurs in multi-span few-story coupled 

portal and/or shear walls, where the global bending is larger in magnitude compared to the 

local bending. Evaluating the limit of κ: 

𝜅 = lim
𝐾𝑏2
𝐾𝑏1

→0

𝜅 = lim
𝐾𝑏2
𝐾𝑏1

→0

√1 +
𝐾𝑏2
𝐾𝑏1

= √1 + 0 = 1 ↔ 𝜅 = 1  

( 213 ) 

After integrating twice, evaluate two boundary conditions and apply limits: 

𝑢(𝑧)
′′ = −

𝑤𝐻2

𝐾𝑠
 

( 214 ) 

This equation shows that shear is dominant in the structure and is identical to the 

differential equation of a shear beam (SB): 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

2

2𝐾𝑠1
(1 − 𝑧2) → 𝑢(0) =

𝑊𝑚𝑎𝑥𝐻
2

2𝐾𝑠1
 

( 215 ) 
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b) When  ℎ𝑣 → 0. This situation occurs in portal frames and/or coupled shear walls where the 

connecting beams have little camber and consequently little bending stiffness. In this case 

the function of the connecting beams is primarily to transmit the horizontal loads and force 

the columns and/or shear walls to work together. Evaluating the limit of 𝐾𝑠 and 𝛼: 

𝐾𝑠 = lim
𝐾𝑣→0

𝐾𝑣𝐾𝑐
𝐾𝑐 + 𝐾𝑣

= lim
𝐾𝑣→0

𝐾𝑣
𝐾𝑐

𝐾𝑐 +𝐾𝑣
= 0

𝛼 = lim
ℎ𝑣→0

𝛼 = lim
𝐾𝑣→0

𝛼 = lim
𝐾𝑣→0

𝐻√
𝐾𝑠
𝐾𝑏2

= 0

 

( 216 ) 

After integrating twice and evaluating two boundary conditions: 

𝑢(𝑧)
′′′′ =

𝑤𝐻4

𝐾𝑏2
 

( 217 ) 

This equation shows that local bending is dominant in the structure and is identical to the 

differential equation for a bending beam (EBB): 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2
(
1

24
𝑧4 −

1

6
𝑧 +

1

8
) → 𝑢(0) =

𝑊𝑚𝑎𝑥𝐻
4

8𝐾𝑏2
 

( 218 ) 

c) When ℎ𝑣 → ∞. This situation turns out to be a theoretical case with little practical 

application and occurs in coupled portal frames and/or shear walls where the connecting 

beams have a very large cant, as a consequence the shear stiffness increases and the local 

bending stiffness decreases drastically because the shear reduction factor tends to zero. In 

this case the function of the connecting beams is to try to fully couple the columns and/or 

shear walls so that they work as a single unit. Evaluating the limit of 𝑟 and 𝐾𝑠: 

𝑟 = lim
𝐾𝑣→∞

𝑟 = lim
𝐾𝑣→∞

𝐾𝑐
𝐾𝑐 + 𝐾𝑣

= lim
𝐾𝑣→∞

1

1 +
𝐾𝑣
𝐾𝑐

= 0 ↔ 𝑟 = 0 ↔ 𝐾𝑏2 = 0

𝐾𝑠 = lim
𝐾𝑣→∞

1

1
𝐾𝑣
+
1
𝐾𝑐

= lim
𝐾𝑣→∞

1

0 +
1
𝐾𝑐

= 𝐾𝑐 ↔ 𝐾𝑠 = 𝐾𝑐 ↔ 𝐾𝑠 = ∞

 

( 219 ) 

After integrating twice, evaluate two boundary conditions and apply limits: 
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𝑢(𝑧)
′′ =

𝑤𝐻4𝑧2

2(𝐾𝑏1 +𝐾𝑏2)
 

( 220 ) 

It is obtained: 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏1 +𝐾𝑏2
(
1

24
𝑧4 −

1

6
𝑧 +

1

8
) → 𝑢(0) =

𝑊𝑚𝑎𝑥𝐻
4

8(𝐾𝑏1 +𝐾𝑏2)
 

( 221 ) 

This equation shows that in the structure the total bending (global + local) is dominant and 

is identical to the differential equation of a bending beam (EBB). 

d) When 𝐾𝑏1 → ∞. This situation occurs in coupled portal and/or shear walls where 𝐴𝑖 → ∞; 

i.e., where the effect of axial deformations is neglected.  Evaluating the limit of 𝜅: 

𝜅 = lim
𝐾𝑏1→∞

𝜅 = lim
𝐾𝑏1→∞

√1+
𝐾𝑏2
𝐾𝑏1

= √1 + 0 = 1 ↔ 𝜅 = 1 

( 222 ) 

After integrating twice, evaluate two boundary conditions and apply limits: 

𝑢(𝑧)
′′′′ − 𝛼2𝑢(𝑧)

′′ =
𝑤𝐻4

𝐾𝑏2
 

( 223 ) 

This equation shows that in the structure the global bending is neglected, which leads to 

the SWB beam behaving like a CTB beam of a field taking into account only the effect of 

local bending and shear. 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠
(
1 − 𝑧2

2
) +

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏
{
𝛼[sinh(𝛼𝑧) − sinh𝛼] − 1 + cosh[𝛼(𝑧 − 1)]

𝛼4 cosh𝛼
}

𝑢(0) =
𝑊𝑚𝑎𝑥𝐻

2

2𝐾𝑠
−
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏
[
1 + 𝛼 sinh𝛼 − cosh 𝛼

𝛼4 cosh 𝛼
]

 

( 224 ) 
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Figure 49. Lateral displacement and effect of parameter 𝑎 for 𝑘 = 1.00021. 
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Figure 50. Interstory drift and effect of parameter 𝑎 for 𝑘 = 1.00021. 
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Figure 51. Normalized lateral displacement and effect of parameter 𝑎 for 𝑘 = 1.00021. 
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Figure 52. Normalized interstory drift and effect of parameter 𝑎 for 𝑘 = 1.00021. 
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Figure 53. Lateral displacement and effect of parameter 𝜅 for 𝑎 = 2000. 
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Figure 54. Interstory drift and effect of parameter 𝜅 for 𝑎 = 2000. 
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Figure 55. Normalized lateral displacement and effect of parameter 𝜅 for 𝑎 = 2000. 
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Figure 56. Normalized interstory drift and effect of parameter 𝜅 for 𝑎 = 2000. 
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Figure 57. Displacement types (bending, shear and interaction) for 𝑘 = 1.00148. 
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Figure 58. Percentage share of interaction deflection with respect to total displacement. 

According to the analysis of equations and graphs: 

 Displacement, interstory drift and global drift result from the sum of the contribution from 

bending (local bending + global bending), from shear and from the interaction between 

bending and shear. 

 The lateral stiffness increases due to the interaction effect, concluding that the stiffness of 

the system is greater than the sum of the individual stiffnesses from bending and shear. The 

interaction effect is beneficial because it reduces the total displacement of the structure. 

 The parameter 𝛼 conditions the lateral displacement profile and the interstory drift profile; 

that is, the parameter α determines the predominant type of behavior in the beam. For a 

value of 𝛼 = 0.3, it shows a pure bending behavior; a value of 𝛼 = 3, shows a behavior 

intermediate between shear and bending; and a value of 𝛼 = 30, shows a behavior tending 

to pure shear. 

 As the value of parameter 𝛼 decreases the influence of parameter 𝑎 on the normalized 

lateral displacement profile becomes less and less, and for a value of 𝛼 = 0.3, the 
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normalized lateral displacement profile is practically independent of parameter 𝑎, as is the 

case in the flexural beam.  

 The normalized lateral displacement profile and the normalized interstory drift profile are 

dependent on the parameter 𝑎. This dependence decreases with decreasing value of 

parameter 𝛼. 

 The lateral displacement profile and the interstory drift profile are dependent on the 

parameter 𝜅. This dependence decreases with decreasing value of parameter 𝛼. 

 For small values of 𝛼 (few floors), with respect to the total displacement the contribution 

of interaction is important, the contribution of bending is negligible and the contribution 

of shear dominates the behavior. As the value of 𝛼 increases; the interaction becomes 

increasingly insignificant, the effect of bending becomes increasingly important, and the 

effect of shear is drastically reduced.  

 It would seem that ignoring the interaction is acceptable since it considerably reduces the 

calculations and as α increases it becomes increasingly negligible, but it should be noted 

that it is only acceptable for intermediate to high values of 𝛼, for low-story structures 

ignoring the interaction is very conservative. 

 As the value of 𝛼 increases, the profile of the interaction is approximately constant and its 

contribution decreases considerably. 

 The effect of the interaction is dependent on the type of dominant behavior. When the 

dominant behavior is practically pure shear the interaction is considerable, as bending 

begins to dominate the behavior the interaction decreases to a practically negligible value 

for pure bending values. 

 Parametric Analysis 

The inflection point in the deflection curve of the portal frame subjected to lateral loads is a key 

parameter in defining whether shear or bending behavior is dominant. The portion of the equivalent 

column below the inflection point represents the bending behavior and the upper portion represents 

the shear behavior. The dominant behavior is defined by the dimensionless parameters α and 𝑘2.  
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The inflection point, which coincides with the maximum drift level 𝑑𝑦 ⁄ 𝑑𝑧, is calculated by 

equating the curvature of the portal deflection to zero. The location of the inflection point is found 

by iterative analysis, taking into account equation: 

2𝐶2 + 6𝐶3𝑧 + 𝐶4(𝛼𝜅)
2 cosh(𝛼𝜅𝑧) + 𝐶5(𝛼𝜅)

2 sinh(𝛼𝜅𝑧) +
𝜆(𝜅2 − 1)

2𝜅2
𝑧2

+
𝜆[𝛼2(𝜅2 − 1) − 𝑎2]

𝑎2[𝑎2 − (𝛼𝜅)2]
𝑒−𝑎+𝑎𝑧 = 0 

( 225 ) 

For the particular case of a uniformly distributed lateral load: 

𝜅2 − 1

2𝜅2
𝑧2 −

1

2𝜅4𝛼2
(1 − 𝑧2) +

1

𝜅2
cosh(𝛼𝜅𝑧 − 𝛼𝜅) + (𝛼𝜅) sinh(𝛼𝜅𝑧)

(𝛼𝜅)2 cosh(𝛼𝜅)
= 0 

( 226 ) 

 

Figure 59. Location of the inflection point for 𝛼𝐻 < 10. 

With respect to the curve in Figure 59, the behavior of the sandwich beam can be divided into two 

categories according to the value of 𝛼: 
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a) Values of 𝛼 < 1.5: The inflection point is practically independent of the parameter𝜅2, i.e., 

the axial deformations of the vertical elements do not significantly influence the calculation 

of the inflection point. Its location is approximately in the upper third of the height of the 

sandwich beam and therefore it behaves predominantly in bending. 

b) Values of 1.5 < 𝛼 < 10: It is influenced by the shear stiffness and axial deformations of 

the vertical elements. For the range from 1.5 to 4, the increase of shear stiffness (increase 

of α) decreases the inflection point increasing the shear influence, on the contrary, for the 

range from 4 to 10, the increase of shear stiffness and 𝑘2 increases the inflection point if 

there is axial deformation, increasing the bending influence of the sandwich beam. Their 

location is generally between 0.25 and 0.70 of the height. It is therefore possible that 

sandwich beams in this range represent an apparently balanced behavior, where the 

interaction between flexural and shear behavior has a high degree of influence. 

 

Figure 60. Location of the inflection point for 10 < 𝛼𝐻 < 100. 

With respect to the curves in Figures 59 and 60, the behavior of the sandwich beam can be divided 

into four categories according to the value of 𝛼: 
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a) Values of 𝛼 < 1.5: The inflection point is practically independent of the parameter 𝑘2, i.e., 

the axial deformations of the vertical elements do not significantly influence the calculation 

of the inflection point. Its location is approximately in the upper third of the height of the 

sandwich beam and therefore it behaves predominantly in bending. 

b) Values of 1.5 < 𝛼 < 10: It is influenced by the shear stiffness and axial deformations of 

the vertical elements. For the range from 1.5 to 4, the increase of shear stiffness (increase 

of α) decreases the inflection point increasing the shear influence, on the contrary, for the 

range from 4 to 10, the increase of shear stiffness and 𝑘2 increases the inflection point if 

there is axial deformation, increasing the flexural influence of the sandwich beam. Their 

location is generally between 0.25 and 0.70 of the height. It is therefore possible that 

sandwich beams in this range represent an apparently balanced behavior, where the 

interaction between flexural and shear behavior has a high degree of influence.  

c) Values of 10 < 𝛼 < 40: The location of the inflection point increases with α and 𝑘2. When 

𝑘2=0, the sandwich beam behaves predominantly in shear, but as 𝑘2increases, the 

sandwich beam behaves predominantly in flexure.  

d) Values of 𝛼 > 40: The location of the inflection point stabilizes and is practically no longer 

influenced by the increase in shear stiffness (increase of 𝛼𝐻). The sandwich beam behaves 

predominantly in bending because the increase of 𝑘2 (increased axial deflections of the 

columns) further raises the inflection point, from 0.80 for 𝑘2=1.005 to approximately 0.98 

≈ 1 for 𝑘2 = 1.25. 

4.1.6.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations and assuming that the external loads act on the 

floors and not along the floor height, it is possible to write it as follows: 

{
𝐾𝑠1[𝜃(𝑧) − 𝑢(𝑧)

′ ]− 𝐾𝑏1𝜃(𝑧)
′′ = 0

𝐾𝑠1[𝜃(𝑧)
′ − 𝑢(𝑧)

′′ ] + 𝐾𝑏2𝑢(𝑧)
′′′′ = 0

} 
( 227 ) 

The expression for 𝑢(𝑧) and 𝜃(𝑧) is proposed: 
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{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧

2 + 𝐶3𝑧
3 + 𝐶4 cosh(𝛼

∗𝜅𝑧) + 𝐶5 sinh(𝛼
∗𝜅𝑧)

𝜃(𝑧) = 𝐶6 + 𝐶7𝑧 + 𝐶8𝑧
2 + 𝐶9 cosh(𝛼

∗𝜅𝑧)+ 𝐶10 sinh(𝛼
∗𝜅𝑧)

} 
( 228 ) 

Where: 

{𝛼∗ = √
𝐾𝑠1
𝐾𝑏2

, 𝜅 = √1 +
𝐾𝑏2
𝐾𝑏1

}  

( 229 ) 

Expressing the coefficients of the function 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

𝜃(𝑧) = 𝐶1 + (2𝑧)𝐶2 + [3𝑧
2 +

6

𝛼∗2(𝜅2 − 1)
] 𝐶3 − [𝛼

∗𝜅(𝜅2 − 1) sinh(𝛼∗𝜅𝑧)]𝐶4

− [𝛼∗𝜅(𝜅2 − 1) cosh(𝛼∗𝜅𝑧)]𝐶5 ( 230 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result: 

{
 
 

 
 {
𝑀l(𝑧) = 𝐾𝑏1𝜃(𝑧)

′ = (2𝐾𝑏1)𝐶2 + (6𝐾𝑏1𝑧)𝐶3 − [(𝛼
∗𝜅)2(𝜅2 − 1) cosh(𝛼∗𝜅𝑧)𝐾𝑏1]𝐶4

−[(𝛼∗𝜅)2(𝜅2 − 1) sinh(𝛼∗𝜅𝑧)𝐾𝑏1]𝐶5
}

{
𝑀r(𝑧) = 𝐾𝑏2𝑢(𝑥)

′′ = (2𝐾𝑏2)𝐶2 + (6𝐾𝑏2𝑧)𝐶3 + [(𝛼
∗𝜅)2 cosh(𝛼∗𝜅𝑧)𝐾𝑏2]𝐶4

+[(𝛼∗𝜅)2 sinh(𝛼∗𝜅𝑧)𝐾𝑏2]𝐶5
}

𝑉(𝑧) = 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)
′ ]+ 𝐾𝑏2𝑢(𝑥)

′′′ = (6𝐾𝑏1 + 6𝐾𝑏2)𝐶3 }
 
 

 
 

 

( 231 ) 

Writing the equations in matrix form: 

{
  
 

  
 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝜃𝑖(𝑧𝑖)

𝑀l(𝑧𝑖)

𝑀r(𝑧𝑖)

𝑉𝑖(𝑧𝑖) }
  
 

  
 

= 𝐾𝑖(𝑧𝑖)

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

 

( 232 ) 

Where: 
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𝐾𝑖(𝑧𝑖)

=

[
 
 
 
 
 
 
 
1 𝑧 𝑧2 𝑧3 cosh(𝛼∗𝜅𝑧) sinh(𝛼∗𝜅𝑧)

0 1 2𝑧 3𝑧2 (𝛼∗𝜅) sinh(𝛼∗𝜅𝑧) (𝛼∗𝜅) cosh(𝛼∗𝜅𝑧)

0 1 2𝑧 3𝑧2 +
6

𝛼∗2(𝜅2 − 1)
−𝛼∗𝜅(𝜅2 − 1) sinh(𝛼∗𝜅𝑧) −𝛼∗𝜅(𝜅2 − 1) cosh(𝛼∗𝜅𝑧)

0 0 2𝐾𝑏1 6𝐾𝑏1𝑧 −(𝛼∗𝜅)2(𝜅2 − 1) cosh(𝛼∗𝜅𝑧)𝐾𝑏1 −(𝛼∗𝜅)2(𝜅2 − 1) sinh(𝛼∗𝜅𝑧)𝐾𝑏1
0 0 2𝐾𝑏2 6𝐾𝑏2𝑧 (𝛼∗𝜅)2 cosh(𝛼∗𝜅𝑧)𝐾𝑏2 (𝛼∗𝜅)2 sinh(𝛼∗𝜅𝑧)𝐾𝑏2
0 0 0 6𝐾𝑏1 + 6𝐾𝑏2 0 0 ]

 
 
 
 
 
 
 

 

 ( 233 ) 

 Static Analysis Under Static Point Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

{
  
 

  
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)

𝑀ln(0)

𝑀rn(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑘(0)

𝑛

𝑘=1

{
  
 

  
 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 234 ) 

Expressing it in simplified form: 

{
  
 

  
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)

𝑀ln(0)

𝑀rn(0)

𝑉𝑛(0) }
  
 

  
 

= t

{
  
 

  
 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

+ 𝑓 

( 235 ) 

Where: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 236 ) 



 

 

128 

This equation expresses the relationship between the part forces and displacements of the top and 

the base of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant for all floors.Según las condiciones de contorno definidas en el caso 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝜃(1) = 0

𝜃(0)
′ = 0

𝑢(0)
′′ = 0

𝐾𝑠1[𝜃(0) − 𝑢(0)
′ ] + 𝐾𝑏2𝑢(0)

′′′ = 0}
 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝜃1(ℎ1) = 0

𝑀𝑙𝑛(0) = 0

𝑀𝑟𝑛(0) = 0

𝑉𝑛(0) = 0 }
  
 

  
 

 

( 237 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

+

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

 

( 238 ) 

By clearing the bending moment and the shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓4
𝑓5
𝑓6

} 

( 239 ) 

Clearing: 

{

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]

−1

{

𝑓4
𝑓5
𝑓6

} 

( 240 ) 

Substituting the internal forces we obtain the displacement, its derivative and the rotation at the 

top of the beam: 

{

𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)
} = − [

𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,4 𝑡3,5 𝑡3,6

] [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]

−1

{

𝑓4
𝑓5
𝑓6

} + {

𝑓1
𝑓2
𝑓3

} 

( 241 ) 
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4.1.7 Generalized Sandwich Beam of Three-Field (GSB1) 

The Generalized Sandwich Beam (GSB1) is presented, which considers that the structure consists 

of a parallel coupling of two Timoshenko Beams (TB) joined by means of axially rigid members 

that only transmit horizontal forces and do not deform. This beam (GSB), results from the 

generalization of the Sandwich Beam (SWB) by including an additional rotational kinematic field, 

where the shear deformation in stiffer elements such as shear walls will be taken into account. 

Taking into account this new kinematic field and the introduction of shear stiffness, this beam 

(GSB1) can be used as a general replacement beam for all structural elements such as shear walls, 

coupled shear walls and portal frames. 

Bozdoğan (2010) using the GSB1 beam adapted the transfer matrix method to static, dynamic and 

stability analysis of tall buildings using the continuous method. Moghadasi (2015) using the GSB1 

beam and the one-dimensional finite element method offered solutions for static analysis, 

undamped free vibration analysis and classical damped analysis of tall buildings. 

 

Figure 61. Generalized Sandwich Beam (GSB1) of three fields. a) Case 1, b) Case 2, c) Equivalent RB and d) 

Idealization of GSB1 stiffness. 

The model has three kinematic fields, a single transverse motion u and a different rotation field (𝜃 

and 𝜓) in each timoshenko beam (TB) neglecting the axial extensibility of the TBs. In the model; 

𝐾𝑏1 and 𝐾𝑠1 are the bending and shear stiffnesses in the left TB, while 𝐾𝑏2 and 𝐾𝑠2 are the bending 

and shear stiffnesses in the right TB. It should be noted that the value of 𝐾𝑠1 may be negligible 

(for practical cases) with respect to 𝐾𝑠2; because the columns turn out to be thin enough. 
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4.1.7.1 Case 1 

The potential energy of the three-field GSB1 model is expressed as: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜓

′2 + 𝐾𝑠1[𝑢(𝑥)
′ − 𝜓(𝑥)]

2
+𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 
( 242 ) 

 Coupled shear wall: 

{
  
 

  
 𝐾𝑏1 =∑𝐸𝐴𝑤𝑖𝑐𝑖

2

𝑤

𝑖=1

, 𝐾𝑏2 = 𝑟∑𝐸𝐼𝑤𝑖

𝑤

𝑖=1

, 𝐾𝑠1 = (𝐾𝑏
−1 + 𝐾𝑤

−1)
−1
, 𝐾𝑠2 =∑𝐺𝐴𝑤,𝑖

𝑤

𝑖=1

𝐾𝑏 =∑
6𝐸𝐼𝑏,𝑖[(𝑙

∗ + 𝑆1)
2 + (𝑙∗ + 𝑆2)

2]

𝑙∗3ℎ (1 + 12
𝑘𝐸𝐼𝑏,𝑖
𝑙∗2𝐺𝐴𝑏,𝑖

)

𝑏

𝑖=1

 , 𝐾𝑤 =∑
12𝐸𝐼𝑤
ℎ2

𝑤

𝑖=1

, 𝑟 =
𝐾𝑐

𝐾𝑐 +𝐾𝑏
 

}
  
 

  
 

 

( 243 ) 

 Frame: 

{
 
 

 
 𝐾𝑏1 =∑𝐸𝐴𝑐,𝑖𝑐𝑖

2

𝑐

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

, 𝐾𝑠1 = (𝐾𝑏
−1 + 𝐾𝑐

−1)
−1
, 𝐾𝑠2 =∑𝐺𝐴𝑐,𝑖

𝑐

𝑖=1

𝐾𝑠2 =∑𝐺𝐴𝑐𝑖

𝑐

𝑖=1

, 𝐾𝑏 =∑
12𝐸𝐼𝑏,𝑖
𝑙ℎ

𝑏

𝑖=1

, 𝐾𝑐 =∑
12𝐸𝐼𝑐,𝑖
ℎ2

𝑐

𝑖=1

, 𝑟 =
𝐾𝑐

𝐾𝑐 +𝐾𝑏 }
 
 

 
 

 

( 244 ) 

 Dual (frame + shear wall): 

{
 
 

 
 𝐾𝑏1 =∑𝐸𝐴𝑐,𝑖𝑐𝑖

2

𝑐

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

+∑𝑟𝐸𝐼𝑤,𝑖

𝑤

𝑖=1

, 𝐾𝑠1 = (𝐾𝑏
−1 +𝐾𝑐

−1)−1, 𝐾𝑠2 =∑𝐺𝐴𝑤,𝑖

𝑤

𝑖=1

𝐾𝑏 =∑
12𝐸𝐼𝑏,𝑖
𝑙ℎ

𝑏

𝑖=1

  ;   𝐾𝑐 =∑
12𝐸𝐼𝑐,𝑖
ℎ2

𝑐

𝑖=1

  ;   𝑟 =
𝐾𝑐

𝐾𝑐 + 𝐾𝑏 }
 
 

 
 

 

( 245 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 246 ) 

Consequently, the total potential energy of the three-field GSB1 beam subjected to a general lateral 

load distribution is expressed as: 
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𝒰 =
1

2
∫ {𝐾𝑏1𝜓(𝑥)

′ 2
+𝐾𝑠1[𝑢(𝑥)

′ −𝜓(𝑥)]
2
+ 𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 −∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 247 ) 

Closed-form solutions of the model on which a transverse load acts are achieved by solving the 

differential system arising from the stationarity of the equation. Stationarity due to equilibrium 

implies: 

𝛿𝒰 = ∫ {𝐾𝑏1𝜓(𝑥)
′ 𝛿𝜓(𝑥)

′ + 𝐾𝑠1[𝑢(𝑥)
′ − 𝜓(𝑥)][𝛿𝑢(𝑥)

′ − 𝛿𝜓(𝑥)] + 𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′
𝐻

0

+ 𝐾𝑠2[𝑢(𝑥)
′ − 𝜃(𝑥)][𝛿𝑢(𝑥)

′ − 𝛿𝜃(𝑥)]}𝑑𝑥 − ∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥

− ∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 248 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏1𝜓(𝑥)
′ 𝛿𝜓(𝑥)]

0

𝐻
+ {𝐾𝑠1[𝑢(𝑥)

′ −𝜓(𝑥)] + 𝐾𝑠2[𝑢(𝑥)
′ − 𝜃(𝑥)]}𝛿𝑢(𝑥)

0

𝐻
+ [𝐾𝑏2𝜃(𝑥)

′ 𝛿𝜃(𝑥)]
0

𝐻

−∫ {𝐾𝑏1𝜓(𝑥)
′′ + 𝐾𝑠1[𝑢(𝑥)

′ − 𝜓(𝑥)]}𝛿𝜃(𝑥)

𝐻

0

−∫ [𝐾𝑠1(𝑢(𝑥)
′′ −𝜓(𝑥)

′ ) + 𝐾𝑠2(𝑢(𝑥)
′′ − 𝜃(𝑥)

′ ) + 𝑓(𝑥)]
𝐻

0

𝛿𝑢(𝑥)

−∫ {𝐾𝑏2𝜃(𝑥)
′′ + 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]}𝛿𝜓(𝑥)

𝐻

0

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 249 ) 

Equating the terms to zero results in the following equations: 

{
 
 

 
 𝐾𝑏1𝜓(𝑥)

′′ + 𝐾𝑠1 [𝑢(𝑥)
′ − 𝜓(𝑥)] = 0

𝐾𝑏2𝜃(𝑥)
′′ + 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)] = 0

𝐾𝑠1 (𝑢(𝑥)
′′ − 𝜓(𝑥)

′ ) + 𝐾𝑠2(𝑢(𝑥)
′′ − 𝜃(𝑥)

′ ) + 𝑓(𝑥) = 0
}
 
 

 
 

 

( 250 ) 

And boundary conditions: 

{

𝜓(0)
′ = 0

𝜃(0)
′ = 0

(𝐾𝑠1 + 𝐾𝑠2)𝑢(0)
′ − 𝐾𝑠1𝜓(0) − 𝐾𝑠2𝜃(0) = 0

} 

( 251 ) 
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Using the method of differential operators for the solution of the system of equations: 

{

𝑢(𝑥)
𝜃(𝑥)
𝜓(𝑥)

} = − [

𝐾𝑠1𝐷 0 𝐾𝑏1𝐷
2 − 𝐾𝑠1

𝐾𝑠2𝐷 𝐾𝑏2𝐷
2 − 𝐾𝑠2 0

(𝐾𝑠1 + 𝐾𝑠2)𝐷
2 −𝐾𝑠2𝐷 −𝐾𝑠1𝐷

]

−1

{

0
0
𝑓(𝑥)

} 

( 252 ) 

i.e., 

{
  
 

  
 𝑢(𝑥)

′′′′′′ −
𝐾𝑠1𝐾𝑠2(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑢(𝑥)
′′′′

𝜃(𝑥)
′′′′′′ −

𝐾𝑠1𝐾𝑠2(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝜃(𝑥)
′′′′

𝜓(𝑥)
′′′′′′ −

𝐾𝑠1𝐾𝑠2(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝜓(𝑥)
′′′′

}
  
 

  
 

=

{
  
 

  
 −

1

(𝐾𝑠1 +𝐾𝑠2)
𝑓(𝑥)
′′′′ +

𝐾𝑏1𝐾𝑠2 + 𝐾𝑠1𝐾𝑏2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

𝑓(𝑥)
′′ −

𝐾𝑠1𝐾𝑠2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

𝑓(𝑥)

𝐾𝑠1
𝐾𝑏1(𝐾𝑠1 +𝐾𝑠2)

𝑓(𝑥)
′′′ −

𝐾𝑠1𝐾𝑠2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

𝑓(𝑥)
′

𝐾𝑠1
𝐾𝑏1(𝐾𝑠1 +𝐾𝑠2)

𝑓(𝑥)
′′′ −

𝐾𝑠1𝐾𝑠2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

𝑓(𝑥)
′

}
  
 

  
 

 

 ( 253 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′′′′ −

𝐾𝑠1𝐾𝑠2(𝐾𝑏1 + 𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝐻2𝑢(𝑧)

′′′′

= −
𝐻2

(𝐾𝑠1 +𝐾𝑠2)
𝑓(𝑧)
′′′′ +

𝐾𝑏1𝐾𝑠2 +𝐾𝑠1𝐾𝑏2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

𝐻4𝑓(𝑧)
′′ −

𝐾𝑠1𝐾𝑠2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

𝐻6𝑓(𝑧) 

 ( 254 ) 

Defining five parameters: 

{
 
 

 
 
𝛼 = 𝐻√

𝐾𝑠1𝐾𝑠2
𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

 , 𝜅 = √1 +
𝐾𝑏2
𝐾𝑏1

, 𝜂𝜑 = 𝐻√
𝐾𝑠1
𝐾𝑏1

, 𝜂𝜃 = 𝐻√
𝐾𝑠2
𝐾𝑏2

 𝜆 =
𝑊𝑚𝑎𝑥𝐻

2

(𝐾𝑠1 +𝐾𝑠2)(1 − 𝑒−𝑎) }
 
 

 
 

  

( 255 ) 

Replacing the first four parameters: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ =
𝐻2

𝐾𝑠1 +𝐾𝑠2
[−𝑓(𝑧)

′′′′ + (𝜂𝜑
2 + 𝜂𝜃

2)𝑓(𝑧)
′′ − (𝜂𝜑

2 𝜂𝜃
2)𝑓(𝑧)] 

( 256 ) 

Assuming a general lateral load (Miranda E. , 1999): 
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𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 257 ) 

Replacing the lateral load and introducing the fifth parameter: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ =
𝜂𝜑
2 𝜂𝜃

2

24(𝛼𝜅)2
𝜆 +

𝑎4 − (𝜂𝜑
2 + 𝜂𝜃

2)𝑎2 + (𝜂𝜑
2 𝜂𝜃

2)

𝑎4[𝑎2 − (𝛼𝜅)2]
𝜆𝑒−𝑎+𝑎𝑧 

( 258 ) 

In simplified form: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ = −𝜂𝜑
2 𝜂𝜃

2𝜆 + [𝑎4 − (𝜂𝜑
2 + 𝜂𝜃

2)𝑎2 + (𝜂𝜑
2 𝜂𝜃

2)]𝜆𝑒−𝑎+𝑎𝑧 ( 259 ) 

The expression for 𝑢(𝑧), 𝜓(𝑧) and  𝜃(𝑧) is proposed: 

{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼𝜅𝑧) + 𝐶5 sinh(𝛼𝜅𝑧) + 𝐶6𝑧
4 + 𝐶7𝑒

−𝑎+𝑎𝑧

𝐻𝜓(𝑧) = 𝐶8 + 𝐶9𝑧 + 𝐶10𝑧
2 + 𝐶11 cosh(𝛼𝜅𝑧) + 𝐶12 sinh(𝛼𝜅𝑧) + 𝐶13𝑒

−𝑎+𝑎𝑧

𝐻𝜃(𝑧) = 𝐶14 + 𝐶15𝑧 + 𝐶16𝑧
2 + 𝐶17 cosh(𝛼𝜅𝑧) + 𝐶18 sinh(𝛼𝜅𝑧) + 𝐶19𝑒

−𝑎+𝑎𝑧

} 

( 260 ) 

Where: 

{
 
 

 
 𝐶6 =

𝜂𝜑
2 𝜂𝜃

2

24(𝛼𝜅)2

𝐶7 =
𝑎4 − (𝜂𝜑

2 + 𝜂𝜃
2)𝑎2 + (𝜂𝜑

2 𝜂𝜃
2)

𝑎4[𝑎2 − (𝛼𝜅)2] }
 
 

 
 

 

( 261 ) 

Expressing the coefficients of 𝜓(𝑧) and 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{
 
 
 
 

 
 
 
 

{
 
 

 
 𝐻𝜓(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧

2 +
6

𝜂𝜑
2)𝐶3 − [

(𝛼𝜅)𝜂𝜑
2

(𝛼𝜅)2 − 𝜂𝜑
2 sinh(𝛼𝜅𝑧)]𝐶4

+[
(𝛼𝜅)𝜂𝜑

2

(𝛼𝜅)2 − 𝜂𝜑
2 cosh(𝛼𝜅𝑧)] 𝐶5 + (4𝑧

3 +
24

𝜂𝜑
2)𝐶6 − [

𝑎𝜂𝜑
2 𝑒−𝑎+𝑎𝑧

𝑎2 − 𝜂𝜑
2 ] 𝐶7

}
 
 

 
 

{
 
 

 
 𝐻𝜃(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧

2 +
6

𝜂𝜃
2)𝐶3 − [

(𝛼𝜅)𝜂𝜃
2

(𝛼𝜅)2 − 𝜂𝜃
2 sinh(𝛼𝜅𝑧)]𝐶4

+[
(𝛼𝜅)𝜂𝜃

2

(𝛼𝜅)2 − 𝜂𝜃
2 cosh(𝛼𝜅𝑧)]𝐶5 + (4𝑧

3 +
24

𝜂𝜃
2)𝐶6 − [

𝑎𝜂𝜃
2𝑒−𝑎+𝑎𝑧

𝑎2 − 𝜂𝜃
2 ]𝐶7

}
 
 

 
 

}
 
 
 
 

 
 
 
 

 

( 262 ) 

The constants are obtained by evaluating the relevant boundary conditions (the origin of x is at the 

base of the model): 
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{
 
 
 

 
 
 

𝑢(1) = 0

𝜓(1) = 0

𝜃(1) = 0

𝜓(0)
′ = 0

𝜃(0)
′ = 0

(𝐾𝑠1 +𝐾𝑠2)𝑢(0)
′ − 𝐾𝑠1𝜓(0) −𝐾𝑠2𝜃(0) = 0}

 
 
 

 
 
 

 

( 263 ) 

Constants: 

{
𝐶2
𝐶4
} =

[
 
 
 
 2 −

(𝛼𝜅)2𝜂𝜑
2

(𝛼𝜅)2 − 𝜂𝜑
2

2 −
(𝛼𝜅)2𝛼𝜃

2

(𝛼𝜅)2 − 𝛼𝜃
2]
 
 
 
 
−1

{
 
 

 
 −

𝜂𝜃
2

(𝛼𝜅)2
+
𝑎2𝜂𝜑

2 𝑒−𝑎

𝑎2 − 𝜂𝜑
2
[𝑎4 − (𝜂𝜑

2 + 𝜂𝜃
2)𝑎2 + (𝜂𝜑

2 𝜂𝜃
2)]

−
𝜂𝜑
2

(𝛼𝜅)2
+
𝑎2𝜂𝜃

2𝑒−𝑎

𝑎2 − 𝜂𝜃
2 [𝑎

4 − (𝜂𝜑
2 + 𝜂𝜃

2)𝑎2 + (𝜂𝜑
2 𝜂𝜃

2)]
}
 
 

 
 

 

{
𝐶1
𝐶3
𝐶5

} =

[
 
 
 
 
 
 
 1 3 +

6

𝜂𝜑2
−
(𝛼𝜅)𝜂𝜑

2 cosh(𝛼𝜅)

(𝛼𝜅)2 − 𝜂𝜑2

1 3 +
6

𝜂𝜃
2 −

(𝛼𝜅)𝜂𝜃
2 cosh(𝛼𝜅)

(𝛼𝜅)2 − 𝜂𝜃
2

0 −6(
𝑘𝑆1
𝜂𝜑2

+
𝑘𝑆2

𝜂𝜃
2 ) (𝛼𝜅)3 [

𝑘𝑆1
(𝛼𝜅)2 − 𝜂𝜑2

+
𝑘𝑆2

(𝛼𝜅)2 − 𝜂𝜃
2]]
 
 
 
 
 
 
 
−1

𝑥 

{
 
 
 

 
 
 −2𝐶2 +

(𝛼𝜅)𝜂𝜑
2 sinh(𝛼𝜅)

(𝛼𝜅)2 − 𝜂𝜑2
𝐶4 − (4 +

24

𝜂𝜑2
)𝐶6 +

𝑎𝜂𝜑
2

𝑎2 − 𝜂𝜑2
𝐶7

−2𝐶2 +
(𝛼𝜅)𝜂𝜃

2 sinh(𝛼𝜅)

(𝛼𝜅)2 − 𝜂𝜃
2 𝐶4 − (4 +

24

𝜂𝜃
2)𝐶6 +

𝑎𝜂𝜃
2

𝑎2 − 𝜂𝜃
2 𝐶7

−(
𝑘𝑆1

𝑎2 − 𝜂𝜑2
+

𝑘𝑆2
𝑎2 − 𝜂𝜃

2)𝑎
3𝑒−𝑎𝐶7

}
 
 
 

 
 
 

 

( 264 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞), the expression of 𝑢(𝑧), 𝜓(𝑧)) and 𝜃(𝑧) 

result: 

{
 
 
 
 
 

 
 
 
 
 
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧

2 + 𝐶3𝑧
3 + 𝐶4 cosh(𝛼𝜅𝑧) + 𝐶5 sinh(𝛼𝜅𝑧) + 𝐶6𝑧

4

{
 
 

 
 𝐻𝜓(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧

2 +
6

𝜂𝜑2
)𝐶3 − [

(𝛼𝜅)𝜂𝜑
2

(𝛼𝜅)2 − 𝜂𝜑2
sinh(𝛼𝜅𝑧)] 𝐶4

+[
(𝛼𝜅)𝜂𝜑

2

(𝛼𝜅)2 − 𝜂𝜑2
cosh(𝛼𝜅𝑧)] 𝐶5 + (4𝑧

3 +
24

𝜂𝜑2
) 𝐶6

}
 
 

 
 

{
 
 

 
 𝐻𝜃(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧

2 +
6

𝜂𝜃
2)𝐶3 − [

(𝛼𝜅)𝜂𝜃
2

(𝛼𝜅)2 − 𝜂𝜃
2 sinh(𝛼𝜅𝑧)] 𝐶4

+[
(𝛼𝜅)𝜂𝜃

2

(𝛼𝜅)2 − 𝜂𝜃
2 cosh(𝛼𝜅𝑧)] 𝐶5 + (4𝑧

3 +
24

𝜂𝜃
2) 𝐶6

}
 
 

 
 

}
 
 
 
 
 

 
 
 
 
 

 

( 265 ) 
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Where: 

{
𝐶2
𝐶4
} =

{
 
 

 
 𝜂𝜃

4

(𝛼𝜅)2 − 𝛼𝜃
2 +

𝜂𝜑
4

(𝛼𝜅)2 − 𝜂𝜑
2

2𝜂𝜃
2

(𝛼𝜅)2
+
2𝜂𝜑

2

(𝛼𝜅)2 }
 
 

 
 

 

{
𝐶1
𝐶3
𝐶5

} =

[
 
 
 
 
 
 
 1 3 +

6

𝜂𝜑
2

−
(𝛼𝜅)𝜂𝜑

2 cosh(𝛼𝜅)

(𝛼𝜅)2 − 𝜂𝜑
2

1 3 +
6

𝜂𝜃
2 −

(𝛼𝜅)𝜂𝜃
2 cosh(𝛼𝜅)

(𝛼𝜅)2 − 𝜂𝜃
2

0 −6(
𝑘𝑆1
𝜂𝜑
2
+
𝑘𝑆2
𝜂𝜃
2 ) [

𝑘𝑆1(𝛼𝜅)
3

(𝛼𝜅)2 − 𝜂𝜑
2
+

𝑘𝑆2(𝛼𝜅)
3

(𝛼𝜅)2 − 𝜂𝜃
2]
]
 
 
 
 
 
 
 
−1

{
 
 

 
 −2𝐶2 +

(𝛼𝜅)𝜂𝜑
2 sinh(𝛼𝜅)

(𝛼𝜅)2 − 𝜂𝜑
2

𝐶4 − (4 +
24

𝜂𝜑
2
)𝐶6

−2𝐶2 +
(𝛼𝜅)𝜂𝜃

2 sinh(𝛼𝜅)

(𝛼𝜅)2 − 𝜂𝜃
2 𝐶4 − (4 +

24

𝜂𝜃
2)𝐶6

0 }
 
 

 
 

 

 ( 266 ) 

 Special Cases 

a) When 
𝐾𝑠2

𝐾𝑠1
→ ∞ (

𝐾𝑠1

𝐾𝑠2
→ 0 ). Evaluating the limit of of the differential equation: 

𝑢(𝑧)
′′′′′′ − [(

𝐾𝑠1
𝐾𝑏1

+
𝐾𝑠1
𝐾𝑏2

)𝐻2] 𝑢(𝑧)
′′′′ =

𝐻4

𝐾𝑏2
[𝑓(𝑧)

′′ −𝐻2
𝐾𝑠1
𝐾𝑏1

𝑓(𝑧)] 
( 267 ) 

The equation shows that if infinite shear stiffness is considered in the structure, the GSB1 

beam has the same behavior as the two-field SWB beam. For the case of a uniformly 

distributed lateral load: 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏1 +𝐾𝑏2
(
1

24
𝑧4 −

1

6
𝑧 +

1

8
) +

1

2𝑘4
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠1
(1 − 𝑧2)

−
1

𝜅2
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2
{
1 − cosh(𝛼𝜅𝑧 − 𝛼𝜅) − (𝛼𝜅)[sinh(𝛼𝜅𝑧) − sinh(𝛼𝜅)]

(𝛼𝜅)4 cosh(𝛼𝜅)
}

 

( 268 ) 

4.1.7.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations assuming that the external loads act on the floors 

and not along the floor height, it is possible to write it as follows: 
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{
 
 

 
 𝐾𝑏1𝜓(𝑥)

′′ + 𝐾𝑠1 [𝑢(𝑥)
′ − 𝜓(𝑥)] = 0

𝐾𝑏2𝜃(𝑥)
′′ + 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)] = 0

𝐾𝑠1 (𝑢(𝑥)
′′ − 𝜓(𝑥)

′ ) + 𝐾𝑠2(𝑢(𝑥)
′′ − 𝜃(𝑥)

′ ) = 0
}
 
 

 
 

 

( 269 ) 

The expression for 𝑢(𝑧), 𝜓(𝑧) and 𝜃(𝑧) is proposed: 

{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼
∗𝜅𝑧) + 𝐶5 sinh(𝛼

∗𝜅𝑧)

𝜓
(𝑧)
= 𝐶6 + 𝐶7𝑧 + 𝐶8𝑧

2 + 𝐶9 cosh(𝛼
∗𝜅𝑧)+ 𝐶10 sinh(𝛼

∗𝜅𝑧)

𝜃(𝑧) = 𝐶11 + 𝐶12𝑧 + 𝐶13𝑧
2 + 𝐶14𝑧

3 + 𝐶15 cosh(𝛼
∗𝜅𝑧) + 𝐶16 sinh(𝛼

∗𝜅𝑧)

} 

( 270 ) 

Where: 

{
 
 

 
 

𝛼∗ = √
𝐾𝑠1𝐾𝑠2

𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
, 𝜅 = √1 +

𝐾𝑏2

𝐾𝑏1
, 𝜂
𝜓
= √

𝐾𝑠1

𝐾𝑏1
  , 𝜂

𝜃
= √

𝐾𝑠2

𝐾𝑏2

𝑟𝜓 =
(𝛼∗𝜅)𝜂

𝜓
2

𝜂
𝜓
2 − (𝛼∗𝜅)2

  , 𝑟𝜃 =
(𝛼∗𝜅)𝜂

𝜃
2

𝜂
𝜃
2 − (𝛼∗𝜅)2

, 𝑟 = (𝛼∗𝜅)3 [
𝐾𝑠1

𝜂
𝜓
2 − (𝛼∗𝜅)2

+
𝐾𝑠2

𝜂
𝜃
2 − (𝛼∗𝜅)2

]
}
 
 

 
 

 

( 271 ) 

Expressing the coefficients of  𝜓(𝑧) and 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{
 
 

 
 

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼
∗𝜅𝑧) + 𝐶5 sinh(𝛼

∗𝜅𝑧)

𝜓
(𝑧)
= 𝐶1 + (2𝑧)𝐶2 + (3𝑧

2 +
6

𝜂
𝜓
2
)𝐶3 + 𝑟𝜓 sinh(𝛼

∗𝜅𝑧)𝐶4 + 𝑟𝜓 cosh(𝛼
∗𝜅𝑧)𝐶5

𝜃(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧
2 +

6

𝜂
𝜃
2
) 𝐶3 + 𝑟𝜃 sinh(𝛼

∗𝜅𝑧) 𝐶4 + 𝑟𝜃 cosh(𝛼
∗𝜅𝑧) 𝐶5

}
 
 

 
 

 

( 272 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result: 

{

𝑀l(𝑧) = 𝐾𝑏1𝜓(𝑥)
′ = (2𝐾𝑏1)𝐶2 + (6𝐾𝑏1𝑧)𝐶3 + 𝑟𝜓(𝛼

∗𝜅)𝐾𝑏1 cosh(𝛼
∗𝜅𝑧)𝐶4 + 𝑟𝜓(𝛼

∗𝜅)𝐾𝑏1 sinh(𝛼
∗𝜅𝑧) 𝐶5

𝑀r(𝑧) = 𝐾𝑏2𝜃(𝑥)
′ = (2𝐾𝑏2)𝐶2 + (6𝐾𝑏2𝑧)𝐶3 + 𝑟𝜃(𝛼

∗𝜅)𝐾𝑏2 cosh(𝛼
∗𝜅𝑧) 𝐶4 + 𝑟𝜃(𝛼

∗𝜅)𝐾𝑏2 sinh(𝛼
∗𝜅𝑧)𝐶5

𝑉(𝑧) = (𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥)
′ − 𝐾𝑠1𝜓(𝑥) − 𝐾𝑠2𝜃(𝑥) = −6(𝐾𝑏1 + 𝐾𝑏2)𝐶3 − 𝑟 sinh(𝛼

∗𝜅𝑧) 𝐶4 − 𝑟 cosh(𝛼
∗𝜅𝑧)𝐶5

} 

 ( 273 ) 

Writing the equations in matrix form: 
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{
  
 

  
 
𝑢𝑖(𝑧𝑖)

𝜓𝑖(𝑧𝑖)

𝜃𝑖(𝑧𝑖)

𝑀li(𝑧𝑖)

𝑀ri(𝑧𝑖)

𝑉𝑖(𝑧𝑖) }
  
 

  
 

= 𝐾𝑖(𝑧𝑖)

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

 

( 274 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
 
 
 
1 𝑧 𝑧2 𝑧3 cosh(𝛼∗𝜅𝑧) sinh(𝛼∗𝜅𝑧)

0 1 2𝑧 3𝑧2 +
6

𝛼𝜓
2 𝑟𝜓 sinh(𝛼

∗𝜅𝑧) 𝑟𝜓 cosh(𝛼
∗𝜅𝑧)

0 1 2𝑧 3𝑧2 +
6

𝛼𝜃
2 𝑟𝜃 sinh(𝛼

∗𝜅𝑧) 𝑟𝜃 cosh(𝛼
∗𝜅𝑧)

0 0 2𝐾𝑏1 6𝐾𝑏1𝑧 𝑟𝜓(𝛼
∗𝜅)𝐾𝑏1 cosh(𝛼

∗𝜅𝑧) 𝑟𝜓(𝛼
∗𝜅)𝐾𝑏1 sinh(𝛼

∗𝜅𝑧)

0 0 2𝐾𝑏2 6𝐾𝑏2𝑧 𝑟𝜃(𝛼
∗𝜅)𝐾𝑏2 cosh(𝛼

∗𝜅𝑧) 𝑟𝜃(𝛼
∗𝜅)𝐾𝑏2 sinh(𝛼

∗𝜅𝑧)

0 0 0 −6(𝐾𝑏1 +𝐾𝑏2) −𝑟 sinh(𝛼∗𝜅𝑧) −𝑟 cosh(𝛼∗𝜅𝑧) ]
 
 
 
 
 
 
 
 

 

( 275 ) 

 Static Analysis Under Static Point Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

{
  
 

  
 
𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)

𝑀ln(0)

𝑀rn(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑘(0)

𝑛

𝑘=1

{
  
 

  
 
𝑢1(ℎ1)

𝜓1(ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 276 ) 

Expressing it in simplified form: 

{
  
 

  
 
𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)

𝑀ln(0)

𝑀rn(0)

𝑉𝑛(0) }
  
 

  
 

= t

{
  
 

  
 
𝑢1(ℎ1)

𝜓1(ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

+ 𝑓 

( 277 ) 

Where: 
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{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

, 𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 278 ) 

This equation expresses the relationship between the part forces and displacements of the top and 

the base of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant for all floors. 

According to the boundary conditions defined in case 1: 

{
  
 

 
 
 

𝑢(1) = 0

𝜓(1) = 0

𝜃(1) = 0

𝜓(0)
′ = 0

𝜃(0)
′ = 0

(𝐾𝑠1 + 𝐾𝑠2)𝑢(0)
′ −𝐾𝑠1𝜓(0) −𝐾𝑠2𝜃(0) = 0}

  
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝜓1(ℎ1) = 0

𝜃1(ℎ1) = 0
𝑀𝑙𝑛 (0) = 0

𝑀𝑟𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
  
 

  
 

 

( 279 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

+

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

 

( 280 ) 

By clearing the bending moment and the shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓4
𝑓5
𝑓6

} → {

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]

−1

{

𝑓4
𝑓5
𝑓6

} 

( 281 ) 

Substituting the internal forces gives the displacement and rotations at the top of the beam: 

{

𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)
} = − [

𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,4 𝑡3,5 𝑡3,6

] [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]

−1

{

𝑓4
𝑓5
𝑓6

} + {

𝑓1
𝑓2
𝑓3

} 

( 282 ) 
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4.1.8 Generalized Sandwich Beam of Three-Field (GSB2) 

The Generalized Sandwich Beam (GSB2) is presented, which considers that the structure consists 

of a series coupling of a sandwich beam (SWB) and a shear beam (SB). This beam (GSB2), results 

from the generalization of the sandwich beam (SWB) by including an additional rotational 

kinematic field, where the shear deformation in stiffer elements such as shear walls will be taken 

into account. Taking into account this new kinematic field and the introduction of shear stiffness, 

this beam (GSB2) can be used as a general replacement beam for all structural elements such as 

shear walls, coupled shear walls and portal frames. 

Chesnais (2010) studied a 16-story shear wall building and concluded that the local shear stiffness 

of the vertical elements can have the same order of magnitude as the other characteristic stiffnesses 

of a sandwich beam. To overcome this problem he proposed this novel generalized sandwich 

replacement beam for the case of dynamic analysis and ignoring the rotational inertia. He 

performed a comparison of the dynamic analysis of the building using the sandwich beam and the 

generalized sandwich beam, finding an error reduction of 11% for the sandwich beam and 2% for 

the generalized sandwich beam with respect to the first fundamental period of the building, thus 

demonstrating the efficiency of this new replacement beam. 

 

Figure 62. Generalized Sandwich Beam (GSB2) of three fields. a) Case 1, b) Case 2, c) Equivalent RB and d) 

Idealization of GSB2 stiffness. 
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The model has three kinematic fields, a single transverse motion u and a different rotation field (θ 

and ψ). In the model; 𝐾𝑏1, 𝐾𝑠1, 𝐾𝑏2and 𝐾𝑠2 are the global bending stiffness, global shear stiffness, 

local bending stiffness and local shear stiffness respectively. It should be noted that the value of 

𝐾𝑠1 may be negligible with respect to 𝐾𝑠2; when the vertical elements are thin enough as columns. 

Chesnais (2010) applied the HPDM method to one-, two- and three-span structures and calculated 

analytical expressions for the global shear stiffness (Table 3). 

 

Tabla.3 Analytical expressions of the global shear stiffness Ks for single, double and triple portal frame 

structures (Chesnais, 2010). 

4.1.8.1 Case 1 

The potential energy of the three-field GSB2 model is expressed as: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+𝐾𝑠1[𝜃(𝑥) − 𝜓(𝑥)]

2
+𝐾𝑏2𝜓(𝑥)

′ 2
}

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠2[𝜓(𝑥) − 𝑢(𝑥)

′ ]
2

𝐻

0

𝑑𝑥 
( 283 ) 
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 Coupled shear wall: 

{
 
 

 
 𝐾𝑏1 =∑𝐸𝐴𝑤𝑖𝑐𝑖

2

𝑤

𝑖=1

, 𝐾𝑏2 = 𝑟∑𝐸𝐼𝑤𝑖

𝑤

𝑖=1

𝐾𝑠1 =∑[
ℎ

𝐿
(

𝐿2

12𝐸𝐼𝑏
+

1

𝐺𝐴𝑏
′ )]

−1𝑏

𝑖=1

, 𝐾𝑠2 =∑[
1

2
(

ℎ2

12𝐸𝐼𝑤
+

1

𝐺𝐴𝑤
′
)]

−1𝑤

𝑖=1 }
 
 

 
 

 

( 284 ) 

 Frame: 

{
 
 

 
 𝐾𝑏1 =∑𝐸𝐴𝑐,𝑖𝑐𝑖

2

𝑐

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

𝐾𝑠1 =∑[
ℎ

𝐿
(

𝐿2

12𝐸𝐼𝑏
+

1

𝐺𝐴𝑏
′ )]

−1𝑏

𝑖=1

, 𝐾𝑠2 =∑[
1

2
(
ℎ2

12𝐸𝐼𝑐
+

1

𝐺𝐴𝑐
′ )]

−1𝑐

𝑖=1 }
 
 

 
 

 

( 285 ) 

 Dual (frame + shear wall): 

{
 
 

 
 
𝐾𝑏1 =∑𝐸𝐴𝑐,𝑖𝑐𝑖

2

𝑐

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

+∑𝑟𝐸𝐼𝑤,𝑖

𝑤

𝑖=1

, 𝐾𝑠1 =∑[
ℎ

𝐿
(

𝐿2

12𝐸𝐼𝑏
+

1

𝐺𝐴𝑏
′ )]

−1𝑏

𝑖=1

𝐾𝑠2 =∑[
1

2
(
ℎ2

12𝐸𝐼𝑐
+

1

𝐺𝐴𝑐
′ )]

−1𝑐

𝑖=1

+∑[
1

2
(

ℎ2

12𝐸𝐼𝑤
+

1

𝐺𝐴𝑤′
)]

−1𝑤

𝑖=1 }
 
 

 
 

 

( 286 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 287 ) 

Consequently, the total potential energy of the three-field GSB2 beam subjected to a general lateral 

load distribution is expressed as: 

𝒰 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+𝐾𝑠1[𝜃(𝑥) − 𝜓(𝑥)]

2
+𝐾𝑏2𝜓(𝑥)

′ 2
+ 𝐾𝑠2[𝜓(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝐻

0

𝑑𝑥 −∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 288 ) 

Closed-form solutions of the model on which a transverse load acts are achieved by solving the 

differential system arising from the stationarity of the equation. Stationarity due to equilibrium 

implies: 
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𝛿𝒰 = ∫ {𝐾𝑏1𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ +𝐾𝑠1[𝜃(𝑥) −𝜓(𝑥)]𝛿𝜃(𝑥) −𝐾𝑠1[𝜃(𝑥) −𝜓(𝑥)]𝛿𝜓(𝑥) +𝐾𝑏2𝜓(𝑥)
′ 𝛿𝜓(𝑥)

′
𝐻

0

+𝐾𝑠2[𝜓(𝑥) − 𝑢(𝑥)
′ ]𝛿𝜓(𝑥) − 𝐾𝑠2[𝜓(𝑥) − 𝑢(𝑥)

′ ]𝛿𝑢(𝑥)
′ }𝑑𝑥 −∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 289 ) 

After integrating by parts and replacing it in the equation, we order the common terms:  

𝛿𝒰 = −{𝐾𝑠2[𝜓(𝑥) − 𝑢(𝑥)
′ ]𝛿𝑢(𝑥)}0

𝐻
+ [𝐾𝑏2𝜓(𝑥)

′ 𝛿𝜓(𝑥)]0
𝐻
+ [𝐾𝑏1𝜃(𝑥)

′ 𝛿𝜃(𝑥)]
0

𝐻

−∫ [𝐾𝑠2[𝑢(𝑥)
′′ −𝜓(𝑥)

′ ] + 𝑓(𝑥)]
𝐻

0

𝛿𝑢(𝑥)

−∫ {𝐾𝑏2𝜓(𝑥)
′′ − (𝐾𝑠1 + 𝐾𝑠2)𝜓(𝑥) +𝐾𝑠1𝜃(𝑥) +𝐾𝑠2𝑢(𝑥)

′ }𝛿𝜓(𝑥)

𝐻

0

−∫ {𝐾𝑏1𝜃(𝑥)
′′ −𝐾𝑠1[𝜃(𝑥) −𝜓(𝑥)]}𝛿𝜃(𝑥)

𝐻

0

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 290 ) 

Equating the terms to zero results in the following equations: 

{

𝐾𝑠2[𝑢(𝑥)
′′ − 𝜓(𝑥)

′ ] + 𝑓(𝑥) = 0

 𝐾𝑏1𝜃(𝑥)
′′ −𝐾𝑠1[𝜃(𝑥) −𝜓(𝑥)] = 0

𝐾𝑏2𝜓(𝑥)
′′ − (𝐾𝑠1 + 𝐾𝑠2)𝜓(𝑥) +𝐾𝑠1𝜃(𝑥) + 𝐾𝑠2𝑢(𝑥)

′ = 0

} 

( 291 ) 

And boundary conditions: 

{

𝜃(0)
′ = 0

𝜓(0)
′ = 0

𝜓(0) − 𝑢(0)
′ = 0

} 

( 292 ) 

Using the method of differential operators for the solution of the system of equations: 

{

𝑢(𝑥)
𝜃(𝑥)
𝜓(𝑥)

} = −[

𝐾𝑠2𝐷
2 0 −𝐾𝑠2𝐷

0 𝐾𝑏1𝐷
2 −𝐾𝑠1 𝐾𝑠1

𝐾𝑠2𝐷 𝐾𝑠1 𝐾𝑏2𝐷
2 − (𝐾𝑠1 +𝐾𝑠2)

]

−1

{
𝑓(𝑥)
0
0

} 

( 293 ) 

i.e., 
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{
  
 

  
 𝑢(𝑥)

′′′′′′ −
𝐾𝑠1(𝐾𝑏1 + 𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
𝑢(𝑥)
′′′′

𝜃(𝑥)
′′′′′′ −

𝐾𝑠1(𝐾𝑏1 + 𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
𝜃(𝑥)
′′′′

𝜓(𝑥)
′′′′′′ −

𝐾𝑠1(𝐾𝑏1 + 𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
𝜓(𝑥)
′′′′

}
  
 

  
 

=

{
  
 

  
 −

1

𝐾𝑠2
𝑓(𝑥)
′′′′ +

𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1
𝐾𝑏1𝐾𝑏2𝐾𝑠2

𝑓(𝑥)
′′ −

𝐾𝑠1
𝐾𝑏1𝐾𝑏2

𝑓(𝑥)

𝐾𝑠1
𝐾𝑏1𝐾𝑏2

𝑓(𝑥)
′

−
1

𝐾𝑏2
𝑓(𝑥)
′′′ +

𝐾𝑠1
𝐾𝑏1𝐾𝑏2

𝑓(𝑥)
′

}
  
 

  
 

 

( 294 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′′′′ −

𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
𝐻2𝑢(𝑧)

′′′′ = −
𝐻2

𝐾𝑠2
𝑓(𝑧)
′′′′ +

𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1
𝐾𝑏1𝐾𝑏2𝐾𝑠2

𝐻4𝑓(𝑧)
′′ −

𝐾𝑠1𝐻
6

𝐾𝑏1𝐾𝑏2
𝑓(𝑧) 

( 295 ) 

Or its equivalent: 

𝐾𝑏1𝐾𝑏2
𝐾𝑠1

𝑢(𝑧)
′′′′′′ − (𝐾𝑏1 +𝐾𝑏2)𝐻

2𝑢(𝑧)
′′′′ = −

𝐾𝑏1𝐾𝑏2
𝐾𝑠1𝐾𝑠2

𝐻2𝑓(𝑧)
′′′′ + [

𝐾𝑏2
𝐾𝑠2

+𝐾𝑏1 (
1

𝐾𝑠1
+

1

𝐾𝑠2
)]𝐻4𝑓(𝑧)

′′ − 𝐻6𝑓(𝑧) 

 ( 296 ) 

Defining four parameters: 

{𝛼 = 𝐻√
𝐾𝑠1
𝐾𝑏2

 , 𝜅 = √1 +
𝐾𝑏2
𝐾𝑏1

, 𝜂𝜓 = 𝐻√
𝐾𝑠2
𝐾𝑏2

, 𝜆 =
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠2(1 − 𝑒−𝑎)
} 

( 297 ) 

Replacing the first three parameters: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ =
𝐻2

𝐾𝑠2
{−𝑓(𝑧)

′′′′ + [(𝛼𝜅)2 + 𝜂𝜓
2 ]𝑓(𝑧)

′′ − 𝜂𝜓
2 𝛼2(𝜅2 − 1)𝑓(𝑧)} 

( 298 ) 

Assuming a general lateral load (Miranda E. , 1999): 

𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 299 ) 

Replacing the lateral load and introducing the fourth parameter: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ = −𝜂𝜑
2𝛼2(𝜅2 − 1)𝜆 + {𝑎4 − [(𝛼𝜅)2 + 𝜂𝜓

2 ]𝑎2 + 𝜂𝜑
2𝛼2(𝜅2 − 1)}𝜆𝑒−𝑎+𝑎𝑧 ( 300 ) 

The expression for 𝑢(𝑧), 𝜓(𝑧) and 𝜃(𝑧) is proposed: 
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{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼𝜅𝑧) + 𝐶5 sinh(𝛼𝜅𝑧) + 𝐶6𝑧
4 + 𝐶7𝑒

−𝑎+𝑎𝑧

𝐻𝜃(𝑧) = 𝐶8 + 𝐶9𝑧 + 𝐶10𝑧
2 + 𝐶11𝑧

3 + 𝐶12 cosh(𝛼𝜅𝑧) + 𝐶13 sinh(𝛼𝜅𝑧) + 𝐶14𝑒
−𝑎+𝑎𝑧

𝐻𝜓(𝑧) = 𝐶15 + 𝐶16𝑧 + 𝐶17𝑧
2 + 𝐶18𝑧

3 + 𝐶19 cosh(𝛼𝜅𝑧) + 𝐶20 sinh(𝛼𝜅𝑧) + 𝐶21𝑒
−𝑎+𝑎𝑧

} 

( 301 ) 

Where: 

{𝐶6 =
𝜂𝜑
2 (𝜅2 − 1)

24𝜅2
, 𝐶7 =

𝑎4 − [(𝛼𝜅)2 + 𝜂𝜓
2 ]𝑎2 + 𝜂𝜑

2𝛼2(𝜅2 − 1)

𝑎4[𝑎2 − (𝛼𝜅)2]
} 

( 302 ) 

Expressing the coefficients of 𝜓(𝑧) and 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{
 
 

 
 
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧

2 + 𝐶3𝑧
3 + 𝐶4 cosh(𝛼𝜅𝑧) + 𝐶5 sinh(𝛼𝜅𝑧) + 𝐶6𝑧

4 + 𝐶7𝑒
−𝑎+𝑎𝑧

{
𝐻𝜃(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧

2 + 6𝑝1)𝐶3 + [(𝛼𝜅)𝑝3 sinh(𝛼𝜅𝑧)]𝐶4

+[(𝛼𝜅)𝑝3 cosh(𝛼𝜅𝑧)]𝐶5 + (4𝑧
3 + 24𝑝1𝑧)𝐶6 + (𝑝5𝑎𝑒

−𝑎+𝑎𝑧)𝐶7
}

{
𝐻𝜓(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧

2 + 6𝑝2)𝐶3 + [(𝛼𝜅)𝑝4 sinh(𝛼𝜅𝑧)]𝐶4

+[(𝛼𝜅)𝑝4 cosh(𝛼𝜅𝑧)]𝐶5 + (4𝑧
3 + 24𝑝2𝑧)𝐶6 + (𝑝6𝑎𝑒

−𝑎+𝑎𝑧)𝐶7
}

}
 
 

 
 

 

( 303 ) 

Where: 

{
 
 
 
 
 

 
 
 
 
 𝑝1 =

𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1
𝐾𝑠1𝐾𝑠2𝐻2

, 𝑝2 =
𝐾𝑠1𝐾𝑏2 + 𝐾𝑠1𝐾𝑏1

𝐾𝑠1𝐾𝑠2𝐻2

𝑝3 =
𝐾𝑠1𝐾𝑠2𝐻

4

𝐾𝑏1𝐾𝑏2(𝛼𝜅)4 − [𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1]𝐻2(𝛼𝜅)2 +𝐾𝑠1𝐾𝑠2𝐻4

𝑝4 =
[𝐾𝑠1𝐻

2 − (𝛼𝜅)2𝐾𝑏1]𝐾𝑠2𝐻
2

𝐾𝑏1𝐾𝑏2(𝛼𝜅)4 − [𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 + 𝐾𝑠1𝐾𝑏1]𝐻2(𝛼𝜅)2 +𝐾𝑠1𝐾𝑠2𝐻4

𝑝5 =
𝐾𝑠1𝐾𝑠2𝐻

4

𝐾𝑏1𝐾𝑏2𝑎
4 − [𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1]𝐻

2𝑎2 + 𝐾𝑠1𝐾𝑠2𝐻
4

𝑝6 =
[𝐾𝑠1 − 𝑎

2𝐾𝑏1]𝐾𝑠2𝐻
2

𝐾𝑏1𝐾𝑏2𝑎4 − [𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1]𝐻2𝑎2 + 𝐾𝑠1𝐾𝑠2𝐻4 }
 
 
 
 
 

 
 
 
 
 

 

( 304 ) 

The constants are obtained by evaluating the relevant boundary conditions (the origin of x is at the 

top of the model): 

{
  
 

 
 
 

𝑢(1) = 0

𝜃(1) = 0

𝜓(1) = 0

𝜃(0)
′ = 0

𝜓(0)
′ = 0

𝜓(0) − 𝑢(0)
′ = 0}

  
 

 
 
 

 

( 305 ) 
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Constants: 

{
𝐶2
𝐶4
} = [

2 (𝛼𝜅)2𝑝3
2 (𝛼𝜅)2𝑝4

]
−1

{−24 {
𝑝1
𝑝2
} 𝐶6 − {

𝑝5
𝑝6
}𝑎2𝑒−𝑎𝐶7} 

{
𝐶1
𝐶3
𝐶5

} = [

1 3 + 6𝑝1 (𝛼𝜅)𝑝3 cosh(𝛼𝜅)

1 3 + 6𝑝2 (𝛼𝜅)𝑝4 cosh(𝛼𝜅)

0 6𝑝2 (𝛼𝜅)(𝑝4 − 1)
]

−1

𝑥 {

−2𝐶2 + (𝛼𝜅)𝑝3 sinh(𝛼𝜅)𝐶4 − (4 + 24𝑝1)𝐶6 − 𝑝5𝑎𝐶7
−2𝐶2 + (𝛼𝜅)𝑝4 sinh(𝛼𝜅)𝐶4 − (4 + 24𝑝2)𝐶6 − 𝑝6𝑎𝐶7

(1 − 𝑝6)𝑎𝑒
−𝑎𝐶7

} 

𝐶0 = −(𝐶1 + 𝐶2 + 𝐶3 + 𝐶6 + 𝐶7) − 𝐶4 cosh(𝛼𝜅) − 𝐶5 sinh(𝛼𝜅) ( 306 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞), the expression of 𝑢(𝑧), 𝜓(𝑧) and 𝜃(𝑧) 

result: 

{
 
 

 
 
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧

2 + 𝐶3𝑧
3 + 𝐶4 cosh(𝛼𝜅𝑧) + 𝐶5 sinh(𝛼𝜅𝑧) + 𝐶6𝑧

4

{
𝐻𝜃(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧

2 + 6𝑝1)𝐶3 + [(𝛼𝜅)𝑝3 sinh(𝛼𝜅𝑧)]𝐶4

+[(𝛼𝜅)𝑝3 cosh(𝛼𝜅𝑧)]𝐶5 + (4𝑧
3 + 24𝑝1𝑧)𝐶6

}

{
𝐻𝜓(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧

2 + 6𝑝2)𝐶3 + [(𝛼𝜅)𝑝4 sinh(𝛼𝜅𝑧)]𝐶4

+[(𝛼𝜅)𝑝4 cosh(𝛼𝜅𝑧)]𝐶5 + (4𝑧
3 + 24𝑝2𝑧)𝐶6

}
}
 
 

 
 

 

( 307 ) 

Where: 

{
  
 

  
 {

𝐶2
𝐶4
} = −24 [

2 (𝛼𝜅)2𝑝3
2 (𝛼𝜅)2𝑝4

]
−1

{
𝑝1
𝑝2
}𝐶6

{
𝐶1
𝐶3
𝐶5

} = [

1 3 + 6𝑝1 (𝛼𝜅)𝑝3 cosh(𝛼𝜅)

1 3 + 6𝑝2 (𝛼𝜅)𝑝4 cosh(𝛼𝜅)

0 6𝑝2 (𝛼𝜅)(𝑝4 − 1)
]

−1

𝑥 {
−2𝐶2 + (𝛼𝜅)𝑝3 sinh(𝛼𝜅)𝐶4 − (4 + 24𝑝1)𝐶6
−2𝐶2 + (𝛼𝜅)𝑝4 sinh(𝛼𝜅)𝐶4 − (4 + 24𝑝2)𝐶6

0

}

𝐶0 = −(𝐶1 + 𝐶2 + 𝐶3 + 𝐶6) − 𝐶4 cosh(𝛼𝜅) − 𝐶5 sinh(𝛼𝜅) }
  
 

  
 

 

( 308 ) 

4.1.8.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations assuming that the external loads act on the floors 

and not along the floor height, it is possible to write it as follows: 

{

𝐾𝑠2[𝑢(𝑥)
′′ −𝜓(𝑥)

′ ] = 0

𝐾𝑏1𝜃(𝑥)
′′ −𝐾𝑠1[𝜃(𝑥) −𝜓(𝑥)] = 0

𝐾𝑏2𝜓(𝑥)
′′ − (𝐾𝑠1 + 𝐾𝑠2)𝜓(𝑥) +𝐾𝑠1𝜃(𝑥) + 𝐾𝑠2𝑢(𝑥)

′ = 0

} 

( 309 ) 
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The expression for 𝑢(𝑧), 𝜓(𝑧) and  𝜃(𝑧) is proposed: 

{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼
∗𝜅𝑧) + 𝐶5 sinh(𝛼

∗𝜅𝑧)

𝜃(𝑧) = 𝐶8 + 𝐶9𝑧 + 𝐶10𝑧
2 + 𝐶12 cosh(𝛼

∗𝜅𝑧) + 𝐶13 sinh(𝛼
∗𝜅𝑧)

𝜓(𝑧) = 𝐶15 + 𝐶16𝑧 + 𝐶17𝑧
2 + 𝐶19 cosh(𝛼

∗𝜅𝑧) + 𝐶20 sinh(𝛼
∗𝜅𝑧)

} 

( 310 ) 

Where: 

{𝛼∗ = √
𝐾𝑠1
𝐾𝑏2

, 𝜅 = √1 +
𝐾𝑏2
𝐾𝑏1

} 

( 311 ) 

Expressing the coefficients of 𝜓(𝑧) and 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼
∗𝜅𝑧) + 𝐶5 sinh(𝛼

∗𝜅𝑧)

{
𝜃(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧

2 + 6𝑝1)𝐶3 + [(𝛼
∗𝜅)𝑝3 sinh(𝛼

∗𝜅𝑧)]𝐶4 + [(𝛼𝜅)𝑝3 cosh(𝛼
∗𝜅𝑧)]𝐶5

𝜓(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (3𝑧
2 + 6𝑝2)𝐶3 + [(𝛼

∗𝜅)𝑝4 sinh(𝛼
∗𝜅𝑧)]𝐶4 + [(𝛼𝜅)𝑝4 cosh(𝛼

∗𝜅𝑧)]𝐶5
}
} 

( 312 ) 

Where: 

{
  
 

  
 𝑝1 =

𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 + 𝐾𝑠1𝐾𝑏1
𝐾𝑠1𝐾𝑠2

, 𝑝2 =
𝐾𝑠1𝐾𝑏2 +𝐾𝑠1𝐾𝑏1

𝐾𝑠1𝐾𝑠2

𝑝3 =
𝐾𝑠1𝐾𝑠2

𝐾𝑏1𝐾𝑏2(𝛼
∗𝜅)4 − [𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1](𝛼

∗𝜅)2 +𝐾𝑠1𝐾𝑠2

𝑝4 =
[𝐾𝑠1 − (𝛼𝜅)

2𝐾𝑏1]𝐾𝑠2
𝐾𝑏1𝐾𝑏2(𝛼

∗𝜅)4 − [𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1](𝛼
∗𝜅)2 +𝐾𝑠1𝐾𝑠2}

  
 

  
 

 

Internal forces such as bending moment and shear force associated with lateral displacement result: 

{

𝑀l(𝑧) = 𝐾𝑏1𝜃(𝑥)
′ = (2𝐾𝑏1)𝐶2 + (6𝐾𝑏1𝑧)𝐶3 + (𝛼

∗𝜅)2𝑝3𝐾𝑏1 cosh(𝛼
∗𝜅𝑧)𝐶4 + (𝛼

∗𝜅)2𝑝3𝐾𝑏1 sinh(𝛼
∗𝜅𝑧)𝐶5

𝑀r(𝑧) = 𝐾𝑏2𝜓(𝑥)
′ = (2𝐾𝑏2)𝐶2 + (6𝐾𝑏2𝑧)𝐶3 + (𝛼

∗𝜅)2𝑝4𝐾𝑏2 cosh(𝛼
∗𝜅𝑧)𝐶4 + (𝛼

∗𝜅)2𝑝4𝐾𝑏2 sinh(𝛼
∗𝜅𝑧)𝐶5

𝑉(𝑧) = 𝐾𝑠2(𝑢(𝑥)
′ − 𝜓(𝑥)) = 6𝑝3𝐾𝑠2𝐶3 + (𝛼

∗𝜅)(𝑝4 − 1)𝐾𝑠2 sinh(𝛼
∗𝜅𝑧)𝐶4 + (𝛼

∗𝜅)(𝑝4 − 1)𝐾𝑠2 cosh(𝛼
∗𝜅𝑧)𝐶5

} 

 ( 313 ) 

Writing the equations in matrix form: 
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{
  
 

  
 
𝑢𝑖(𝑧𝑖)

𝜃𝑖(𝑧𝑖)

𝜓𝑖(𝑧𝑖)

𝑀li(𝑧𝑖)

𝑀ri(𝑧𝑖)

𝑉𝑖(𝑧𝑖) }
  
 

  
 

= 𝐾𝑖(𝑧𝑖)

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

 

( 314 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
 
1 𝑧 𝑧2 𝑧3 cosh(𝛼∗𝜅𝑧) sinh(𝛼∗𝜅𝑧)

0 1 2𝑧 3𝑧2 + 6𝑝1 (𝛼∗𝜅)𝑝3 sinh(𝛼
∗𝜅𝑧) (𝛼𝜅)𝑝3 cosh(𝛼

∗𝜅𝑧)

0 1 2𝑧 3𝑧2 + 6𝑝2 (𝛼∗𝜅)𝑝4 sinh(𝛼
∗𝜅𝑧) (𝛼𝜅)𝑝4 cosh(𝛼

∗𝜅𝑧)

0 0 2𝐾𝑏1 6𝐾𝑏1𝑧 (𝛼∗𝜅)2𝑝3𝐾𝑏1 cosh(𝛼
∗𝜅𝑧) (𝛼∗𝜅)2𝑝3𝐾𝑏1 sinh(𝛼

∗𝜅𝑧)

0 0 2𝐾𝑏2 6𝐾𝑏2𝑧 (𝛼∗𝜅)2𝑝4𝐾𝑏2 cosh(𝛼
∗𝜅𝑧) (𝛼∗𝜅)2𝑝4𝐾𝑏2 sinh(𝛼

∗𝜅𝑧)

0 0 0 6𝑝3𝐾𝑠2 (𝛼∗𝜅)(𝑝4 − 1)𝐾𝑠2 sinh(𝛼
∗𝜅𝑧) (𝛼∗𝜅)(𝑝4 − 1)𝐾𝑠2 cosh(𝛼

∗𝜅𝑧)]
 
 
 
 
 
 

 

 ( 315 ) 

 Static Analysis Under Static Point Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

{
  
 

  
 
𝑢𝑛(0)

𝜃𝑛(0)

𝜓𝑛(0)

𝑀ln(0)

𝑀rn(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑘(0)

𝑛

𝑘=1

{
  
 

  
 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝜓1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 316 ) 

Expressing it in simplified form: 

{
  
 

  
 
𝑢𝑛(0)

𝜃𝑛(0)

𝜓𝑛(0)

𝑀ln(0)

𝑀rn(0)

𝑉𝑛(0) }
  
 

  
 

= t

{
  
 

  
 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝜓1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

+ 𝑓 

( 317 ) 

Where: 
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{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 318 ) 

This equation expresses the relationship between the part forces and displacements of the top and 

the base of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant for all floors. 

According to the boundary conditions defined in case 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝜃(1) = 0

𝜓(1) = 0

𝜓(0)
′ = 0

𝜃(0)
′ = 0

(𝐾𝑠1 +𝐾𝑠2)𝑢(0)
′ − 𝐾𝑠1𝜓(0) −𝐾𝑠2𝜃(0) = 0}

 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝜃1(ℎ1) = 0

𝜓1(ℎ1) = 0
𝑀𝑙𝑛 (0) = 0

𝑀𝑟𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
  
 

  
 

 

( 319 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝜃𝑛(0)

𝜓𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

+

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

 

( 320 ) 

By clearing the bending moment and the shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓4
𝑓5
𝑓6

} → {

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]

−1

{

𝑓4
𝑓5
𝑓6

} 

( 321 ) 

Substituting the internal forces gives the displacement and rotations at the top of the beam: 

{

𝑢𝑛(0)

𝜃𝑛(0)

𝜓𝑛(0)
} = − [

𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,4 𝑡3,5 𝑡3,6

] [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]

−1

{

𝑓4
𝑓5
𝑓6

} + {

𝑓1
𝑓2
𝑓3

} 

( 322 ) 
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4.1.9 Modified Generalized Sandwich Beam of Two-Field (MGSB) 

Due to the complexity in Generalized Sandwich Beam (GSB) calculations, a new replacement 

beam model "Modified Generalized Sandwich Beam (MGSB)" is developed suitable for modeling 

coupled shear walls. Moghadasi (2015), performed a parametric analysis to compare the rotations 

in coupled shear walls against a uniformly distributed lateral load using SAP 2000 Software and 

concluded that the rotation fields in coupled shear walls can be assumed to be almost identical as 

long as the wall width ratio is between 0.25 and 4: 

0.25 ≤
𝐵1
𝐵2
≤ 4 

( 323 ) 

Taking this criterion into account, the three-field generalized sandwich beam (GSB) is reduced to 

a two-field modified generalized sandwich beam (MGSB). 

 

Figure 63. Modified Generalized Sandwich Beam of two-field (MGSB). a) Case 1, b) Case 2, c) equivalent 

RB and d) Idealization of MGSB stiffness. 

4.1.9.1 Case 1 

The potential energy of the two-field MGSB model is expressed as follows: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+𝐾𝑠1[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
+ 𝐾𝑏2𝜃

′2 + 𝐾𝑠2[𝑢(𝑥)
′ − 𝜃(𝑥)]

2
}

𝐻

0

𝑑𝑥 
( 324 ) 

Taking into account common terms: 
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𝑉 =
1

2
∫ {(𝐾𝑏1 + 𝐾𝑏2)𝜃(𝑥)

′ 2
+ (𝐾𝑠1 + 𝐾𝑠2)[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 
( 325 ) 

Where: 

{
  
 

  
 𝐾𝑏1 =∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

, 𝐾𝑏2 =∑𝐸𝐴𝑐,𝑖𝑐𝑖
2

𝑐

𝑖=1

, 𝐾𝑠1 =∑𝐺𝐴𝑐,𝑖

𝑐

𝑖=1

, 𝐾𝑠2 = (𝐾𝑏
−1 + 𝐾𝑐

−1)
−1

𝐾𝑏 =∑
6𝐸𝐼𝑏,𝑖[(𝑙

∗ + 𝑆1)
2 + (𝑙∗ + 𝑆2)

2]

𝑙∗3ℎ (1 + 12
𝑘𝐸𝐼𝑏,𝑖
𝑙∗2𝐺𝐴𝑏,𝑖

)

𝑏

𝑖=1

, 𝐾𝑐 =∑
12𝐸𝐼𝑐,𝑖
ℎ2

𝑐

𝑖=1

, 𝑟 =
𝐾𝑐

𝐾𝑐 + 𝐾𝑏
}
  
 

  
 

 

( 326 ) 

This new expression of the potential energy is identical to the potential energy of a Timoshenko 

beam (TB) where the bending and shear stiffnesses are coupled in series. By cancelling the effect 

of the axially stiff members that transmitted the horizontal forces between the two beams, the two-

field MGSB beam becomes stiffer than the original GSB. To overcome this problem it is necessary 

to modify the flexural stiffnesses by means of an appropriate coefficient η. This coefficient η will 

be determined by displacement compatibility at z=0. 

The horizontal displacement of a sandwich beam (SWB) against a lateral load proposed by 

Miranda (1999) is: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼𝜅𝑧) + 𝐶5 sinh(𝛼𝜅𝑧) + 𝐶6𝑧
4 + 𝐶7𝑒

−𝑎+𝑎𝑧 ( 327 ) 

Where the coefficients are known; evaluating it at 𝑧 = 0 and ordering appropriately, we obtain: 

𝑢(0) = 𝜆𝐾𝑡 → 𝐾𝑡 =
𝑢(0)

𝜆
= 𝑓(𝛼,𝜅) 

( 328 ) 

The parameter 𝐾𝑡 is only a function of 𝛼 and 𝜅. The graph shows the trend of the 𝐾𝑡 parameter for 

different values of the connection beam superelevation: 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 m. It can be 

observed that the increase of the camber of the connecting beams has a positive effect by increasing 

the lateral stiffness and consequently reducing the total displacement of the structural element. 

This is the importance of considering the contribution of these coupling beams in the elevator 

shafts, where their consideration in the analysis significantly increases the lateral and torsional 

stiffness. 
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The figure shows that the higher the degree of coupling, the tendency of the displacement is 

towards global bending behavior, disregarding the contribution of stiffness to local bending; and 

even for a lower degree of coupling, this tendency is rapidly approaching the global bending 

situation. 

The local bending behavior, disregarding global bending, is obtained by evaluating ℎ𝑣 → 0 and 

consequently 𝛼 → 0. In this case the function of the connecting beams is primarily to transmit the 

horizontal loads and force the shear walls to work together. The maximum displacement of the 

building for this case will be denoted as 𝑢(ℎ𝑣→0  ). Evaluating this condition on the maximum 

displacement of the building subject to lateral loads, we obtain: 

𝑢(ℎ𝑣→0) =
𝑤𝐻4

8𝐾𝑏1
 

( 329 ) 

 

Figure 64. Displacement of the building as a function of the depth of the connecting beams. 
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Figure 65. Maximum building displacement as a function of the degree of coupling. 

The total bending behavior (global + local), is obtained by evaluating ℎ𝑣 → ∞ and as a 

consequence 𝛼 → ∞. This is the case for tall and slender shear walls (With a very high 

height/width ratio). The maximum displacement of the building for this case will be denoted as 

𝑢(ℎ𝑣→∞ ). Evaluating this condition on the maximum displacement of the building subject to lateral 

loads, we obtain: 

𝑢(ℎ𝑣→∞) =
𝑤𝐻4

8(𝐾𝑏1 + 𝐾𝑏2)
 

( 330 ) 

The maximum displacement of the building will be denoted as: 

𝑢(0) = (𝜂)𝑢( 0,ℎ𝑣→0  ) + (1 − 𝜂)𝑢( 0,ℎ𝑣→∞) ( 331 ) 

Substituting the above expressions and clearing we can obtain the coefficient 𝜂: 

𝜂 =
𝑢(0) − 𝑢( 0,ℎ𝑣→∞)

𝑢( 0,ℎ𝑣→0 ) − 𝑢( 0,ℎ𝑣→∞)
 

( 332 ) 
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Figure 66. Trend of parameter η with building height. 

The figure shows that the higher the height, the tendency of the parameter 𝜂 is close to zero. It 

means that when the number of floors increases, the global bending becomes more and more 

important and therefore the connecting beams increase the stiffness of the coupled walls with 

respect to the situation of uncoupled walls; this is understandable, as pointed out by Zalka (2020) 

as the number of floors increases the global bending dominates the behavior of the structure. In 

addition, it is observed that the tendency of the parameter 𝜂 to zero value increases with the 

increase of the span of the connecting beams. 

The potential energy of the two-field MGSB (TB + TB) becomes: 

𝑉 =
1

2
∫ {[𝜂𝐾𝑏1 + (1 − 𝜂)𝐾𝑏2]𝜃(𝑥)

′ 2
+ (𝐾𝑠1 +𝐾𝑠2)[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 
( 333 ) 

i.e., 

𝑉 =
1

2
∫ {𝐾𝑏

∗𝜃(𝑥)
′ 2

+ 𝐾𝑠
∗[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 
( 334 ) 

Where:  
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{
 
 
 
 

 
 
 
 𝐾𝑏

∗ = 𝜂𝐾𝑏1 + (1 − 𝜂)𝐾𝑏2 = 𝜂∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=0

+ (1 − 𝜂)∑𝐸𝐴𝑐,𝑖𝑐𝑖
2

𝑐

𝑖=0

𝐾𝑠
∗ = 𝐾𝑠1 +𝐾𝑠2 =∑𝐺𝐴𝑐,𝑖

𝑐

𝑖=0

+ (𝐾𝑏
−1 +𝐾𝑐

−1)
−1

𝐾𝑏 =∑
6𝐸𝐼𝑏,𝑖[(𝑙

∗ + 𝑆1)
2 + (𝑙∗ + 𝑆2)

2]

𝑙∗3ℎ (1 + 12
𝑘𝐸𝐼𝑏,𝑖
𝑙∗2𝐺𝐴𝑏,𝑖

)

𝑏

𝑖=0

, 𝐾𝑐 =∑
12𝐸𝐼𝑐
ℎ2

𝑛

𝑖=0
}
 
 
 
 

 
 
 
 

 

( 335 ) 

As initially observed, if the stiffnesses 𝐾𝑏
∗ and 𝐾𝑠

∗ are replaced by their lateral equivalents 𝐾𝑏 and 

𝐾𝑠 respectively, it follows that the equations of the two-field MGSB beam are identical to those of 

the TB beam; that is, the same conclusions obtained for the TB beam are applicable for the two-

field MGSB beam. 

The expression of 𝑢(𝑍): 

𝑢(𝑧) = 𝜆 {[
1

8
+
1

𝑎3
(
1

𝑎
− 1) +

𝑒−𝑎

𝑎2
(
1

2
−
1

𝑎
)] +

1

𝛼2
(
1

2
−
1

𝑎2
+
𝑒−𝑎

𝑎
)}

+ 𝜆 [(
1

𝑎3
−
1

6
) −

𝑒−𝑎

𝑎
(
1

𝑎
+
1

2
+
1

𝛼2
)] 𝑧 −

𝜆

2𝛼2
(1 −

𝛼2

𝑎2
𝑒−𝑎) 𝑧2 +

𝜆𝑒−𝑎

6𝑎
𝑧3

+
𝜆

24
𝑧4 + [

𝜆(𝑎2 − 𝛼2)

𝑎4𝛼2
] 𝑒−𝑎+𝑎𝑧 

( 336 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞): 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏
∗ (

1

24
𝑧4 −

1

6
𝑧 +

1

8
) +

𝑊𝑚𝑎𝑥𝐻
2

2𝐾𝑠
∗

(1 − 𝑧2) 
( 337 ) 

4.1.9.2 Case 2 

 Calculation of the Transfer Matrix 

Recalling the transfer matrix of the TB beam, we have: 
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𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
 
1 𝑧𝑖 𝑧𝑖

2 𝑧𝑖
3

0 1 2𝑧𝑖 3𝑧𝑖
2 +

6

𝛼∗2

0 0 2𝐾𝑏
∗ 6𝐾𝑏

∗𝑧𝑖

0 0 0 −
6

𝛼∗2
𝐾𝑠
∗
]
 
 
 
 
 
 

𝑖

 

( 338 ) 

Moreover; 

 

{
 
 

 
 

𝑇𝑖(z) = 𝐾𝑖(𝑧𝑖)𝐾𝑖
−1(ℎ𝑖)

{
 

 
𝑢𝑖(0)

𝜃𝑖(0)

𝑀𝑖(0)

𝑉𝑖(0)}
 

 
= 𝑇𝑖(0) {

𝑢𝑖(ℎ𝑖)
𝜃𝑖(ℎ𝑖)
𝑀𝑖(ℎ𝑖)
𝑉𝑖(ℎ𝑖)

}

}
 
 

 
 

 

 Static Analysis Under Static Point Loads Applied at Floor Level 

The relationship between the forces and displacements of the top and the base of the beam, 

according to the TB beam results: 

{
 

 
𝑢𝑛(0)

𝜃𝑛(0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= t

{
 

 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
+ 𝑓 

( 339 ) 

Where: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 340 ) 

Moreover: 

{
𝑢𝑛(0)

𝑢𝑛
′ (0)

} = −[
𝑡1,3 𝑡1,4
𝑡2,3 𝑡2,4

] [
𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} + {

𝑓1
𝑓2
} 

( 341 ) 
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4.1.10 Parallel Coupling of Shear Beam and Timoshenko Beam (MCTB) 

Due to the mathematical complexity that results when analyzing the "Generalized Sandwich Beam 

(GSB)", a mathematical model is developed that neglects the global bending stiffness. According 

to Mangione and Migliorati (2015), this "Modified Generalized Sandwich Beam (MGSB)" model 

is suitable for modeling flat portal frames that in practice are used for buildings less than 25 stories. 

The "modified two-beam coupling (MCTB) of two fields" results from the parallel coupling of a 

Timoshenko beam (TB) and a shear beam (SB). A single transverse motion u and an equal 

rotational field θ in both beams are taken into account.  

In the model; 𝐾𝑠1 is the global shear stiffness in the left SB and 𝐾𝑏1 and 𝐾𝑠1 are the local bending 

and local shear stiffnesses in the right TB. 

 

Figure 67. Modified two-beam coupling (MCTB) of two fields. a) Case 1, b) Case 2, c) equivalent RB and d) 

MCTB stiffness idealization. 

4.1.10.1 Case 1 

The potential energy of the two-field MCTB model is expressed as follows: 

𝑉 =
1

2
∫ [𝐾𝑠1𝑢(𝑥)

′ 2
]

𝐻

0

𝑑𝑥 +
1

2
∫ {𝐾𝑏2𝜃(𝑥)

′ 2
+𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝐻

0

𝑑𝑥 
( 342 ) 

Where: 
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{𝐾𝑠1 = (𝐾𝑏
−1 + 𝐾𝑐

−1)−1 ,𝐾𝑏2 = 𝑟∑𝐸𝐼𝑐,𝑖

𝑐

𝑖=0

 , 𝐾𝑠2 =∑𝐺𝐴𝑐,𝑖

𝑐

𝑖=0

, 𝐾𝑏 =∑
12𝐸𝐼𝑏,𝑖
ℎ𝐿

𝑏

𝑖=1

 , 𝐾𝑐 =∑
12𝐸𝐼𝑐,𝑖
ℎ2

𝑐

𝑖=0

} 

( 343 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 344 ) 

Consequently, the total potential energy of the two-field MCTB beam subjected to a general lateral 

load distribution is expressed as: 

𝒰 =
1

2
∫ {𝐾𝑠1𝑢(𝑥)

′ 2
+ 𝐾𝑏2𝜃(𝑥)

′ 2
+𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝐻

0

𝑑𝑥 −∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 345 ) 

Closed-form solutions of the model on which a transverse load acts are achieved by solving the 

differential system arising from the stationarity of the equation. Stationarity due to equilibrium 

implies: 

𝛿𝒰 = ∫ {𝐾𝑠1𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ +𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ +𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)
′ ]𝛿𝜃(𝑥)

𝐻

0

− 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)
′ ]𝛿𝑢(𝑥)

′ }𝑑𝑥 −∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥 −∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 346 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)]

0

𝐻
+ {(𝐾𝑠1 +𝐾𝑠2)𝑢(𝑥)

′ −𝐾𝑠2𝜃(𝑥)}𝛿𝑢(𝑥)
0

𝐻

−∫ {𝐾𝑏2𝜃(𝑥)
′′ − 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)

′ ]}𝛿𝜃(𝑥)

𝐻

0

−∫ {(𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥)
′′ −𝐾𝑠2𝜃(𝑥)

′ + 𝑓(𝑥)}
𝐻

0

𝛿𝑢(𝑥) −∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 347 ) 

Equating the terms to zero results in the following equations: 

{
𝐾𝑏2𝜃(𝑥)

′′ − 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)
′ ] = 0

(𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥)
′′ − 𝐾𝑠2𝜃(𝑥)

′ + 𝑓(𝑥) = 0
} 

( 348 ) 

Boundary conditions: 
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{
𝜃(0)
′ = 0

(𝐾𝑠1 + 𝐾𝑠2)𝑢(0)
′ − 𝐾𝑠2𝜃(0) = 0

} 

( 349 ) 

Using the method of coefficients for the solution of the system of equations: 

{
𝑢(𝑥)
𝜃(𝑥)

} = − [
𝐾𝑠2𝐷 𝐾𝑏2𝐷

2 − 𝐾𝑠2
(𝐾𝑠1 + 𝐾𝑠2)𝐷

2 −𝐾𝑠2𝐷
]
−1

{
0
𝑓(𝑥)

} 
( 350 ) 

i.e., 

{
 

 𝑢(𝑥)
′′′′ −

𝐾𝑠1𝐾𝑠2

𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝑢(𝑥)
′′

𝜃(𝑥)
′′′′ −

𝐾𝑠1𝐾𝑠2

𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝜃(𝑥)
′′

}
 

 

=

{
 

 
1

𝐾𝑠1 + 𝐾𝑠2
[−𝑓(𝑥)

′′ +
𝐾𝑠2

𝐾𝑏2
𝑓
(𝑥)
]

𝐾𝑠2

𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝑓
(𝑥)
′

}
 

 

 

( 351 ) 

A fourth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′′ − [

𝐾𝑠1𝐾𝑠2
𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

𝐻2] 𝑢(𝑧)
′′ =

𝐻2

𝐾𝑠1 +𝐾𝑠2
[−𝑓(𝑧)

′′ + 𝐻2
𝐾𝑠2
𝐾𝑏2

𝑓(𝑧)] 
( 352 ) 

Defining three parameters: 

{𝛼 = 𝐻√
𝐾𝑠2
2

𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
 , 𝜅 = √

𝐾𝑠1
𝐾𝑠2

, 𝜆 =
𝑊𝑚𝑎𝑥𝐻

2

(𝐾𝑠1 +𝐾𝑠2)(1 − 𝑒
−𝑎)

} 

( 353 ) 

Replacing the first two parameters: 

𝑢(𝑧)
′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′ =
𝐻2

𝐾𝑠1 +𝐾𝑠2
[−𝑓(𝑧)

′′ + 𝛼2(𝑘2 + 1)𝑓(𝑧)] 
( 354 ) 

Assuming a general lateral load (Miranda E. , 1999): 

𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 355 ) 

Replacing the lateral load and the third parameter: 
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𝑢(𝑧)
′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′ = 𝜆𝛼2(𝑘2 + 1) − 𝜆[𝛼2(𝑘2 + 1) − 𝑎2]𝑒−𝑎+𝑎𝑧 ( 356 ) 

The expression for  𝑢(𝑧) is proposed: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(𝛼𝜅𝑧) + 𝐶3 sinh(𝛼𝜅𝑧) −
𝜆(𝑘2 + 1)

2𝜅2
𝑧2 −

𝜆[𝛼2(𝑘2 + 1) − 𝑎2]

𝑎2[𝑎2 − (𝛼𝜅)2]
𝑒−𝑎+𝑎𝑧 

( 357 ) 

The constants are obtained by evaluating the relevant boundary conditions (the origin of x is at the 

base of the model): 

{
  
 

  
 

𝑢(1) = 0

𝑢(1)
′ = −𝜆 (1 −

1

𝑎
+
𝑒−𝑎

𝑎
)

𝑢(0)
′′ = −𝜆(1 − 𝑒−𝑎)

𝑢(1)
′′′ = 𝜆 [𝛼2 (1 −

1

𝑎
+
𝑒−𝑎

𝑎
) + 𝑎]

}
  
 

  
 

 

( 358 ) 

Constants: 

{
 
 
 
 

 
 
 
 𝐶0 = 𝑢(1) − 𝐶1 − [𝐶2 cosh(𝛼𝜅) + 𝐶3 sinh(𝛼𝜅)] + 𝜆 {

1

2
+

1

2𝑘2
+
𝛼2(𝜅2 + 1) − 𝑎2

𝑎2[𝑎2 − (𝛼𝜅)2]
}

𝐶1 = 𝑢(1)
′ − (𝛼𝜅)[𝐶2 sinh(𝛼𝜅) + 𝐶3 cosh(𝛼𝜅)] + 𝜆 {1 +

1

𝑘2
+
𝛼2(𝜅2 + 1) − 𝑎2

𝑎[𝑎2 − (𝛼𝜅)2]
}

𝐶2 =
𝜆

(𝛼𝜅)2
{
1

𝑘2
+

𝑒−𝑎𝛼2

𝑎2 − (𝛼𝜅)2
}

𝐶3 = −𝐶2 tanh(𝛼𝜅) +
𝜆𝛼2

(𝛼𝜅)3 cosh(𝛼𝜅)
[(1 −

1

𝑎
+
𝑒−𝑎

𝑎
) +

𝑎

𝑎2 − (𝛼𝜅)2
]

}
 
 
 
 

 
 
 
 

 

( 359 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞), the expression for 𝑢(𝑧) results: 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠1
(1 − 𝑧2) −

1

𝜅2
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠1 +𝐾𝑠2
{
1 − cosh(𝛼𝜅𝑧 − 𝛼𝜅) − (𝛼𝜅)[sinh(𝛼𝜅𝑧) − sinh(𝛼𝜅)]

(𝛼𝜅)2 cosh(𝛼𝜅)
} 

( 360 ) 

This deflection expression shows that the lateral displacement is composed of the shear deflection 

and a deflection due to the interaction between bending and shear. 

4.1.10.2 Case 2 

 Calculation of the Transfer Matrix 
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According to the coupled differential equations and assuming that the external loads act on the 

floors and not along the floor height, it is possible to write it as follows: 

{
𝐾𝑏2𝜃(𝑥)

′′ − 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)
′ ] = 0

(𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥)
′′ − 𝐾𝑠2𝜃(𝑥)

′ = 0
} 

( 361 ) 

The expression for 𝑢(𝑧) and  𝜃(𝑧) is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(𝛼

∗𝜅𝑧)+ 𝐶3 sinh(𝛼
∗𝜅𝑧)

𝜃(𝑧) = 𝐶4 + 𝐶5 cosh(𝛼
∗𝜅𝑧)+ 𝐶6 sinh(𝛼

∗𝜅𝑧)
} 

( 362 ) 

Where: 

{𝛼∗ = √
𝐾𝑠2
2

𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
 , 𝜅 = √

𝐾𝑠1
𝐾𝑠2

} 

( 363 ) 

Expressing the coefficients of the function 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(𝛼
∗𝜅𝑧)+ 𝐶3 sinh(𝛼

∗𝜅𝑧)

𝜃(𝑧) = 𝐶1 + 𝐶2
𝛼∗𝜅

1 − 𝜅2
sinh(𝛼∗𝜅𝑧)+ 𝐶3

𝛼∗𝜅

1 − 𝜅2
cosh(𝛼∗𝜅𝑧)

} 

( 364 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result: 

{
𝑀l(𝑧) = 𝐾𝑏2𝜃(𝑥)

′ = 𝐶2
(𝛼∗𝜅)2

1 − 𝜅2
𝐾𝑏2 cosh(𝛼

∗𝜅𝑧)+ 𝐶3
(𝛼∗𝜅)2

1 − 𝜅2
𝐾𝑏2 sinh(𝛼

∗𝜅𝑧)

𝑉(𝑧) = (𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥)
′ − 𝐾𝑠2𝜃(𝑥) = 𝐾𝑠1𝐶1

} 

( 365 ) 

Writing the equations in matrix form: 

{
 

 
𝑢𝑖(𝑧𝑖)

𝜃𝑖(𝑧𝑖)

𝑀i(𝑧𝑖)

𝑉𝑖(𝑧𝑖)}
 

 
= 𝐾𝑖(𝑧𝑖) {

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 366 ) 

Where: 
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𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
1 𝑧 cosh(𝛼∗𝜅𝑧) sinh(𝛼∗𝜅𝑧)

0 1
𝛼∗𝜅

1 − 𝜅2
sinh(𝛼∗𝜅𝑧)

𝛼∗𝜅

1 − 𝜅2
cosh(𝛼∗𝜅𝑧)

0 0
(𝛼∗𝜅)2

1 − 𝜅2
𝐾𝑏2 cosh(𝛼

∗𝜅𝑧)
(𝛼∗𝜅)2

1 − 𝜅2
𝐾𝑏2 sinh(𝛼

∗𝜅𝑧)

0 𝐾𝑠1 0 0 ]
 
 
 
 
 

 

( 367 ) 

 Static Analysis Under Static Point Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

{
 

 
𝑢𝑛(0)

𝜃𝑛(0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ𝑖)

𝜃1(ℎ𝑖)

𝑀1(ℎ𝑖)

𝑉1(ℎ𝑖)}
 

 
−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 368 ) 

Expressing it in simplified form: 

{
 

 
𝑢𝑛(0)

𝜃𝑛(0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= t

{
 

 
𝑢1(ℎ𝑖)

𝜃1(ℎ𝑖)

𝑀1(ℎ𝑖)

𝑉1(ℎ𝑖)}
 

 
+ 𝑓 

( 369 ) 

Where: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 370 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 
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{
 
 

 
 

𝑢(1) = 0

𝜃(1) = 0

𝐾𝑏2𝜃(0)
′ = 0

(𝐾𝑠1 +𝐾𝑠2)𝑢(0)
′ −𝐾𝑠2𝜃(0) = 0}

 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝜃1(ℎ1) = 0
𝑀𝑟𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
 

 

 

( 371 ) 

Replacing: 

{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} + {

𝑓1
𝑓2
𝑓3
𝑓4

} 

( 372 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,5
𝑡4,3 𝑡4,5

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓3
𝑓4
}

{
𝑀1(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡3,3 𝑡3,5
𝑡4,3 𝑡4,5

]
−1

{
𝑓3
𝑓4
}

 

Substituting the internal forces we get the displacement and rotation at the top: 

{
𝑢𝑛(0)

𝜃𝑛(0)
} = −[

𝑡1,1 𝑡1,2
𝑡2,1 𝑡2,2

] [
𝑡3,3 𝑡3,5
𝑡4,3 𝑡4,5

]
−1

{
𝑓3
𝑓4
} + {

𝑓1
𝑓2
} 

( 373 ) 
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4.1.11 Generalized Parallel Coupling of Two Beams and Three Field (GCTB) 

The 3-field GCTB beam is developed, which considers that the structure consists of a parallel 

coupling of an extensible Timoshenko beam (Timoshenko beam due to the effect of the shear walls 

and extensibility due to the axial extensibility of the shear walls) and a rotation restraint beam (due 

to the continuous core resulting from the presence of the connecting beam). The beams are 

assumed to be connected in parallel by means of axially rigid members that only transmit the 

horizontal forces and do not deform. 

Moghadasi (2015) proposed this novel replacement beam for lateral deflection analysis of coupled 

shear walls subjected to uniformly distributed loading and then used a one-dimensional FEM 

formulation for dynamic analysis. 

The stiffness of a coupled shear wall is strongly influenced by the properties of the connecting 

beams: if there are connecting beams, the total stiffness of the system exceeds the sum of the 

individual shear wall stiffnesses. 

 

Figure 68. a) Coupled shear wall, (b) equivalent continuous model and (c) force balance and consistent 

kinematic fields (Moghadasi, 2015). 

To obtain the equivalent stiffness of the rotational restraining beam, it is necessary to model the 

connecting beam as a Timoshenko beam and equate the potential energy of a connecting beam and 

its continuous equivalent. The connection beam was modeled as a Timoshenko beam to take into 

account the bending and shear stiffness (not negligible in deep beams). 
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Potential energy of the connecting beam: 

𝑉𝑏 =
1

2
{∫ [

𝑀(𝑥)
2

𝐸𝐼𝑏
+
𝑉(𝑥)
2

𝑘𝐺𝐴𝑏
] 𝑑𝑥

𝑙𝑏

0

+ 2
𝑀0
2

𝐾𝜃
} =

𝑉2𝑙𝑏
2

[
𝑙𝑏
2

12𝐸𝐼𝑏
+

1

𝑘𝐺𝐴𝑏
+

𝑙𝑏
2𝐾𝜃

] 
( 374 ) 

Where 𝑀0 = 𝑉
𝑙𝑏

2
 is the bending moment at the ends. 

Potential energy of the continuous equivalent, according to Capuani (1994): 

𝑉𝑒𝑞 =
𝑉2𝑙𝑏
2

1

𝐺𝑒𝑞𝑡𝑏ℎ
 

( 375 ) 

Equating both potential energies, we get: 

𝐺𝑒𝑞 =
1

𝑡𝑏ℎ
(
𝑙𝑏
2

12𝐸𝐼𝑏
+

1

𝑘𝐺𝐴𝑏
+

𝑙𝑏
2𝐾𝜃

)

−1

 
( 376 ) 

It is very complicated to establish a closed equation taking into account the rotational effect at the 

ends of the connecting beam. Capuani (1994) suggests: 

𝐾𝜃 = {𝜋 +
1

𝜋
[𝑙𝑜𝑔(3 − 4𝜈)]2}

𝐸ℎ2𝑡𝑏
16

 
( 377 ) 

Moghadasi (2015) proposes to take into account the rotational effect at the ends of the connecting 

beam by adding an additional length: 

𝑙′𝑏 = 𝑙𝑏 (1 + 𝜇
ℎ𝑏
𝑙𝑏
) ≈ 𝑙𝑏 (1 + 0.50

ℎ𝑏
𝑙𝑏
) 

( 378 ) 

In this research project, the proposal of Moghadasi (2015) will be taken into account. The 

equivalent stiffness of the restraining beam to rotation is equal to: 

𝐺𝑒𝑞 =
1

𝑡𝑏ℎ
(
𝑙′𝑏

2

12𝐸𝐼𝑏
+

1

𝑘𝐺𝐴𝑏
)

−1

 
( 379 ) 
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Figure 69. Three-field CTB beam. a) Case 1, b) Case 2 and c) Equivalent RB and d) Idealization of the three-

field CTB stiffness 

The 3-field GCTB beam model takes into account three kinematic fields: a transverse motion u 

and a rotational motion θ and an axial extensibility w. 

The basic hypotheses of the model are: 

 Shear walls are in plane tension. 

 Shear walls have a rigid cross section. 

 The connecting beams are axially inextensible. 

 The rotational fields at each connecting wall are assumed to be the same. 

As shown by Moghadasi (2015) this last condition is verified when the following relation is 

fulfilled: 

0.25 ≤
𝐵1
𝐵2
≤ 4 

( 380 ) 

Where 𝐵1 and 𝐵2 are the widths of the left and right shear walls, respectively. The rotation 

compatibility between the shear walls and the equivalent core is evaluated by means of the 

parameter ρ: 

𝜌 = −
𝐵1𝜃(𝑥) +𝐵2𝜑(𝑥)

2𝑙𝑏
→ 𝜌 = −

(𝐵1 + 𝐵1)

2𝑙𝑏
𝜃(𝑥) 

( 381 ) 
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Figure 70.  (a) Unmodified and (b) modified rotation compatibility with axial extensibility in a typical 

portion of the continuum model Moghadasi (2015). 

The shear flow acting vertically inside the core generates an axial extensibility that is distributed 

along the height. The local kinematic fields are established: 

{
 
 

 
 𝑤1(𝑥) = 𝑤𝑢1(𝑥) + 𝑦1𝜃(𝑥)

𝑤2(𝑥) = 𝑤𝑢2(𝑥) + 𝑦2𝜃(𝑥)

𝛾
𝑐
(𝑥) = 𝑢(𝑥)

′ + 𝜌𝜃(𝑥) −
𝑤𝑢1(𝑥) + 𝑤𝑢2(𝑥)

𝑙𝑏
𝑤(𝑥)

}
 
 

 
 

 

( 382 ) 

Since the shear flow generates a secondary rotation in the shear wall, an additional condition can 

be established between both kinematic fields: 

𝑤1 = −
𝐴2
𝐴1
𝑤2 → {𝑤1 = −

𝐴2
𝐴1
𝑤

𝑤2 = 𝑤
} 

( 383 ) 

Taking this condition into account, the local kinematic fields are: 

{
 
 

 
 𝑤1(𝑥) = −

𝐴2

𝐴1
𝑤(𝑥) + 𝑦1𝜃(𝑥)

𝑤2(𝑥) = −𝑤(𝑥) + 𝑦2𝜃(𝑥)

𝛾
𝑐
(𝑥) = 𝑢(𝑥)

′ +
𝐵1 + 𝐵1

2𝑙𝑏
𝜃(𝑥) −

𝐴2
𝐴1
+ 1

𝑙𝑏
𝑤(𝑥)}

 
 

 
 

 

( 384 ) 

4.1.11.1 Case 1 

The potential energy of the three-field GCTB model is expressed as: 
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𝑉 =
1

2
∫ {𝐾𝑏1𝑤(𝑥)

′ 2
+𝐾𝑏2𝜃(𝑥)

′ 2
+𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠1𝛾𝑐(𝑥)

2
𝐻

0

𝑑𝑥 
( 385 ) 

Where: 

{𝐾𝑏1 = 𝐸(𝐴2 +
𝐴2
2

𝐴1
) , 𝐾𝑏2 = 𝐸(𝐼1 + 𝐼2), 𝐾𝑠1 = 𝐺𝑒𝑞𝑡𝑏𝑙𝑏, 𝐾𝑠2 = 𝐺𝜅(𝐴1 + 𝐴2)} 

( 386 ) 

Denoting: 

{𝛾𝑐 = 𝑢(𝑥)
′ +𝑚𝜃(𝑥) − 𝑛𝑤(𝑥),𝑚 =

𝐵1 +𝐵2
2𝑙𝑏

, 𝑛 =
1 +

𝐴2
𝐴1

𝑙𝑏
} 

( 387 ) 

Rewriting: 

𝑉 =
1

2
∫ {𝐾𝑏1𝑤(𝑥)

′ 2
+𝐾𝑏2𝜃(𝑥)

′ 2
+𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠1[𝑢(𝑥)

′ +𝑚𝜃(𝑥) − 𝑛𝑤(𝑥)]
2

𝐻

0

𝑑𝑥 
( 388 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 389 ) 

Consequently, the total potential energy of the 3-field beam GCTB subjected to a general lateral 

load distribution is expressed as: 

𝒰 =
1

2
∫ {𝐾𝑏1𝑤(𝑥)

′ 2
+ 𝐾𝑏2𝜃(𝑥)

′ 2
+𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥

+
1

2
∫ 𝐾𝑠1[𝑢(𝑥)

′ +𝑚𝜃(𝑥) − 𝑛𝑤(𝑥)]
2

𝐻

0

𝑑𝑥 −∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 390 ) 

Closed-form solutions of the model acted on by a transverse load are achieved by solving the 

differential system that arises from the stationarity of the equation. Stationarity due to equilibrium 

implies: 
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𝛿𝒰 = ∫ {𝐾𝑏1𝑤(𝑥)
′ 𝛿𝑤(𝑥)

′ +𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ +𝐾𝑠2[𝑢(𝑥)
′ − 𝜃(𝑥)][𝛿𝑢(𝑥)

′ − 𝛿𝜃(𝑥)]}𝑑𝑥
𝐻

0

+∫ 𝐾𝑠1[𝑢(𝑥)
′ +𝑚𝜃(𝑥) − 𝑛𝑤(𝑥)][𝛿𝑢(𝑥)

′ +𝑚𝛿𝜃(𝑥) − 𝑛𝛿𝑤(𝑥)]𝑑𝑥
𝐻

0

−∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥 − ∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 391 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = 𝐾𝑏1[𝑤(𝑥)
′ 𝛿𝑤(𝑥)]0

𝐻
+𝐾𝑏2[𝜃(𝑥)

′ 𝛿𝜃(𝑥)]0
𝐻
+ {[(𝐾𝑠1 +𝐾𝑠2)𝑢(𝑥)

′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥) − 𝑛𝐾𝑠1𝑤(𝑥)]𝛿𝜃(𝑥)}0
𝐻

+∫ {−𝐾𝑏1𝑤(𝑥)
′′ − 𝑛𝐾𝑠1𝑢(𝑥)

′ −𝑚𝑛𝐾𝑠1𝜃(𝑥) + 𝑛
2𝐾𝑠1𝑤(𝑥)}𝛿𝑤(𝑥)

𝐻

0

+∫ {−𝐾𝑏2𝜃(𝑥)
′′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝑢(𝑥)

′ + (𝐾𝑠2 +𝑚
2𝐾𝑠1)𝜃(𝑥) −𝑚𝑛𝐾𝑠1𝑤(𝑥)}𝛿𝜃(𝑥)

𝐻

0

+∫ {−(𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥)
′′ + (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥)

′ + 𝑛𝐾𝑠1𝑤(𝑥)
′ − 𝑓(𝑥)}𝛿𝑢(𝑥)

𝐻

0

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 

 ( 392 ) 

Setting the terms equal to zero, the following equations result: 

{

−𝐾𝑏1𝑤(𝑥)
′′ − 𝑛𝐾𝑠1𝑢(𝑥)

′ −𝑚𝑛𝐾𝑠1𝜃(𝑥) + 𝑛
2𝐾𝑠1𝑤(𝑥) = 0

−𝐾𝑏2𝜃(𝑥)
′′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝑢(𝑥)

′ + (𝐾𝑠2 +𝑚
2𝐾𝑠1)𝜃(𝑥) −𝑚𝑛𝐾𝑠1𝑤(𝑥) = 0

−(𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥)
′′ + (𝐾𝑠2 − 𝑚𝐾𝑠1)𝜃(𝑥)

′ + 𝑛𝐾𝑠1𝑤(𝑥)
′ − 𝑓(𝑥) = 0

} 

( 393 ) 

And boundary conditions: 

{

𝜃(0)
′ = 0

𝑤(0)
′ = 0

(𝐾𝑠1 + 𝐾𝑠2)𝑢(0)
′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(0) − 𝑛𝐾𝑠1𝑤(0) = 0

} 

( 394 ) 

Using the method of coefficients for the solution of the system of equations: 

{

𝑢(𝑥)
𝑤(𝑥)
𝜃(𝑥)

} = [

−𝑛𝐾𝑠1𝐷 −𝐾𝑏1𝐷
2 + 𝑛2𝐾𝑠1 −𝑚𝑛𝐾𝑠1

−(𝐾𝑠2 −𝑚𝐾𝑠1)𝐷 −𝑚𝑛𝐾𝑠1 −𝐾𝑏2𝐷
2 + (𝐾𝑠2 +𝑚

2𝐾𝑠1)

−(𝐾𝑠1 + 𝐾𝑠2)𝐷
2 𝑛𝐾𝑠1𝐷 (𝐾𝑠2 −𝑚𝐾𝑠1)𝐷

]

−1

{

0
0
𝑓(𝑥)

} 

( 395 ) 
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i.e., 

{
  
 

  
 𝑢(𝑥)

′′′′′′ −
𝐾𝑠1𝐾𝑠2[𝑛

2𝐾𝑏2 + (𝑚 + 1)2𝐾𝑏1]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝑢(𝑥)
′′′′

𝑤(𝑥)
′′′′′′ −

𝐾𝑠1𝐾𝑠2[𝑛
2𝐾𝑏2 + (𝑚 + 1)2𝐾𝑏1]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝑤(𝑥)
′′′′

𝜃(𝑥)
′′′′′′ −

𝐾𝑠1𝐾𝑠2[𝑛
2𝐾𝑏2 + (𝑚 + 1)2𝐾𝑏1]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝜃(𝑥)
′′′′

}
  
 

  
 

=

{
  
 

  
 −

1

(𝐾𝑠1 + 𝐾𝑠2)
𝑓(𝑥)
′′′′ +

𝐾𝑏1(𝐾𝑠2 +𝑚
2𝐾𝑠1) + 𝑛

2𝐾𝑠1𝐾𝑏2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

𝑓(𝑥)
′′ −

𝑛2𝐾𝑠1𝐾𝑠2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

𝑓(𝑥)

𝑛𝐾𝑠1
𝐾𝑏1(𝐾𝑠1 +𝐾𝑠2)

𝑓(𝑥)
′′′ −

𝐾𝑠1𝐾𝑠2𝑛(𝑚 + 1)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝑓(𝑥)
′

(𝐾𝑠2 −𝑚𝐾𝑠1)

𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑓(𝑥)
′′′ −

𝐾𝑠1𝐾𝑠2𝑛
2

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝑓(𝑥)
′

}
  
 

  
 

 

( 396 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′′′′ −

𝐾𝑠1𝐾𝑠2[𝑛
2𝐾𝑏2 + (𝑚 + 1)2𝐾𝑏1]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝐻2𝑢(𝑧)

′′′′

= −
𝐻2

(𝐾𝑠1 +𝐾𝑠2)
𝑓(𝑧)
′′′′ +

𝐾𝑏1(𝐾𝑠2 +𝑚
2𝐾𝑠1) + 𝑛

2𝐾𝑠1𝐾𝑏2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

𝐻4𝑓(𝑧)
′′ −

𝑛2𝐾𝑠1𝐾𝑠2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

𝐻6𝑓(𝑧) 

 ( 397 ) 

Defining six parameters: 

{
 
 

 
 

𝛼 = 𝐻√
𝐾𝑠1𝐾𝑠2

𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
 , 𝜅 = √(𝑚 + 1)2 + 𝑛2

𝐾𝑏2
𝐾𝑏1

𝜂𝑤 = 𝐻√
𝐾𝑠1
𝐾𝑏1

, 𝜂𝜃 = 𝐻√
𝐾𝑠2
𝐾𝑏2

, 𝜂𝜙 = 𝐻√
𝐾𝑠1
𝐾𝑏2

, 𝜆 =
𝑊𝑚𝑎𝑥𝐻

2

(𝐾𝑠1 + 𝐾𝑠2)(1 − 𝑒−𝑎)}
 
 

 
 

 

( 398 ) 

Replacing the first six parameters: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ =
𝐻2

(𝐾𝑠1 +𝐾𝑠2)
[−𝑓(𝑧)

′′′′ + (𝜂𝜃
2 +𝑚2𝜂𝜙

2 + 𝑛2𝜂𝑤
2 )𝑓(𝑧)

′′ − (𝑛2𝜂𝑤
2 𝜂𝜃

2)𝑓(𝑧)] 
( 399 ) 

Assuming a general lateral load (Miranda E. , 1999): 
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𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 400 ) 

Replacing the lateral load and introducing the sixth parameter: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ = −𝑛2𝜂𝑤
2 𝜂𝜃

2𝜆 + [𝑎4 − (𝜂𝜃
2 +𝑚2𝜂𝜙

2 + 𝑛2𝜂𝑤
2 )𝑎2 + 𝑛2𝜂𝑤

2 𝜂𝜃
2]𝜆 ( 401 ) 

The expression for 𝑢(𝑧), 𝑤(𝑧) and 𝜃(𝑧) is proposed: 

{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼𝜅𝑧) + 𝐶5 sinh(𝛼𝜅𝑧) + 𝐶6𝑧
4 + 𝐶7𝑒

−𝑎+𝑎𝑧

𝑤(𝑧) = 𝐶8 + 𝐶9𝑧 + 𝐶10𝑧
2 + 𝐶11 cosh(𝛼𝜅𝑧) + 𝐶12 sinh(𝛼𝜅𝑧) + 𝐶13𝑧

3 + 𝐶14𝑒
−𝑎+𝑎𝑧

𝜃(𝑧) = 𝐶15 + 𝐶16𝑧 + 𝐶17𝑧
2 + 𝐶18 cosh(𝛼𝜅𝑧) + 𝐶19 sinh(𝛼𝜅𝑧) + 𝐶20𝑧

3 + 𝐶21𝑒
−𝑎+𝑎𝑧

} 

( 402 ) 

Where: 

{
 
 

 
 𝐶6 =

𝑛2𝜂𝑤
2 𝜂𝜃

2

24(𝛼𝜅)2

𝐶7 =
𝑎4 − (𝜂𝜃

2 +𝑚2𝜂𝜙
2 + 𝑛2𝜂𝑤

2 )𝑎2 + 𝑛2𝜂𝑤
2 𝜂𝜃

2

𝑎4[𝑎2 − (𝛼𝜅)2] }
 
 

 
 

 

( 403 ) 

Expressing 𝑤(𝑧) and 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{
𝑤(𝑧) = (𝑝3)𝐶1 + (2𝑝3𝑧)𝐶2 + (𝑝8 + 3𝑝3𝑧

2)𝐶3 + [𝑝6(𝛼𝜅) sinh(𝛼𝜅𝑧)]𝐶4

+[𝑝6(𝛼𝜅) cosh(𝛼𝜅𝑧)]𝐶5 + (𝑝4𝑧 + 4𝑝3𝑧
3)𝐶6 + 𝑎𝑝1𝑒

−𝑎+𝑎𝑧𝐶7
} 

{
𝜃(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (𝑝9 + 3𝑧

2)𝐶3 + [𝑝7(𝛼𝜅) sinh(𝛼𝜅𝑧)]𝐶4

+[𝑝7(𝛼𝜅) cosh(𝛼𝜅𝑧)]𝐶5 + (𝑝5𝑧 + 4𝑧
3)𝐶6 + 𝑎𝑝2𝑒

−𝑎+𝑎𝑧𝐶7
} 

( 404 ) 

Where: 

{
 
 
 
 
 

 
 
 
 
 𝑝1 =

𝑛𝜂𝑤
2 [(𝑚 + 1)𝜂𝜃

2 − 𝑎2]

𝑎4 − (𝑛2𝜂𝑤2 + 𝜂𝜃
2 +𝑚2𝜂𝜙

2 )𝑎2 + 𝑛2𝜂𝑤2 𝜂𝜃
2
, 𝑝2 =

𝑛𝜂𝑤
2 𝜂𝜃

2 − (𝜂𝜃
2 −𝑚𝜂𝜙

2 )𝑎2

𝑎4 − (𝑛2𝜂𝑤2 + 𝜂𝜃
2 +𝑚2𝜂𝜙

2 )𝑎2 + 𝑛2𝜂𝑤2 𝜂𝜃
2

𝑝3 =
𝑚+ 1

𝑛
, 𝑝4 =

24[𝑝3(𝜂𝜃
2 +𝑚2𝜂𝜙

2 ) +𝑚𝑛𝜂𝑤
2 ]

𝑛2𝜂𝑤2 𝜂𝜃
2 , 𝑝5 =

24[𝑝3𝑚𝜂𝜙
2 + 𝑛𝜂𝑤

2 ]

𝑛𝜂𝑤2 𝜂𝜃
2

𝑝6 =
𝑛𝜂𝑤

2 [(𝑚 + 1)𝜂𝜃
2 − (𝛼𝜅)2]

𝑎4 − (𝑛2𝜂𝑤2 + 𝜂𝜃
2 +𝑚2𝜂𝜙

2 )𝑎2 + 𝑛2𝜂𝑤2 𝜂𝜃
2
, 𝑝7 =

𝑛𝜂𝑤
2 𝜂𝜃

2 − (𝜂𝜃
2 −𝑚𝜂𝜙

2 )(𝛼𝜅)2

𝑎4 − (𝑛2𝜂𝑤2 + 𝜂𝜃
2 +𝑚2𝜂𝜙

2 )𝑎2 + 𝑛2𝜂𝑤2 𝜂𝜃
2

𝑝8 =
6[𝑝3(𝜂𝜃

2 +𝑚2𝜂𝜙
2 ) +𝑚𝑛𝜂𝑤

2 ]

𝑛𝜂𝑤2 𝜂𝜃
2 , 𝑝9 =

6[𝑝3𝑚𝜂𝜙
2 + 𝑛𝜂𝑤

2 ]

𝑛𝜂𝑤2 𝜂𝜃
2 ,

}
 
 
 
 
 

 
 
 
 
 

 

 ( 405 ) 
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The constants are obtained by evaluating the relevant boundary conditions (the origin of x is at the 

base of the model). The constants: 

 We evaluate two boundary conditions at the top: 

{
𝜃(0)
′ = 0

𝑤(0)
′ = 0

} → {
𝐶2
𝐶4
} = − [

2𝑝3 𝑝6(𝛼𝜅)
2

2 𝑝7(𝛼𝜅)
2]
−1

. [{
𝑝4
𝑝5
}𝐶6 + {

𝑝1
𝑝2
}𝑎2𝑒−𝑎𝐶7] 

( 406 ) 

 We evaluate three boundary conditions at the base: 

{

𝜃(1) = 0

𝑤(1) = 0

(𝐾𝑠1 +𝐾𝑠2)𝑢(0)
′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(0) − 𝑛𝐾𝑠1𝑤(0) = 0

} → {

𝜃(1) = 0

𝑤(1) = 0

𝑉(0) = 0
} 

( 407 ) 

i.e., 

{
𝐶1
𝐶3
𝐶5

} = − [

1 𝑝9 + 3 𝑝7(𝛼𝜅) cosh(𝛼𝜅)

𝑝3 𝑝8 + 3𝑝3 𝑝6(𝛼𝜅) cosh(𝛼𝜅)

0 𝐾𝑠1(𝑚𝑝9 − 𝑛𝑝8) − 𝐾𝑠2𝑝9 (𝛼𝜅)[𝐾𝑠1(1 +𝑚𝑝7 − 𝑛𝑝6) − 𝐾𝑠2(1 − 𝑝7)]
]

−1

𝑥 

{

2𝐶2 + 𝑝7(𝛼𝜅) sinh(𝛼𝜅)𝐶4 + (𝑝5 + 4)𝐶6 + 𝑝2𝑎𝐶7
2𝑝3𝐶2 + 𝑝6(𝛼𝜅) sinh(𝛼𝜅) 𝐶4 + (𝑝4 + 4𝑝3)𝐶6 + 𝑝1𝑎𝐶7

[𝐾𝑠1(1 + 𝑚𝑝2 − 𝑛𝑝1) + 𝐾𝑠2(1 − 𝑝2)]𝑎𝑒
−𝑎𝐶7

} 

( 408 ) 

 We evaluate a zero displacement in the base: 

{𝑢(1) = 0} → {𝐶0 =− (𝐶1 + 𝐶2 + 𝐶3) − [𝐶4 cosh(𝛼𝜅) + 𝐶5 sinh(𝛼𝜅)] − (𝐶6 + 𝐶7)} ( 409 ) 

4.1.11.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations and assuming that the external loads act on the 

stories and not along the height of the story, it is possible to write it as follows: 

{

−𝐾𝑏1𝑤(𝑧)
′′ − 𝑛𝐾𝑠1𝑢(𝑧)

′ −𝑚𝑛𝐾𝑠1𝜃(𝑧) + 𝑛
2𝐾𝑠1𝑤(𝑧) = 0

−𝐾𝑏2𝜃(𝑧)
′′ − (𝐾𝑠2 − 𝑚𝐾𝑠1)𝑢(𝑧)

′ + (𝐾𝑠2 +𝑚
2𝐾𝑠1)𝜃(𝑧) − 𝑚𝑛𝐾𝑠1𝑤(𝑧) = 0

−(𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑧)
′′ + (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑧)

′ + 𝑛𝐾𝑠1𝑤(𝑧)
′ = 0

} 

( 410 ) 



 

 

172 

The expression for 𝑢(𝑧), 𝑤(𝑧) and 𝜃(𝑧) is proposed: 

{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼
∗𝜅𝑧) + 𝐶5 sinh(𝛼

∗𝜅𝑧)

𝑤(𝑧) = 𝐶8 + 𝐶9𝑧 + 𝐶10𝑧
2 + 𝐶11 cosh(𝛼

∗𝜅𝑧)+ 𝐶12 sinh(𝛼
∗𝜅𝑧)

𝜃(𝑧) = 𝐶15 + 𝐶16𝑧 + 𝐶17𝑧
2 + 𝐶18 cosh(𝛼

∗𝜅𝑧)+ 𝐶19 sinh(𝛼
∗𝜅𝑧)

} 

( 411 ) 

Defining five parameters: 

{
 
 

 
 
𝛼 = √

𝐾𝑠1𝐾𝑠2
𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

 , 𝜅 = √(𝑚 + 1)2 + 𝑛2
𝐾𝑏2
𝐾𝑏1

𝜂𝑤 = √
𝐾𝑠1
𝐾𝑏1

, 𝜂𝜃 = √
𝐾𝑠2
𝐾𝑏2

, 𝜂𝜙 = √
𝐾𝑠1
𝐾𝑏2 }

 
 

 
 

 

( 412 ) 

Expressing the coefficients of the function 𝑤(𝑧) and 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼
∗𝜅𝑧)+ 𝐶5 sinh(𝛼

∗𝜅𝑧)

𝑤(𝑧) = (𝑝3)𝐶1 + (2𝑝3𝑧)𝐶2 + (𝑝8 + 3𝑝3𝑧
2)𝐶3 + [𝑝6(𝛼

∗𝜅) sinh(𝛼∗𝜅𝑧)]𝐶4 + [𝑝6(𝛼
∗𝜅) cosh(𝛼∗𝜅𝑧)]𝐶5

𝜃(𝑧) = 𝐶1 + (2𝑧)𝐶2 + (𝑝9 + 3𝑧
2)𝐶3 + [𝑝7(𝛼

∗𝜅) sinh(𝛼∗𝜅𝑧)]𝐶4 + [𝑝7(𝛼
∗𝜅) cosh(𝛼∗𝜅𝑧)]𝐶5

} 

 ( 413 ) 

Where: 

{
 
 

 
 𝑝6 =

𝑛𝜂𝑤
2 [(𝑚 + 1)𝜂𝜃

2 − (𝛼𝜅)2]

𝑎4 − (𝑛2𝜂𝑤2 + 𝜂𝜃
2 +𝑚2𝜂𝜙

2 )𝑎2 + 𝑛2𝜂𝑤2 𝜂𝜃
2
, 𝑝7 =

𝑛𝜂𝑤
2 𝜂𝜃

2 − (𝜂𝜃
2 −𝑚𝜂𝜙

2 )(𝛼𝜅)2

𝑎4 − (𝑛2𝜂𝑤2 + 𝜂𝜃
2 +𝑚2𝜂𝜙

2 )𝑎2 + 𝑛2𝜂𝑤2 𝜂𝜃
2

𝑝3 =
𝑚+ 1

𝑛
, 𝑝8 =

6[𝑝3(𝜂𝜃
2 +𝑚2𝜂𝜙

2 ) + 𝑚𝑛𝜂𝑤
2 ]

𝑛𝜂𝑤2 𝜂𝜃
2 , 𝑝9 =

6[𝑝3𝑚𝜂𝜙
2 + 𝑛𝜂𝑤

2 ]

𝑛𝜂𝑤2 𝜂𝜃
2 ,

}
 
 

 
 

 

The bending moment and the shear force associated with the lateral displacement result: 

{
𝑀1 = 𝐾𝑏1𝑤(𝑥)

′ = (2𝑝3𝐾𝑏1)𝐶2 + (6𝑝3𝐾𝑏1z)𝐶3 + [𝑝6𝐾𝑏1(𝛼
∗𝜅)2 cosh(𝛼∗𝜅𝑧)]𝐶4

+[𝑝6𝐾𝑏1(𝛼
∗𝜅)2 sinh(𝛼∗𝜅𝑧)]𝐶5

} 

{
𝑀2 = 𝐾𝑏2𝜃(𝑥)

′ = (2𝐾𝑏2)𝐶2 + (6𝐾𝑏2z)𝐶3 + [𝑝7𝐾𝑏2(𝛼
∗𝜅)2 cosh(𝛼∗𝜅𝑧)]𝐶4

+[𝑝7𝐾𝑏2(𝛼
∗𝜅)2 sinh(𝛼∗𝜅𝑧)]𝐶5

} 

{
𝑉 = (𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥)

′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥) − 𝑛𝐾𝑠1𝑤(𝑥) = 𝑝10𝐶1 + (2𝑝10𝑧)𝐶2

+(𝑝11 + 3𝑝10𝑧
2)𝐶3 + [𝑝12(𝛼

∗𝜅) sinh(𝛼∗𝜅𝑧)]𝐶4 + [𝑝12(𝛼
∗𝜅) cosh(𝛼∗𝜅𝑧)]𝐶5

} 
( 414 ) 
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Where: 

{
𝑝10 = (1 + 𝑚 − 𝑛𝑝3)𝐾𝑠1, 𝑝11 = (𝑚𝑝9 − 𝑛𝑝8)𝐾𝑠1 − 𝑝9𝐾𝑠2

𝑝12 = (1 + 𝑚𝑝7 − 𝑛𝑝6)𝐾𝑠1 − (1 − 𝑝7)𝐾𝑠2
} 

( 415 ) 

Writing the equations in matrix form: 

{
  
 

  
 
𝑢𝑖(𝑧𝑖)

𝑤𝑖(𝑧𝑖)

𝜃𝑖(𝑧𝑖)

𝑀1𝑖(𝑧𝑖)

𝑀2𝑖(𝑧𝑖)

𝑉𝑖(𝑧𝑖) }
  
 

  
 

= 𝐾𝑖(𝑧𝑖)

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

 

( 416 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
 
1 𝑧 𝑧2 𝑧3 cosh(𝛼∗𝜅𝑧) sinh(𝛼∗𝜅𝑧)

0 𝑝3 2𝑝3𝑧 𝑝8 + 3𝑝3𝑧
2 𝑝6(𝛼

∗𝜅) sinh(𝛼∗𝜅𝑧) 𝑝6(𝛼
∗𝜅) cosh(𝛼∗𝜅𝑧)

0 1 2 𝑝9 + 3𝑧
2 𝑝7(𝛼

∗𝜅) sinh(𝛼∗𝜅𝑧) 𝑝7(𝛼
∗𝜅) cosh(𝛼∗𝜅𝑧)

0 0 2𝑝3𝐾𝑏1 6𝑝3𝐾𝑏1z 𝑝6𝐾𝑏1(𝛼
∗𝜅)2 cosh(𝛼∗𝜅𝑧) 𝑝6𝐾𝑏1(𝛼

∗𝜅)2 sinh(𝛼∗𝜅𝑧)

0 0 2𝐾𝑏2 6𝐾𝑏2z 𝑝7𝐾𝑏2(𝛼
∗𝜅)2 cosh(𝛼∗𝜅𝑧) 𝑝7𝐾𝑏2(𝛼

∗𝜅)2 sinh(𝛼∗𝜅𝑧)

0 𝑝10 2𝑝10𝑧 𝑝11 + 3𝑝10𝑧
2 𝑝12(𝛼

∗𝜅) sinh(𝛼∗𝜅𝑧) 𝑝12(𝛼
∗𝜅) cosh(𝛼∗𝜅𝑧) ]

 
 
 
 
 
 

 

( 417 ) 

 Static Analysis Under Point Static Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

{
  
 

  
 
𝑢𝑛(0)

𝑤𝑛(0)

𝜃𝑛(0)

𝑀1𝑛(0)

𝑀2𝑛(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑘(0)

𝑛

𝑘=1

{
  
 

  
 
𝑢1(ℎ𝑖)

𝑤1(ℎ𝑖)

𝜃1(ℎ𝑖)

𝑀11(ℎ𝑖)

𝑀21(ℎ𝑖)

𝑉1(ℎ𝑖) }
  
 

  
 

−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛  

( 418 ) 

Expressing it in simplified form: 

{
  
 

  
 
𝑢𝑛(0)

𝑤𝑛(0)

𝜃𝑛(0)

𝑀1𝑛(0)

𝑀2𝑛(0)

𝑉𝑛(0) }
  
 

  
 

= t

{
  
 

  
 
𝑢1(ℎ𝑖)

𝑤1(ℎ𝑖)

𝜃1(ℎ𝑖)

𝑀11(ℎ𝑖)

𝑀21(ℎ𝑖)

𝑉1(ℎ𝑖) }
  
 

  
 

+ 𝑓 

( 419 ) 
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Where: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 420 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝑤(1) = 0

𝜃(1) = 0

𝑤(0)
′ = 0

𝜃(0)
′ = 0

(𝐾𝑠1 +𝐾𝑠2)𝑢(0)
′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(0) − 𝑛𝐾𝑠1𝑤(0) = 0}

 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝑤1(ℎ1) = 0

𝜃1(ℎ1) = 0
𝑀1𝑛 (0) = 0

𝑀2𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
  
 

  
 

 

( 421 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝑤𝑛(0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

+

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

 

( 422 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1)
} + {

𝑓4
𝑓5
𝑓6

} → {

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]

−1

{

𝑓4
𝑓5
𝑓6

} 

( 423 ) 

Substituting the internal forces we obtain the displacement, the axial strain and the rotation at the 

top of the beam: 
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{

𝑢𝑛(0)

𝑤𝑛(0)

𝜃𝑛(0)
} = − [

𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,4 𝑡3,5 𝑡3,6

] [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]

−1

{

𝑓4
𝑓5
𝑓6

} + {

𝑓1
𝑓2
𝑓3

} 

( 424 ) 
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4.1.12 Modified Generalized Parallel Coupling of Two Beams and Two Field 
(GCTB) 

The two-field GCTB beam is developed, which considers that the structure consists of a parallel 

coupling of an extensible Euler Bernoulli beam (Bernoulli beam because it only considers the 

bending effect of the walls and extensibility due to the extensibility axial shear walls) and a rotation 

restraint beam (due to the continuous core resulting from the presence of the connecting beam). 

The beams are assumed to be connected in parallel by means of axially rigid members that only 

transmit the horizontal forces and do not deform. This two-field CTB is suitable for intermediate 

to high shear walls, where it is generally possible to neglect the effect of the shear stiffness of the 

shear walls. 

The two-field beam GCTB results from ignoring the local shear strain and considering 𝑢(𝑥)
′ = 𝜃(𝑥) 

in the three-field beam GCTB. The two-field GCTB beam model takes into account two kinematic 

fields: a transverse motion u and an axial extensibility w. Also; 𝐾𝑏1, 𝐾𝑏2 and 𝐾𝑠1 are the global 

bending stiffness, global shear stiffness, local bending stiffness and equivalent local shear stiffness 

of the connecting beams, respectively. 

 

Figure 71. GCTB beam of two fields. a) Case 1, b) Case 2 and c) Equivalent RB and d) Idealization of the 

GCTB stiffness of two fields. 

4.1.12.1 Case 1 

The potential energy of the two-field GCTB model is expressed as: 
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𝑉 =
1

2
∫ [𝐾𝑏1𝑤(𝑥)

′ 2
+𝐾𝑏2𝑢(𝑥)

′′ 2
]

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠1𝛾𝑐(𝑥)

2
𝐻

0

𝑑𝑥 
( 425 ) 

Where: 

{𝐾𝑏1 = 𝐸(𝐴2 +
𝐴2
2

𝐴1
) , 𝐾𝑏2 = 𝐸(𝐼1 + 𝐼2), 𝐾𝑠1 = 𝐺𝑒𝑞𝑡𝑤𝑙𝑏} 

( 426 ) 

Denoting: 

{𝛾𝑐 = (𝑚 + 1)𝑢(𝑥)
′ − 𝑛𝑤(𝑥),𝑚 =

𝐵1 +𝐵2
2𝑙𝑏

, 𝑛 =
1 + 𝐴2 𝐴1⁄

𝑙𝑏
} 

( 427 ) 

Rewriting: 

𝑉 =
1

2
∫ [𝐾𝑏1𝑤(𝑥)

′ 2
+𝐾𝑏2𝑢(𝑥)

′′ 2
]

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠1[(𝑚+ 1)𝑢(𝑥)

′ − 𝑛𝑤(𝑥)]
2

𝐻

0

𝑑𝑥 
( 428 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 429 ) 

Consequently, the total potential energy of the two-field beam GCTB subjected to a general lateral 

load distribution is expressed as: 

𝒰 =
1

2
∫ [𝐾𝑏1𝑤(𝑥)

′ 2
+𝐾𝑏2𝑢(𝑥)

′′ 2
]

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠1[(𝑚 + 1)𝑢(𝑥)

′ − 𝑛𝑤(𝑥)]
2

𝐻

0

𝑑𝑥 −∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 430 ) 

Closed-form solutions of the model acted on by a transverse load are achieved by solving the 

differential system that arises from the stationarity of the equation. Stationarity due to equilibrium 

implies: 
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𝛿𝒰 = ∫ {𝐾𝑏1𝑤(𝑥)
′ 𝛿𝑤(𝑥)

′ +𝐾𝑏2𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′′ }𝑑𝑥
𝐻

0

+∫ 𝐾𝑠1[(𝑚+ 1)𝑢(𝑥)
′ − 𝑛𝑤(𝑥)][(𝑚+ 1)𝛿𝑢(𝑥)

′ − 𝑛𝛿𝑤(𝑥)]𝑑𝑥
𝐻

0

−∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥 − ∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 431 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = 𝐾𝑏1[𝑤(𝑥)
′ 𝛿𝑤(𝑥)]0

𝐻
+ 𝐾𝑏2[𝑢(𝑥)

′′ 𝛿𝑢(𝑥)
′ ]

0

𝐻

+ {[−𝐾𝑏2𝑢(𝑥)
′′′ + (𝑚 + 1)2𝐾𝑠1𝑢(𝑥)

′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑤(𝑥)]𝛿𝑢(𝑥)}0
𝐻

+∫ {−𝐾𝑏1𝑤(𝑥)
′′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑢(𝑥)

′ + 𝑛2𝐾𝑠1𝑤(𝑥)}𝛿𝑤(𝑥)

𝐻

0

+∫ {𝐾𝑏2𝑢(𝑥)
′′′′ − (𝑚 + 1)2𝐾𝑠1𝑢(𝑥)

′′ + 𝑛(𝑚 + 1)𝐾𝑠1𝑤(𝑥)
′ − 𝑓(𝑥)}𝛿𝑢(𝑥)

𝐻

0

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 432 ) 

Setting the terms equal to zero, the following equations result: 

{
−𝐾𝑏1𝑤(𝑥)

′′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑢(𝑥)
′ + 𝑛2𝐾𝑠1𝑤(𝑥) = 0

𝐾𝑏2𝑢(𝑥)
′′′′ − (𝑚+ 1)2𝐾𝑠1𝑢(𝑥)

′′ + 𝑛(𝑚+ 1)𝐾𝑠1𝑤(𝑥)
′ − 𝑓(𝑥) = 0

} 

( 433 ) 

And boundary conditions: 

{

𝑤(0)
′ = 0

𝑢(0)
′′ = 0

−𝐾𝑏2𝑢(0)
′′′ + (𝑚 + 1)𝐾𝑠1𝑢(0)

′ − 𝑛𝐾𝑠1𝑤(0) = 0

} 

( 434 ) 

Using the method of coefficients for the solution of the system of equations: 

{
𝑢(𝑥)
𝑤(𝑥)

} = [
−𝑛(𝑚+ 1)𝐾𝑠1𝐷 −𝐾𝑏1𝐷

2 + 𝑛2𝐾𝑠1

𝐾𝑏2𝐷
4 − (𝑚 + 1)2𝐾𝑠1𝐷

2 𝑛(𝑚 + 1)𝐾𝑠1𝐷
]

−1

{
0
𝑓(𝑥)

} 
( 435 ) 

i.e., 
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{
 
 

 
 𝑢(𝑥)

′′′′′′ −
𝐾𝑠1[𝑛

2𝐾𝑏2 + (𝑚 + 1)2𝐾𝑏1]

𝐾𝑏1𝐾𝑏2
𝑢(𝑥)
′′′′

𝑤(𝑥)
′′′′′′ −

𝐾𝑠1[𝑛
2𝐾𝑏2 + (𝑚 + 1)2𝐾𝑏1]

𝐾𝑏1𝐾𝑏2
𝑤(𝑥)
′′′′

}
 
 

 
 

=

{
 

 
1

𝐾𝑏2
[𝑓(𝑥)
′′ − 𝑛2

𝐾𝑠1
𝐾𝑏1

𝑓(𝑥)]

−𝑛2
𝐾𝑠1

𝐾𝑏1𝐾𝑏2
𝑓(𝑥)
′

}
 

 

 

( 436 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑥)
′′′′′′ −

𝐾𝑠1[𝑛
2𝐾𝑏2 + (𝑚 + 1)2𝐾𝑏1]

𝐾𝑏1𝐾𝑏2
𝐻2𝑢(𝑥)

′′′′ =
𝐻4

𝐾𝑏2
[𝑓(𝑥)
′′ − 𝑛2

𝐾𝑠1
𝐾𝑏1

𝐻2𝑓(𝑥)] 
( 437 ) 

Defining three parameters: 

{𝛼 = 𝐻√
𝐾𝑠1
𝐾𝑏2

 , 𝜅 = √(𝑚 + 1)2 + 𝑛2
𝐾𝑏2
𝐾𝑏1

,𝜆 =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2(1− 𝑒−𝑎)
} 

( 438 ) 

Replacing the first two parameters: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ =
𝐻4

𝐾𝑏2
{𝑓(𝑧)
′′ − 𝛼2[𝜅2 − (𝑚 + 1)2]𝑓(𝑧)} 

( 439 ) 

Assuming a general lateral load (Miranda E. , 1999): 

𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 440 ) 

Substituting the lateral load and the third parameter: 

𝑢(𝑧)
′′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′′ = −𝜆𝛼2[𝜅2 − (𝑚 + 1)2] + 𝜆{𝛼2[𝜅2 − (𝑚 + 1)2] − 𝑎2}𝑒−𝑎+𝑎𝑧 ( 441 ) 

The expression for 𝑢(𝑧) is proposed: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4 cosh(𝛼𝜅𝑧) + 𝐶5 sinh(𝛼𝜅𝑧) +
𝜆[𝜅2 − (𝑚 + 1)2]

24𝜅2
𝑧4

+
𝜆{𝛼2[𝜅2 − (𝑚 + 1)2] − 𝑎2}

𝑎4[𝑎2 − (𝛼𝜅)2]
𝑒−𝑎+𝑎𝑧 

( 442 ) 
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The constants are obtained by evaluating the relevant boundary conditions (the origin of x is at the 

base of the model): 

{
 
 
 
 

 
 
 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝑢(1)
′′′ = 𝜆 (1 −

1

𝑎
+
𝑒−𝑎

𝑎
)

𝑢(0)
′′′′ = 𝜆(1 − 𝑒−𝑎)

𝑢(1)
′′′′′ = 𝜆 [𝛼2(𝑚 + 1)2 (1 −

1

𝑎
+
𝑒−𝑎

𝑎
) − 𝑎]

}
 
 
 
 

 
 
 
 

 

( 443 ) 

The constants: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝐶0 = −[𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 cosh(𝛼𝜅) + 𝐶5 sinh(𝛼𝜅)] − 𝜆 {

1

24
[1 −

(𝑚 + 1)2

𝑘2
] +

𝛼2[𝜅2 − (𝑚 + 1)2] − 𝑎2

𝑎4[𝑎2 − (𝛼𝜅)2]
}

𝐶1 = −[2𝐶2 + 3𝐶3 + (𝛼𝜅)𝐶4 sinh(𝛼𝜅) + (𝛼𝜅)𝐶5 cosh(𝛼𝜅)] − 𝜆 {
1

6
[1 −

(𝑚 + 1)2

𝑘2
] +

𝛼2[𝜅2 − (𝑚 + 1)2] − 𝑎2

𝑎3[𝑎2 − (𝛼𝜅)2]
}

𝐶2 = −𝐶4
(𝛼𝜅)2

2
−
𝜆{𝛼2[𝜅2 − (𝑚 + 1)2] − 𝑎2}

2𝑎2[𝑎2 − (𝛼𝜅)2]
𝑒−𝑎

𝐶3 = −
(𝛼𝜅)3

6
[𝐶4 sinh(𝛼𝜅) + 𝐶5 cosh(𝛼𝜅)] +

𝜆

6
{
𝑒−𝑎

𝑎
+
(𝑚 + 1)2

𝑘2
+

(𝑚 + 1)2𝛼2

𝑎[𝑎2 − (𝛼𝜅)2]
}

𝐶4 =
𝜆

(𝛼𝜅)4
{
(𝑚 + 1)2

𝑘2
− 𝑒−𝑎 [

𝛼2[𝜅2 − (𝑚 + 1)2] − 𝑎2

𝑎2 − (𝛼𝜅)2
+ 1]}

𝐶5 = −𝐶4 tanh(𝛼𝜅) +
𝜆𝛼2(𝑚 + 1)2

(𝛼𝜅)5 cosh(𝛼𝜅)
[(1 −

1

𝑎
+
𝑒−𝑎

𝑎
) +

𝑎

𝑎2 − (𝛼𝜅)2
]

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 ( 444 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞), the constants are: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐶0 = 𝜆 {−

(𝑚 + 1)2

𝛼3𝜅5 cosh(𝛼𝜅)
[
1

(𝛼𝜅)
+ sinh(𝛼𝜅)] +

(𝑚 + 1)2

2𝛼2𝜅4
+
1

8
−
(𝑚 + 1)2

8𝜅2
}

𝐶1 = −𝜆 [
𝜅2 − (𝑚 + 1)2

6𝜅2
]

𝐶2 = −𝜆
(𝑚 + 1)2

2𝛼2𝜅4

𝐶3 = 0

𝐶4 = 𝜆
(𝑚 + 1)2

𝛼4𝜅6

𝐶5 = 𝜆
(𝑚 + 1)2

𝛼3𝜅5 cosh(𝛼𝜅)
[1 −

sinh(𝛼𝜅)

(𝛼𝜅)
]

}
 
 
 
 
 
 

 
 
 
 
 
 

 

( 445 ) 
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The expression for 𝑢(𝑧): 

𝑢(𝑧) = 𝜆 [
𝜅2 − (𝑚 + 1)2

𝜅2
] (
1

24
𝑧4 −

1

6
𝑧 +

1

8
) +

(𝑚 + 1)2

2𝜅4𝛼2
𝜆(1 − 𝑧2)

−
(𝑚 + 1)2

𝜅2
𝜆 {
1 − cosh(𝛼𝜅𝑧 − 𝛼𝜅) − (𝛼𝜅)[sinh(𝛼𝜅𝑧) − sinh(𝛼𝜅)]

(𝛼𝜅)4 cosh(𝛼𝜅)
} 

( 446 ) 

i.e., 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

4

(
𝑚+ 1
𝑛

)
2

𝐾𝑏1 +𝐾𝑏2

(
1

24
𝑧4 −

1

6
𝑧 +

1

8
) +

(𝑚 + 1)2

2𝑘4
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠1
(1 − 𝑧2)

−
(𝑚 + 1)2

𝜅2
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2
{
1 − cosh(𝛼𝜅𝑧 − 𝛼𝜅) − (𝛼𝜅)[sinh(𝛼𝜅𝑧) − sinh(𝛼𝜅)]

(𝛼𝜅)4 cosh(𝛼𝜅)
} 

( 447 ) 

Where: 

{
 
 
 

 
 
 𝑢(𝑓𝑙𝑒𝑥𝑖ó𝑛) =

𝑊𝑚𝑎𝑥𝐻
4

(
𝑚+ 1
𝑛 )

2

𝐾𝑏1 +𝐾𝑏2

(
1

24
𝑧4 −

1

6
𝑧 +

1

8
)

𝑢(𝑐𝑜𝑟𝑡𝑒) =
(𝑚 + 1)2

2𝑘4
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠1
(1 − 𝑧2)

𝑢(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑐𝑖ó𝑛) = −
(𝑚 + 1)2

𝜅2
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2
{
1 − cosh(𝛼𝜅𝑧 − 𝛼𝜅) − (𝛼𝜅)[sinh(𝛼𝜅𝑧) − sinh(𝛼𝜅)]

(𝛼𝜅)4 cosh(𝛼𝜅)
}
}
 
 
 

 
 
 

 

( 448 ) 

Evaluating the maximum deflection when 𝑧 =  0: 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

4

8 [(
𝑚+ 1
𝑛 )

2

𝐾𝑏1 +𝐾𝑏2]

+
(𝑚 + 1)2

𝑘4
𝑊𝑚𝑎𝑥𝐻

2

2𝐾𝑠1
−
(𝑚 + 1)2

𝜅2
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏2
[
1 − 𝐶𝑜𝑠ℎ(𝛼𝜅) + (𝛼𝜅) sinh(𝛼𝜅)

(𝛼𝜅)4 cosh(𝛼𝜅)
] 

 ( 449 ) 

4.1.12.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations and assuming that the external loads act on the 

stories and not along the height of the story, it is possible to write it as follows: 
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{
−𝐾𝑏1𝑤(𝑥)

′′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑢(𝑥)
′ + 𝑛2𝐾𝑠1𝑤(𝑥) = 0

𝐾𝑏2𝑢(𝑥)
′′′′ − (𝑚 + 1)2𝐾𝑠1𝑢(𝑥)

′′ + 𝑛(𝑚+ 1)𝐾𝑠1𝑤(𝑥)
′ = 0

} 

( 450 ) 

The expression for 𝑢(𝑧) and  𝑤(𝑧) is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧

2 + 𝐶3𝑧
3 + 𝐶4 cosh(𝛼

∗𝜅𝑧) + 𝐶5 sinh(𝛼
∗𝜅𝑧)

𝑤(𝑧) = 𝐶6 + 𝐶7𝑧 + 𝐶8𝑧
2 + 𝐶9 cosh(𝛼

∗𝜅𝑧)+ 𝐶10 sinh(𝛼
∗𝜅𝑧)

} 
( 451 ) 

Where: 

{𝛼∗ = √
𝐾𝑠1
𝐾𝑏2

, 𝜅 = √(𝑚 + 1)2 + 𝑛2
𝐾𝑏2
𝐾𝑏1

}  

( 452 ) 

Expressing the coefficients of the function 𝑤(𝑧) as a function of the coefficients of 𝑢(𝑧): 

𝑤(𝑧) = (
𝑚+ 1

𝑛
)𝐶1 + [2(

𝑚+ 1

𝑛
)𝑧] 𝐶2 + {3 (

𝑚+ 1

𝑛
)𝑧2 + (

𝑚 + 1

𝑛
)

6

𝛼∗2[𝜅2 − (𝑚 + 1)2]
} 𝐶3

− {
𝛼∗𝜅

𝑛(𝑚 + 1)
[𝜅2 − (𝑚 + 1)2] sinh(𝛼∗𝜅𝑧)} 𝐶4

− {
𝛼∗𝜅

𝑛(𝑚 + 1)
[𝜅2 − (𝑚 + 1)2] cosh(𝛼∗𝜅𝑧)} 𝐶5 

( 453 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result: 

{
 
 
 
 

 
 
 
 

{
 
 

 
 𝑀l(𝑧) = 𝐾𝑏1𝜃(𝑧)

′ = (2𝐾𝑏1)𝐶2 + [6(
𝑚 + 1

𝑛
)𝐾𝑏1𝑧] 𝐶3 − {

(𝛼∗𝜅)2

𝑛(𝑚 + 1)
[𝜅2 − (𝑚 + 1)2] cosh(𝛼∗𝜅𝑧)𝐾𝑏1}𝐶4

−{
(𝛼∗𝜅)2

𝑛(𝑚 + 1)
[𝜅2 − (𝑚 + 1)2] sinh(𝛼∗𝜅𝑧)𝐾𝑏1}𝐶5

}
 
 

 
 

𝑀r(𝑧) = 𝐾𝑏2𝑢(𝑥)
′′ = (2𝐾𝑏2)𝐶2 + (6𝐾𝑏2𝑧)𝐶3 + [(𝛼

∗𝜅)2 cosh(𝛼∗𝜅𝑧)𝐾𝑏2]𝐶4 + [(𝛼
∗𝜅)2 sinh(𝛼∗𝜅𝑧)𝐾𝑏2]𝐶5

𝑉(𝑧) = 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)
′ ] + 𝐾𝑏2𝑢(𝑥)

′′′ = [6(
𝑚 + 1

𝑛
)
2

𝐾𝑏1 +𝐾𝑏2] 𝐶3
}
 
 
 
 

 
 
 
 

 

 ( 454 ) 

Writing the equations in matrix form: 
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{
  
 

  
 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑤𝑖(𝑧𝑖)

𝑀l(𝑧𝑖)

𝑀r(𝑧𝑖)

𝑉𝑖(𝑧𝑖) }
  
 

  
 

= 𝐾𝑖(𝑧𝑖)

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

 

( 455 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
 
 
 
 
1 𝑧 𝑧2 𝑧3

0 1 2𝑧 3𝑧2

0 (
𝑚 + 1

𝑛
) 2(

𝑚 + 1

𝑛
) 𝑧 3 (

𝑚 + 1

𝑛
)𝑧2 + (

𝑚 + 1

𝑛
)

6

𝛼∗2[𝜅2 − (𝑚 + 1)2]

0 0 2𝐾𝑏1 6 (
𝑚+ 1

𝑛
)𝐾𝑏1𝑧

0 0 2𝐾𝑏2 6𝐾𝑏2𝑧

0 0 0 6 (
𝑚 + 1

𝑛
)
2

𝐾𝑏1 + 𝐾𝑏2

 

cosh(𝛼∗𝜅𝑧) sinh(𝛼∗𝜅𝑧)
(𝛼∗𝜅) sinh(𝛼∗𝜅𝑧) (𝛼∗𝜅) cosh(𝛼∗𝜅𝑧)

−
𝛼∗𝜅

𝑛(𝑚 + 1)
[𝜅2 − (𝑚 + 1)2] sinh(𝛼∗𝜅𝑧) −

𝛼∗𝜅

𝑛(𝑚 + 1)
[𝜅2 − (𝑚 + 1)2] cosh(𝛼∗𝜅𝑧)

−
(𝛼∗𝜅)2

𝑛(𝑚 + 1)
[𝜅2 − (𝑚 + 1)2] cosh(𝛼∗𝜅𝑧)𝐾𝑏1 −

(𝛼∗𝜅)2

𝑛(𝑚 + 1)
[𝜅2 − (𝑚 + 1)2] sinh(𝛼∗𝜅𝑧)𝐾𝑏1

(𝛼∗𝜅)2 cosh(𝛼∗𝜅𝑧)𝐾𝑏2 (𝛼∗𝜅)2 sinh(𝛼∗𝜅𝑧)𝐾𝑏2
0 0 ]

 
 
 
 
 
 
 
 

 

( 456 ) 

 Static Analysis Under Point Static Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

{
  
 

  
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)

𝑀ln(0)

𝑀rn(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑘(0)

𝑛

𝑘=1

{
  
 

  
 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 457 ) 

Expressing it in simplified form: 
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{
  
 

  
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)

𝑀ln(0)

𝑀rn(0)

𝑉𝑛(0) }
  
 

  
 

= t

{
  
 

  
 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

+ 𝑓 

( 458 ) 

Where: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 459 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝜃(1) = 0

𝜃(0)
′ = 0

𝑢(0)
′′ = 0

−𝐾𝑏2𝑢(0)
′′′ + (𝑚 + 1)2𝐾𝑠1𝑢(0)

′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑤(0) = 0}
 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝜃1(ℎ1) = 0

𝑀𝑙𝑛(0) = 0

𝑀𝑟𝑛(0) = 0

𝑉𝑛(0) = 0 }
  
 

  
 

 

( 460 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

+

{
 
 

 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6}
 
 

 
 

 

( 461 ) 

Solving for bending moment and shear force at the base of the model: 
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{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓4
𝑓5
𝑓6

} → {

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]

−1

{

𝑓4
𝑓5
𝑓6

} 

( 462 ) 

Substituting the internal forces, we obtain the displacement, its derivative and the rotation at the 

top of the beam: 

{

𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)
} = − [

𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,4 𝑡3,5 𝑡3,6

] [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]

−1

{

𝑓4
𝑓5
𝑓6

} + {

𝑓1
𝑓2
𝑓3

} 

( 463 ) 
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4.1.13 Generalized Parallel Coupling of Two Beams of a Field (GCTB) 

The GCTB beam of a field is developed, which considers that the structure consists of a parallel 

coupling of an Euler Bernoulli beam (Bernoulli beam because it only considers the bending effect 

of the walls) and a rotation restraint beam (due to the continuous core resulting from the presence 

of the connecting beam). The beams are assumed to be connected in parallel by means of axially 

rigid members that only transmit the horizontal forces and do not deform. This 1-field GCTB beam 

is suitable for shear walls where the effect of axial strains and shear strains are negligible. 

The one-field beam model GCTB takes into account the transverse motion (u) as the kinematic 

field. 𝐾𝑏1 and 𝐾𝑠2; are the bending stiffness and the equivalent stiffness of the connecting beams, 

respectively. 

 

Figure 72. GCTB beam of a field. a) Case 1, b) Case 2 and c) Equivalent RB and d) Idealization of the GCTB 

stiffness of a field. 

4.1.13.1 Case 1 

The potential energy of the GCTB model of a field is expressed as: 

𝑉 =
1

2
∫ 𝐾𝑏𝑢(𝑥)

′′ 2
𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠𝛾𝑐(𝑥)

2
𝐻

0

𝑑𝑥 
( 464 ) 

Where: 
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{𝐾𝑏 = 𝐸(𝐼1 + 𝐼2), 𝐾𝑠 = 𝐺𝑒𝑞𝑡𝑤𝑙𝑏} ( 465 ) 

Denoting: 

{𝛾𝑐 = (𝑚 + 1)𝑢(𝑥)
′ , 𝑚 =

𝐵1 + 𝐵2
2𝑙𝑏

} 
( 466 ) 

Rewriting: 

𝑉 =
1

2
𝐾𝑏𝑢(𝑥)

′′ 2
𝑑𝑥 +

1

2
∫ (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 467 ) 

The work done by the external force is: 

𝑊 = ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 468 ) 

Consequently, the total potential energy of the beam GCTB of a field subjected to a general lateral 

load distribution is expressed as: 

𝒰 =
1

2
∫ [𝐾𝑏𝑢(𝑥)

′′ 2
+ (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′ 2
]

𝐻

0

𝑑𝑥 − ∫ 𝑓(𝑥)𝑢(𝑥)

𝐻

0

𝑑𝑥 
( 469 ) 

Closed-form solutions of the model acted on by a transverse load are achieved by solving the 

differential system that arises from the stationarity of the equation. Stationarity due to equilibrium 

implies: 

𝛿𝒰 = ∫ {𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′′ + (𝑚 + 1)2𝐾𝑠𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ }𝑑𝑥 − ∫ 𝑓(𝑥)𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥 − ∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 470 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′ ]
0

𝐻
− {[𝐾𝑏𝑢(𝑥)

′′′ − (𝑚 + 1)2𝐾𝑠𝑢(𝑥)
′ ]𝛿𝑢(𝑥)}0

𝐻

+∫ [𝐾𝑏𝑢(𝑥)
′′′′ − (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′′ − 𝑓(𝑥)]𝛿𝑢(𝑥)𝑑𝑥
𝐻

0

−∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 
( 471 ) 

Setting the terms equal to zero, the following equations result: 
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𝐾𝑏𝑢(𝑥)
′′′′ − (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′′ − 𝑓(𝑥) = 0 ( 472 ) 

Boundary conditions: 

{
𝑢(0)
′′ = 0

𝐾𝑏𝑢(0)
′′′ − (𝑚+ 1)2𝐾𝑠𝑢(0)

′ = 0
} 

( 473 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

𝐾𝑏𝑢(𝑧)
′′′′ − (𝑚 + 1)2𝐾𝑠𝐻

2𝑢(𝑧)
′′ − 𝐻4𝑓(𝑧) = 0 ( 474 ) 

Defining two parameters: 

{𝛼 = 𝐻√
(𝑚 + 1)2𝐾𝑠

𝐾𝑏
 , 𝜆 =

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏(1 − 𝑒−𝑎)
} 

( 475 ) 

Replacing the first parameter: 

𝑢(𝑧)
′′′′ − 𝛼2𝑢(𝑧)

′′ =
𝐻4

𝐾𝑏
𝑓(𝑧) 

( 476 ) 

Assuming a general lateral load (Miranda E. , 1999): 

𝑓(𝑥) =
𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎
𝑥
𝐻) → 𝑓(𝑧) =

𝑊𝑚𝑎𝑥
1 − 𝑒−𝑎

(1 − 𝑒−𝑎+𝑎z) 
( 477 ) 

Substituting the lateral load and the second parameter: 

𝑢(𝑧)
′′′′ − 𝛼2𝑢(𝑧)

′′ = 𝜆(1 − 𝑒−𝑎+𝑎z) ( 478 ) 

The expression for 𝑢(𝑧) is proposed: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(𝛼𝑧) + 𝐶3 sinh(𝛼𝑧) −
𝜆

2𝛼2
𝑧2 −

𝜆

𝑎2(𝑎2 − 𝛼2)
𝑒−𝑎+𝑎z 

( 479 ) 

The constants are obtained by evaluating the relevant boundary conditions (the origin of x is at the 

base of the model): 
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{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝑢(𝑥)
′′′ − 𝛼2𝑢(𝑥)

′ = 0}
 
 

 
 

 

( 480 ) 

The constants: 

{
  
 

  
 𝐶0 = 𝜆 [

1

2𝛼2
+

1

𝑎2(𝑎2 − 𝛼2)
] − (𝐶1 + 𝐶2𝐶𝑜𝑠ℎ𝛼 + 𝐶3𝑆𝑒𝑛ℎ𝛼)

𝐶1 = −𝜆 (
𝑒−𝑎

𝑎𝛼2
) , 𝐶2 =

𝜆

𝛼2
(
1

𝛼2
+

𝑒−𝑎

𝑎2 − 𝛼2
)

𝐶3 =
1

𝛼𝐶𝑜𝑠ℎ𝛼
{𝜆 [

1

𝛼2
+

1

𝑎(𝑎2 − 𝛼2)
] − (𝐶1 + 𝐶2𝛼𝑆𝑒𝑛ℎ𝛼)} }

  
 

  
 

 

( 481 ) 

For the case of a uniformly distributed lateral load (𝑎 → ∞), the expression for 𝑢(𝑧) is: 

𝑢(𝑧) = 𝜆 (
1 − 𝑧2

2𝛼2
) + 𝜆 {

𝛼[sinh(𝛼𝑧) − sinh𝛼] − 1 + cosh[𝛼(𝑧 − 1)]

𝛼4 cosh𝛼
} 

( 482 ) 

i.e., 

𝑢(𝑧) =
𝑊𝑚𝑎𝑥𝐻

2

𝐾𝑠
(
1 − 𝑧2

2
) +

𝑊𝑚𝑎𝑥𝐻
4

𝐾𝑏
{
𝛼[sinh(𝛼𝑧) − sinh𝛼] − 1 + cosh[𝛼(𝑧 − 1)]

𝛼4 cosh𝛼
} 

( 483 ) 

This expression clearly shows how the bending and shear contributors interact; producing an 

interaction between them. 

{
 
 

 
 𝑢(𝑠ℎ𝑒𝑎𝑟) =

𝑊𝑚𝑎𝑥𝐻
2

𝐾𝑠
(
1 − 𝑧2

2
)

𝑢(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) =
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏
{
𝛼[sinh(𝛼𝑧) − sinh𝛼] − 1 + cosh[𝛼(𝑧 − 1)]

𝛼4 cosh 𝛼
}
}
 
 

 
 

 

( 484 ) 

Evaluating the maximum deflection when z = 0: 

𝑢(0) =
𝑊𝑚𝑎𝑥𝐻

2

2𝐾𝑠
−
𝑊𝑚𝑎𝑥𝐻

4

𝐾𝑏
[
1 + 𝛼 sinh𝛼 − cosh 𝛼

𝛼4 cosh 𝛼
] 

( 485 ) 

Since the two-field beam GCTB and the classical CTB beam are identical in solution, the 

conclusions obtained for the classical CTB beam are also applicable to the one-field beam GCTB. 
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4.1.13.2 Case 2 

 Calculation of the Transfer Matrix 

According to the differential equation and since the external loads are assumed to act on the stories 

and not along the height of the story, it is possible to write it as follows: 

𝐾𝑏𝑢(𝑥)
′′′′ − (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′′ = 0 ( 486 ) 

The expression for  𝑢(𝑧) and 𝑢′(𝑧) is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(𝛼

∗𝑧) + 𝐶3 sinh(𝛼
∗𝑧)

𝑢(𝑧)
′ = 𝐶1 + 𝐶2𝛼

∗ sin(𝛼∗𝑧) + 𝐶3𝛼
∗ cosh(𝛼∗𝑧)

} 
( 487 ) 

Where: 

𝛼∗ = √
(𝑚 + 1)2𝐾𝑠

𝐾𝑏
 

( 488 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 

{
𝑀(𝑧) = 𝐾𝑏𝑢(𝑧)

′′ = 𝛼∗2 cosh(𝛼∗𝑧)𝐾𝑏𝐶2 + 𝛼
∗2 sinh(𝛼∗𝑧)𝐾𝑏𝐶3

𝑉(𝑧) = 𝐾𝑏𝑢(𝑧)
′′′ − (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′ = (−𝛼∗2𝐾𝑏)𝐶1
} 

( 489 ) 

Writing the equations in matrix form: 

{
 

 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑀𝑖(𝑧𝑖)
𝑉𝑖(𝑧𝑖)}

 

 
= 𝐾𝑖(𝑧𝑖) {

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 490 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
1 𝑧𝑖 cosh(𝛼∗𝑧) sinh(𝛼∗𝑧)

0 1 𝛼∗ sin(𝛼∗𝑧) 𝛼∗ cosh(𝛼∗𝑧)

0 0 𝛼∗2 cosh(𝛼∗𝑧)𝐾𝑏 𝛼∗2 sinh(𝛼∗𝑧)𝐾𝑏
0 −𝛼∗2𝐾𝑏 0 0 ]

 
 
 

𝑖

 

( 491 ) 
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 Static Analysis Under Point Static Loads Applied at Floor Level 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
−∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛 

( 492 ) 

Expressing it in simplified form: 

{
 

 
𝑢𝑛(0)

𝜃𝑛(0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= t

{
 

 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
+ 𝑓 

( 493 ) 

Where: 

{
 
 

 
 t =∏𝑇𝑘(0)

𝑛

𝑘=1

𝑓 = −∑[ ∏ 𝑇𝑘(0)

𝑛

𝑘=𝑠+1

]

𝑛

𝑠=0

𝐹𝑠 − 𝐹𝑛
}
 
 

 
 

 

( 494 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝐾𝑏𝑢(0)
′′′ −𝐾𝑠𝑢(0)

′ = 0}
 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 495 ) 

Replacing: 



 

 

192 

{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} + {

𝑓1
𝑓2
𝑓3
𝑓4

} 

( 496 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} + {

𝑓3
𝑓4
} → {

𝑀1(ℎ1)

𝑉1(ℎ1)
} = − [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} 

( 497 ) 

Substituting the internal forces we obtain the displacement and its derivative at the top: 

{
𝑢𝑛(0)

𝑢𝑛
′ (0)

} = −[
𝑡1,3 𝑡1,4
𝑡2,3 𝑡2,4

] [
𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

]
−1

{
𝑓3
𝑓4
} + {

𝑓1
𝑓2
} 

( 498 ) 
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4.2 DYNAMIC ANALYSIS OF INDIVIDUAL STRUCTURAL SYSTEMS 

The objective of this section is to develop the dynamic analysis of the replacement beams presented 

in the previous section. Through free vibration analysis, the natural frequencies of the main 

vibration modes are calculated and graphs are built that will be very useful for practical application 

in engineering offices. 

 Case 1: A continuous analysis is considered because the method used is based solely on 

the continuous method and a uniformly distributed vertical load is assumed over the height 

of the element. 

To take into account that the vertical load is applied at the level of the floors and that it is 

not distributed over the height of the building, Zalka (2020), using Dunkerley's theorem, 

proposes considering a correction factor in the dynamic analysis. 

𝑟𝑓 =
𝑛

𝑛 + 2.06
 

( 499 ) 

Where n is the number of floors of the building. It is true that this effect is negligible in tall 

buildings, but for medium and low buildings, not considering this correction coefficient is 

not conservative because the centroid of the total vertical load shifts downwards, resulting 

in critical load values greater than the actual load. 

The main disadvantage is that it is only applicable to structures where the cross section is 

uniform in height. The main advantage is that continuous closed-form solutions are 

obtained that allow parametric analysis. 

 Case 2: A discrete analysis is considered because the methods used are the continuous 

method and the transfer matrix method, and an arbitrary point vertical load applied at floor 

level is assumed. 

The main disadvantage is that closed continuous solutions that allow parametric analysis 

are not obtained. The main advantage is that it allows the analysis of non-uniform structures 

with mass and stiffness distributed variably along the height and/or for structures where 

the loads are applied at the level of the floors; that is, it is considered a case of general 

analysis because it even serves as a verification of case 1. 
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4.2.1 Bending Beam of a Field (EBB) 

4.2.1.1 Case 1 

The potential energy and kinetic energy of the EBB model of a field are: 

𝑉 =
1

2
∫ 𝐾𝑏(𝑢′′)

2
𝐻

0

𝑑𝑥, 𝑇 =
1

2
∫ 𝛾𝑢(�̇�)

2
𝐻

0

𝑑𝑥 
( 500 ) 

Where:  

𝛾𝑢 =∑𝜌𝐴𝑖

𝑛

𝑖=1

 

( 501 ) 

Consequently, the total potential energy of the EBB beam of a field is expressed as: 

𝒰 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 − 𝐾𝑏𝑢(𝑥,𝑡)
′′ 2

]
𝐻

0

𝑑𝑥 
( 502 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ [𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) − 𝐾𝑏𝑢(𝑥,𝑡)
′′ 𝛿𝑢(𝑥,𝑡)

′′ ]𝑑𝑥
𝐻

0

 
( 503 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝛾𝑢�̇�(𝑥,𝑡) + 𝐾𝑏𝑢(𝑥,𝑡)
′′′ ]𝛿𝑢(𝑥,𝑡)0

𝐻
− [𝐾𝑏𝑢(𝑥,𝑡)

′′ ]𝛿𝑢(𝑥,𝑡)
′

0

𝐻
−∫ [𝛾𝑢�̈�(𝑥,𝑡) + 𝐾𝑏𝑢(𝑥,𝑡)

′′′′ ]𝛿𝑢
𝐻

0

 
( 504 ) 

Setting the terms equal to zero, the following equation results: 

𝛾𝑢�̈�(𝑥,𝑡) + 𝐾𝑏𝑢(𝑥,𝑡)
′′′′ = 0 ( 505 ) 

And boundary conditions: 

{
𝑢(𝐻)
′′′ = 0

𝑢(𝐻)
′′ = 0

} 
( 506 ) 



 

 

195 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡) ( 507 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting similar terms: 

�̈�(𝑡)

𝑞(𝑡)
+
𝐾𝑏
𝛾𝑢
.
1

∅(𝑥)
∅(𝑥)
′′′′ = 0 

( 508 ) 

Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{
�̈�(𝑡) +𝑤

2𝑞(𝑡) = 0

𝐾𝑏∅(𝑥)
′′′′ − 𝛾𝑢𝑤

2∅(𝑥) = 0
} 

( 509 ) 

Where the first equation is the same that governs the behavior of an SDOF system with vibration 

frequency w. 

A sixth order differential equation is obtained. Normalizing the length by the variable 𝑧 = 𝑥 𝐻⁄ , 

we obtain: 

∅(𝑧)
′′′′ − (

𝛾𝑢𝑤
2𝐻4

𝐾𝑏
)∅(𝑧) = 0 

( 510 ) 

The equation is rewritten: 

∅(𝑧)
′′′′ − 𝛿4∅(𝑧) = 0 ( 511 ) 

Where: 

𝛿2 = √
𝛾𝑢𝐻4

𝐾𝑏
𝑤2 

( 512 ) 

A solution can be obtained in the following way for the mode forms: 
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∅(𝑧) = 𝐶1 cos(𝛿𝑧) + 𝐶2 sin(𝛿𝑧) + 𝐶3 cosh(𝛿𝑧) + 𝐶4 sinh(𝛿𝑧) ( 513 ) 

 Frequency and Periods of Vibration 

The following boundary conditions are considered: 

{
 
 

 
 
∅(0) = 0

∅(0)
′ = 0

∅(1)
′′ = 0

∅(1)
′′′ = 0}

 
 

 
 

 

( 514 ) 

Writing in matrix form the linear algebraic system resulting from expanding the boundary 

conditions: 

[

1 0 1 0
0 1 0 1

− cos 𝛿 −sin 𝛿 cosh 𝛿 sinh𝛿
sin𝛿 − cos 𝛿 sinh𝛿 cosh 𝛿

]{

𝐶1
𝐶2
𝐶3
𝐶4

} = {

0
0
0
0

} 

( 515 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). 

After some simple manipulations, the modal characteristic equation is obtained, whose roots define 

a set of particular solutions that satisfy the differential equation of motion and the boundary 

conditions. 

cos 𝛿 cosh 𝛿 + 1 = 0 ( 516 ) 

The eigenvalue 𝛿 is derived by numerically solving the characteristic equation. Knowing the value 

of 𝛿, the frequencies and periods of vibration of the model are obtained. 

𝑤 =
𝛿

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇 =

2𝜋

𝑤
=
2𝜋𝐻2

𝛿
√
𝛾𝑢
𝐾𝑏

 

( 517 ) 

 Eigenvalues 

Solving the value of 𝛿 numerically, the vibration frequencies and periods are calculated. 
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{
 
 
 
 

 
 
 
 
𝛿1 = 1.87510 → 𝑤1 =

3.51602

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇1 = 1.78702𝐻

2√
𝛾𝑢
𝐾𝑏

𝛿2 = 4.69409 → 𝑤2 =
22.03449

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇2 = 0.28515𝐻

2√
𝛾𝑢
𝐾𝑏

𝛿3 = 7.85476 → 𝑤3 =
61.69721

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇3 = 0.10184𝐻

2√
𝛾𝑢
𝐾𝑏}
 
 
 
 

 
 
 
 

 

( 518 ) 

 Mode Shapes 

Considering the first boundary conditions, normalizing to 1 at the top, and writing the resulting 

linear algebraic system in matrix form: 

[

1 0 1 0
0 1 0 1

− cos 𝛿 − sin 𝛿 cosh 𝛿 sinh𝛿
cos 𝛿 sin 𝛿 cosh 𝛿 sinh𝛿

]{

𝐶1
𝐶2
𝐶3
𝐶4

} = {

0
0
0
1

} 

( 519 ) 

Clearing the vector of coefficients: 

{

𝐶1
𝐶2
𝐶3
𝐶4

} = [

1 0 1 0
0 1 0 1

− cos 𝛿 − sin 𝛿 cosh 𝛿 sinh𝛿
cos 𝛿 sin 𝛿 cosh 𝛿 sinh𝛿

]

−1

{

0
0
0
1

} 

( 520 ) 

After some simple manipulations: 

{

𝐶1
𝐶2
𝐶3
𝐶4

} =
1

− sin 𝛿 + sinh𝛿 + 𝜂(cos 𝛿 − cosh 𝛿)
{

𝜂
−1
−𝜂
1

} 

( 521 ) 

Where: 

𝜂 =
sinh𝛿 + sin 𝛿

cos 𝛿 + cosh 𝛿
 

( 522 ) 

Replacing these coefficients, a solution of the following form can be obtained for the mode forms: 
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∅(𝑧) =
−sin𝛿𝑧 + sinh𝛿𝑧 + 𝜂(cos 𝛿𝑧 − cosh 𝛿𝑧)

−sin 𝛿 + sinh𝛽 + 𝜂(cos 𝛿 − cosh 𝛿)
 

( 523 ) 

 

Figure 73. Natural forms of bending vibration for the first three vibration modes. 

4.2.1.2 Case 2 

Considering the masses concentrated at floor level and analyzing the dynamic equilibrium for the 

mass 𝑚𝑖, the inertial force is: 

𝐹𝑖 = 𝑚𝑖�̈�𝑖 = 𝑚𝑖𝑤
2𝑢𝑖 ( 524 ) 

For equilibrium: 

𝑉𝑖+1 = 𝑉𝑖 +𝑚𝑖𝑤
2𝑢𝑖 ( 525 ) 

 

Figure 74. Dynamic forces at the i-th level. 
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The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 

{
 

 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝑀𝑖+1(0)

𝑉𝑖+1(0)}
 

 

= 𝑇𝑖(0)

{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)

𝑉𝑖(0)}
 

 

+ [

0 0 0 0
0 0 0 0
0 0 0 0

𝑚𝑖𝑤
2 0 0 0

]

{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)

𝑉𝑖(0)}
 

 

= [

1 0 0 0
0 1 0 0
0 0 1 0

𝑚𝑖𝑤
2 0 0 1

]𝑇𝑖(0)

{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)

𝑉𝑖(0) }
 

 

 

( 526 ) 

Rewriting: 

{
 

 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝑀𝑖+1(0)

𝑉𝑖+1(0)}
 

 

= 𝑇𝑤𝑖(0)

{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)

𝑉𝑖(0)}
 

 

 

( 527 ) 

Where: 

𝑇𝑤𝑖(0) = [

1 0 0 0
0 1 0 0
0 0 1 0

𝑚𝑖𝑤
2 0 0 1

] 𝑇𝑖(0) 

( 528 ) 

For the first floor: 

{
 

 
𝑢1(0)

𝑢1
′ (0)

𝑀1(0)

𝑉1(0)}
 

 
= 𝑇𝑤1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 529 ) 

For the second floor: 

{
 

 
𝑢2(0)

𝑢2
′ (0)

𝑀2(0)

𝑉2(0)}
 

 
= 𝑇𝑤2(0)𝑇𝑤1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 530 ) 

For the third floor: 

{
 

 
𝑢3(0)

𝑢3
′ (0)

𝑀3(0)

𝑉3(0)}
 

 

= 𝑇𝑤3(0)𝑇𝑤2(0)𝑇𝑤1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 531 ) 
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For the nth floor (top of the beam): 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= 𝑇𝑤𝑛(0)…𝑇𝑤2(0)𝑇𝑤1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 532 ) 

Expressing the equation between product symbols: 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑤𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 533 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 534 ) 

Replacing this parameter: 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= t

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 535 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 
𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝑢(0)
′′′ = 0}

 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 536 ) 

Replacing: 
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{

𝑢𝑛(0)

𝑢𝑛
′ (0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

]{

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 537 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 538 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.2 Shear Beam of a field (SB) 

4.2.2.1 Case 1 

The potential energy and kinetic energy of the SB model of a field are: 

𝑉 =
1

2
∫ 𝐾𝑠𝑢(𝑥,𝑡)

′ 2
𝐻

0

𝑑𝑥, 𝑇 =
1

2
∫ 𝛾𝑢�̇�(𝑥,𝑡)

2
𝐻

0

𝑑𝑥 
( 539 ) 

Where:  

𝛾𝑢 = 𝜌𝐴 ( 540 ) 

Consequently, the total potential energy of the SB beam of a field is expressed as: 

𝒰 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 −𝐾𝑠𝑢(𝑥,𝑡)
′ 2

]
𝐻

0

𝑑𝑥 
( 541 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ [𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) − 𝐾𝑠𝑢(𝑥,𝑡)
′ 𝛿𝑢(𝑥,𝑡)

′ ]𝑑𝑥
𝐻

0

 
( 542 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝛾𝑢�̇�(𝑥,𝑡) −𝐾𝑠𝑢(𝑥,𝑡)
′ ]𝛿𝑢(𝑥,𝑡)0

𝐻
−∫ [𝛾𝑢�̈�(𝑥,𝑡) − 𝐾𝑠𝑢(𝑥,𝑡)

′′ ]𝛿𝑢
𝐻

0

 
( 543 ) 

Setting the terms equal to zero, the following equation results: 

𝛾𝑢�̈�(𝑥,𝑡) − 𝐾𝑠𝑢(𝑥,𝑡)
′′ = 0 ( 544 ) 

And boundary condition: 

𝑢(𝐻)
′ = 0 ( 545 ) 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 
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𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡) ( 546 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting like terms, we get the following: 

�̈�(𝑡)

𝑞(𝑡)
−
𝐾𝑠
𝛾𝑢
.
1

∅(𝑥)
∅(𝑥)
′′ = 0 

( 547 ) 

Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{
�̈�
(𝑡)
+ 𝑤2𝑞

(𝑡)
= 0

𝐾𝑠∅(𝑥)
′′ + 𝛾

𝑢
𝑤2∅(𝑥) = 0

} 

( 548 ) 

Where the first equation is the same that governs the behavior of an SDOF system with vibration 

frequency w. 

A second order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

∅(𝑧)
′′ + (

𝛾𝑢𝑤
2𝐻2

𝐾𝑠
)∅(𝑧) = 0 

( 549 ) 

The equation will be rewritten: 

∅(𝑧)
′′ + 𝛿2∅(𝑧) = 0 ( 550 ) 

Where: 

𝛿 = √
𝛾𝑢𝐻2

𝐾𝑠
𝑤2 

( 551 ) 

A solution can be obtained in the following way for the mode forms: 

∅(𝑧) = 𝐶1 cos(𝛿𝑧) + 𝐶2 sin(𝛿𝑧) ( 552 ) 
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 Frequency and Periods of Vibration 

The following boundary conditions are considered: 

{
∅(0) = 0

∅(1)
′ = 0

} 
( 553 ) 

Writing in matrix form the linear algebraic system resulting from expanding the boundary 

conditions: 

[
1 0

− sin𝛿 cos 𝛿
] {
𝐶1
𝐶2
} = {

0
0
} 

( 554 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). 

After some simple manipulations, the modal characteristic equation is obtained, whose roots define 

a set of particular solutions that satisfy the differential equation of motion and the boundary 

conditions. 

𝐶𝑜𝑠(𝛿) = 0 → 𝛿 = (2𝑛 − 1)
𝜋

2
 /𝑛 = 1, 2, 3…  

( 555 ) 

Knowing the value of 𝛿, the frequencies and periods of vibration of the model are obtained. 

𝑤 =
𝛿

𝐻
√
𝐾𝑠
𝛾𝑢
→ 𝑇 =

2𝜋

𝑤
=
2𝜋𝐻

𝛿
√
𝛾𝑢
𝐾𝑠

 

( 556 ) 

 Eigenvalues 

Solving the value of δ, the vibration frequencies and periods are calculated. 

{
 
 
 
 

 
 
 
 
𝛿1 = 1.57080 → 𝑤1 =

2.46740

𝐻
√
𝐾𝑠
𝛾𝑢
→ 𝑇1 = 4.00000𝐻√

𝛾𝑢
𝐾𝑠

𝛿2 = 4.71239 → 𝑤2 =
22.20661

𝐻
√
𝐾𝑠
𝛾𝑢
→ 𝑇2 = 1.33333𝐻√

𝛾𝑢
𝐾𝑠

𝛿3 = 7.85398 → 𝑤3 =
61.68503

𝐻
√
𝐾𝑠
𝛾𝑢
→ 𝑇3 = 0.80000𝐻√

𝛾𝑢
𝐾𝑠}
 
 
 
 

 
 
 
 

 

( 557 ) 
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 Mode Shapes 

Considering the first boundary conditions, normalizing to 1 at the top, and writing the resulting 

linear algebraic system in matrix form: 

[
1 0

cos 𝛿 sin 𝛿
] {
𝐶1
𝐶2
} = {

0
1
} 

( 558 ) 

Clearing the vector of coefficients: 

{
𝐶1
𝐶2
} = [

1 0
cos 𝛿 sin 𝛿

]
−1

{
0
1
} 

( 559 ) 

After some simple manipulations: 

{
𝐶1
𝐶2
} =

1

sin 𝛿
{
0
1
} 

( 560 ) 

Replacing these coefficients, a solution of the following form can be obtained for the mode forms: 

∅(𝑧) =
sin 𝛿𝑧

sin𝛿
 

( 561 ) 

 

Figure 75. Natural forms of shear vibration for the first three vibration modes. 
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4.2.2.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 

{
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

} = 𝑇𝑖(0) {
𝑢𝑖(0)

𝑢𝑖
′(0)

} + [
0 0

𝑚𝑖𝑤
2 0

] {
𝑢𝑖(0)

𝑢𝑖
′(0)

} = [
1 0

𝑚𝑖𝑤
2 1

] 𝑇𝑖(0) {
𝑢𝑖(0)

𝑢𝑖
′(0)

} 
( 562 ) 

Rewriting: 

{
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

} = 𝑇𝑤𝑖(0) {
𝑢𝑖(0)

𝑢𝑖
′(0)

} 
( 563 ) 

Where: 

𝑇𝑤𝑖(0) = [
1 0

𝑚𝑖𝑤
2 1

] 𝑇𝑖(0) 
( 564 ) 

Expressing the equation for the nth floor between product symbols: 

{
𝑢𝑛(0)

𝑢𝑛
′ (0)

} =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

{
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

} 

( 565 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 566 ) 

Replacing this parameter: 

{
𝑢𝑛(0)

𝑢𝑛
′ (0)

} = t {
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

} 
( 567 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 2x2 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 
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{
𝑢(1) = 0

𝑢(0)
′ = 0

} → {
𝑢(ℎ1) = 0

𝑢(0)
′ = 0

} 
( 568 ) 

Replacing: 

{
𝑢𝑛(0)

0
} = [

𝑡1,1 𝑡1,2
𝑡2,1 𝑡2,2

] {
0

𝑢1
′ (ℎ1)

} 
( 569 ) 

Solving for the bending moment and shear force at the base of the model: 

{0} = 𝑡2,2𝑢1
′ (ℎ1) ( 570 ) 

Setting 𝑡2,2 equal to zero, the angular frequencies of the beam are obtained. 
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4.2.3 Timoshenko Beam of Two Field (TB) 

4.2.3.1 Case 1 

The potential energy and kinetic energy of the two-field TB model are: 

𝑉 =
1

2
∫ {𝐾𝑏𝜃(𝑥,𝑡)

′ 2
+𝐾𝑠[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)

′ ]
2
}

𝐻

0

𝑑𝑥

𝑇 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝜃 �̇�(𝑥,𝑡)
2
]

𝐻

0

𝑑𝑥

 

( 571 ) 

Where: 

{𝛾𝑢 = 𝜌𝐴, 𝛾𝜃 = 𝜌𝐼} ( 572 ) 

 Consequently, the total potential energy of the two-field beam TB is expressed as: 

𝒰 =
1

2
∫ {𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝜃�̇�(𝑥,𝑡)
2
− 𝐾𝑏𝜃(𝑥,𝑡)

′ 2
−𝐾𝑠[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)

′ ]
2
}

𝐻

0

 
( 573 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) + 𝛾𝜃 �̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) −𝐾𝑏𝜃(𝑥,𝑡)
′ 𝛿𝜃(𝑥,𝑡)

′
𝐻

0

−𝐾𝑠[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)
′ ][𝛿𝜃(𝑥,𝑡) − 𝛿𝑢(𝑥,𝑡)

′ ]}𝑑𝑥 ( 574 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = {𝛾𝑢�̇�(𝑥,𝑡) + 𝐾𝑠[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)
′ ]}𝛿𝑢(𝑥,𝑡)0

𝐻
+ {𝛾𝜃�̇�(𝑥,𝑡) −𝐾𝑏𝜃(𝑥,𝑡)

′ }𝛿𝜃(𝑥,𝑡)0
𝐻

−∫ {𝛾𝑢�̈�(𝑥,𝑡) +𝐾𝑠[𝜃(𝑥,𝑡)
′ − 𝑢(𝑥,𝑡)

′′ ]}𝛿𝑢
𝐻

0

−∫ {𝛾𝜃 �̈�(𝑥,𝑡) −𝐾𝑏𝜃(𝑥,𝑡)
′′ +𝐾𝑠[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)

′ ]}𝛿𝜃
𝐻

0

 
( 575 ) 

Setting the terms equal to zero, the following equations result: 
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{
𝛾
𝑢
�̈�(𝑥,𝑡) + 𝐾𝑠[𝜃(𝑥,𝑡)

′ − 𝑢(𝑥,𝑡)
′′ ] = 0

𝛾
𝜃
�̈�(𝑥,𝑡) − 𝐾𝑏𝜃(𝑥,𝑡)

′′ + 𝐾𝑠[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)
′ ] = 0

} 
( 576 ) 

And boundary conditions: 

{
𝜃(𝐻) − 𝑢(𝐻)

′ = 0

𝐾𝑏𝜃(𝐻)
′ = 0

} 

( 577 ) 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

{
𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡)
𝜃(𝑥,𝑡) = 𝜆(𝑥)𝑞(𝑡)

} 
( 578 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting like terms, we get the following: 

{
 
 

 
 

�̈�
(𝑡)

𝑞
(𝑡)

+
[−𝐾𝑠∅(𝑥)

′′ + 𝐾𝑠𝜆(𝑥)
′ ]

𝛾
𝑢
∅(𝑥)

= 0

�̈�
(𝑡)

𝑞
(𝑡)

+
[−𝐾𝑏𝜆(𝑥)

′′ − 𝐾𝑠∅(𝑥)
′ + 𝐾𝑠𝜆(𝑥)]

𝛾
𝜃
𝜆(𝑥)

= 0
}
 
 

 
 

 

( 579 ) 

Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{

𝜌�̈�
(𝑡)
+ 𝑤2𝑞

(𝑡)
= 0

𝐾𝑠∅(𝑥)
′′ − 𝐾𝑠𝜆(𝑥)

′ + 𝑤2𝛾
𝑢
∅(𝑥) = 0

𝐾𝑏𝜆(𝑥)
′′ + 𝐾𝑠∅(𝑥)

′ − 𝐾𝑠𝜆(𝑥) + 𝑤
2𝛾
𝜃
𝜆(𝑥) = 0

} 

( 580 ) 

Where the first equation is the same that governs the behavior of an SDOF system with vibration 

frequency w. 

Solving for 𝜆(𝑥)
′ , differentiating twice and replacing: 
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∅(𝑥)
′′′′ +𝑤2 (

𝛾𝑢
𝐾𝑠
+
𝛾𝜃
𝐾𝑏
)∅(𝑥)

′′ + (
𝑤4𝛾𝑢. 𝛾𝜃
𝐾𝑏𝐾𝑠

−
𝛾𝑢𝑤

2

𝐾𝑏
)∅(𝑥) = 0 

( 581 ) 

A fourth order differential equation is obtained. Normalizing the length by the variable 𝑧 = 𝑥 𝐻⁄ , 

the equation can be expressed as: 

∅(𝑧)
′′′′ + [𝐻2𝑤2 (

𝛾𝑢
𝐾𝑠
+
𝛾𝜃
𝐾𝑏
)] ∅(𝑧)

′′ + [
𝐻4𝛾𝑢𝑤

2

𝐾𝑏𝐾𝑠
(𝑤2𝛾𝜃 −𝐾𝑠)] ∅(𝑧) = 0 

( 582 ) 

The equation is rewritten: 

∅(𝑧)
′′′′ + [𝛿2 (

1

𝛼2
+ 𝜇2)]∅(𝑧)

′′ + [𝛿2(
𝜇2

𝛼2
𝛿2 − 1)]∅(𝑧) = 0 

( 583 ) 

Where: 

{𝛼 = 𝐻√
𝐾𝑠
𝐾𝑏
, 𝜇 =

1

𝐻
√
𝜌𝐼

𝜌𝐴
, 𝛿 = √

𝜌𝐴𝐻4

𝐾𝑏
𝑤2} 

( 584 ) 

To solve the differential equation we consider the characteristic polynomial: 

𝑃(𝑟) = 𝑟
4 + [𝛿2 (

1

𝛼2
+ 𝜇2)] 𝑟2 + [𝛿2 (

𝜇2

𝛼2
𝛿2 − 1)] = 0 

( 585 ) 

We change the variable and denote: 

𝑞𝑖 = 𝑟𝑖
2 → {

𝑟2𝑖−1 = √𝑞𝑖

𝑟2𝑖 = −√𝑞𝑖
  ;   𝑖 = 1, 2} 

( 586 ) 

We rewrite the characteristic polynomial: 

𝑃(𝑟) = 𝑞
2 + [𝛿2 (

1

𝛼2
+ 𝜇2)]𝑞 + [𝛿2 (

𝜇2

𝛼2
𝛿2 − 1)] = 0 

( 587 ) 

We define a critical eigenvalue: 
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𝛿2 (
𝜇2

𝛼2
𝛿2 − 1) = 0 → 𝛿𝑐

2 =
𝛼2

𝜇2
 

( 588 ) 

Two cases are presented: 

 Case 1: When the polynomial has a positive real root and a negative real root. 

𝛿2 (
𝜇2

𝛼2
𝛿2 − 1) < 0 → 𝛿2 <

𝛼2

𝜇2
→ 𝛿 < 𝛿𝑐𝑟 

( 589 ) 

 Case 2: When the polynomial has two negative real roots. 

𝛿2 (
𝜇2

𝛼2
𝛿2 − 1 >)0 → 𝛿2 >

𝛼2

𝜇2
→ 𝛿 > 𝛿𝑐𝑟 

( 590 ) 

We define 𝑞𝑖 in such a way that: 

𝑞1 < 𝑞2 ( 591 ) 

So that 𝑞1 < 0  and 𝑞2 > 0 for 𝛿 > 𝛿𝑐𝑟 and 𝑞2 < 0 for 𝛿 < 𝛿𝑐𝑟 . 

The roots of the equation are calculated as: 

𝑞1,2 =

−[𝛿2 (
1
𝛼2
+ 𝜇2)] ± √[𝛿2 (

1
𝛼2
+ 𝜇2)]

2

− 4 [𝛿2 (
𝜇2

𝛼2
𝛿2 − 1)]

2
 

( 592 ) 

 Influence of the Relationship 𝜻=height/thickness of the Shear Wall on the Dynamic 

Properties 

We will consider the shear wall as a Timoshenko beam with a uniform rectangular cross section 

and with a Poisson's ratio of 0.20 for concrete. 

An adequate shear correction coefficient remains a subject of research. However Cowper (1966); 

Based on the relationship between the average shear strain in a section and the shear strain at the 

centroid, he proposed the following value: 

𝑘 =
10(1 + 𝜈)

12 + 11𝜈
 

( 593 ) 
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Recently Faghidian (2017) based on two elastostatic approaches for unified formulations, he 

proposed an innovative shear correction coefficient: 

𝑘 =
10(1 + 𝜈)

12 + 𝜐 (11 −
2

1 + 2𝜁2
)
 

( 594 ) 

As can be seen in the figure 76, the Faghidian shear correction coefficient is practically identical 

to that proposed by Cowper for typical shear walls. In this research project, the one proposed by 

Cowper (𝑘 = 0.845070) will be used as the correction factor for shear. 

The relationship between Young's modulus E and shear modulus G: 

𝐺

𝐸
=

1

2(1 + 𝜈)
= 0.416667 

( 595 ) 

Taking these two considerations into account, the parameters that control the dynamic behavior 

turn out to be dependent only on the height/width ratio of the shear wall. 

{
  
 

  
 
𝛼 = 𝐻√

𝐾𝑠
𝐾𝑏

= √12
𝐻

𝐿
√
𝑘𝐺

𝐸
= 2.055566

𝐻

𝐿
= 2.055566𝑅

𝜇 =
1

𝐻
√
𝜌𝐴

𝜌𝐼
=
1

𝐻
√
𝜌𝐴

𝜌𝐼
=

1

√12
.
1

𝐻
𝐿

= 0.288675
1

𝑅
}
  
 

  
 

 

( 596 ) 

Where 𝑅 is defined as the parameter that relates the height/width of the structural wall. 

𝑅 =
𝐻

𝐿
 

( 597 ) 

As can be seen, the parameters that govern the dynamic behavior are dependent only on the 

variable 𝑅. That is, the behavior in the continuous model only depends on the parameter 𝑅. 
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Figure 76. Relationship between the Faghidian and Cowper shear coefficients. 

 Frequency and Periods of Vibration 

Normalizing by the variable 𝑧 = 𝑥/𝐻 the two coupled differential equations: 

{
∅(𝑧)
′′ − 𝐻𝜆(𝑧)

′ +
𝛿2

𝛼2
∅(𝑧) = 0

𝐻𝜆(𝑧)
′′ + 𝛼2∅(𝑧)

′ + (𝛿2𝜇2 − 𝛼2)𝐻𝜆(𝑧) = 0

} 

( 598 ) 

The solution will be of the form: 

𝑊(𝑧) = {
𝐻𝜆(𝑧)
∅(𝑧)

} = {
𝜂1
𝜂2
} 𝑒𝑟𝑧  

( 599 ) 

Substituting the equation in the equation, two homogeneous equations are obtained which, written 

in matrix form, result in: 

[
−𝑟 (𝑟2 +

𝛿2

𝛼2
)

𝑟2 + (𝛿2𝜇2 − 𝛼2) 𝛼2𝑟

] {
𝜂1
𝜂2
} = {

0
0
} 

( 600 ) 

1.00

1.00

1.01

1.01

1.02

1.02

1.03

1.03

1.04

1.04

1.05

1.05

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

K
/K

C

𝜁

v=0 v=0.20 v=0.25 v=0.33
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To avoid trivial solutions, the determinant must be equal to zero, that is: 

𝑃(𝑟) = 𝑟
4 + [𝛿2 (

1

𝛼2
+ 𝜇2)] 𝑟2 + [𝛿2 (

𝜇2

𝛼2
𝛿2 − 1)] = 0 

( 601 ) 

For all roots, the equation implies: 

{
𝜂1
𝜂2
} = [𝑟𝑖

2 +
𝛿2

𝛼2
𝑟𝑖

]𝐶, 𝑖 = 1, 2, 3, 4 

( 602 ) 

Where 𝐶 is an arbitrary constant. We change the variable and denote: 

𝑞𝑖 = 𝑟𝑖
2 → {

𝑟2𝑖−1 = √𝑞𝑖

𝑟2𝑖 = −√𝑞𝑖
  ;   𝑖 = 1, 2} 

( 603 ) 

Substituting in the equation: 

𝑞2 + [𝛿2 (
1

𝛼2
+ 𝜇2)]𝑞 + [𝛿2 (

𝜇2

𝛼2
𝛿2 − 1)] = 0 

( 604 ) 

It was shown that the roots are always real. Rewriting the complete solution: 

𝑊(𝑧) = {
𝐻𝜆(𝑧)
∅(𝑧)

} = {
𝜂1
𝜂2
} 𝑒𝑟𝑧 =∑𝐶𝑖

4

𝑖=1

[𝑟𝑖
2 +

𝛿2

𝛼2
𝑟𝑖

] 𝑒𝑟𝑖𝑧 

( 605 ) 

Substituting this complete equation in the boundary conditions, we obtain: 

{
 
 
 
 
 

 
 
 
 
 

∅(0) = 0 →∑𝐶𝑖

4

𝑖=1

𝑟𝑖 = 0

∅(0)
′ = 0 →∑ 𝐶𝑖

4

𝑖=1

𝑟𝑖
2 = 0

𝐻𝜆(1) − ∅(1)
′ = 0 →∑ 𝐶𝑖

4

𝑖=1

𝑒𝑟𝑖 = 0

𝐻𝜆(1)
′ = 0 →∑ 𝐶𝑖

4

𝑖=1

𝑟𝑖 (𝑟𝑖
2 +

𝛿2

𝛼2
) 𝑒𝑟𝑖 = 0

}
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Defining: 

𝐷𝑖 = 𝑟𝑖
2 +

𝛿2

𝛼2
; 𝑖 = 1, 2 

( 606 ) 

Writing in matrix form the linear algebraic system: 

[
 
 
 
 √𝑞1 −√𝑞1 √𝑞2 −√𝑞2

𝑞1 𝑞1 𝑞2 𝑞2

𝑒√𝑞1 𝑒−√𝑞1 𝑒√𝑞2 𝑒−√𝑞2

√𝑞1𝐷1𝑒√
𝑞1 −√𝑞1𝐷1𝑒

−√𝑞1 √𝑞2𝐷2𝑒√
𝑞2 −√𝑞2𝐷2𝑒

−√𝑞2]
 
 
 
 

{

𝐶1
𝐶2
𝐶3
𝐶4

} = {

0
0
0
0

} 

( 607 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). 

By some simple manipulations of the determinant in the equation, it can be written as: 

|

1 0 1 0
0 𝑞1 0 𝑞2
𝑠1 𝑐1 𝑠2 𝑐2
𝐷1𝑐1 𝑞1𝐷1𝑠1 𝐷2𝑐2 𝑞2𝐷2𝑠2

| = 0 

( 608 ) 

Where: 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑠𝑖(𝑧) =
1

2√𝑞𝑖
[𝑒√𝑞𝑖𝑧 − 𝑒−√𝑞𝑖𝑧] =

{
 
 
 

 
 
 

𝑠1(𝑧) =

{
 
 

 
 

1

√|𝑞1|
sinh (√|𝑞1|𝑧)  ;   𝜆 < 𝜆𝑐

1

√|𝑞1|
sin (√|𝑞1|𝑧)  ;   𝜆 > 𝜆𝑐

}
 
 

 
 

𝑠2(𝑧) =
1

√|𝑞2|
sin (√|𝑞2|𝑧)

}
 
 
 

 
 
 

𝑐𝑖(𝑧) =
1

2
[𝑒√𝑞𝑖𝑧 + 𝑒−√𝑞𝑖𝑧] =

{
 
 

 
 
𝑐1(𝑧) = {

cosh (√|𝑞1|𝑧)  ;   𝜆 < 𝜆𝑐

cos (√|𝑞1|𝑧)  ;   𝜆 > 𝜆𝑐
}

𝑐2(𝑧) = cos (√|𝑞2|𝑧) }
 
 

 
 

𝑠𝑖 = 𝑠𝑖(1), 𝑐𝑖 = 𝑐𝑖(1) }
 
 
 
 
 
 

 
 
 
 
 
 

 

( 609 ) 

A further reduction in the equation: 

|
(𝑠2 − 𝑠1) (𝑞1𝑐2 − 𝑞2𝑐1)

(𝐷2𝑐2 −𝐷1𝑐1) 𝑞1𝑞2(𝐷2𝑠2 −𝐷1𝑠1)
| = 0 

( 610 ) 

The determinant can be written in its simplest form: 
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𝐹(𝛿2) = 𝑞1𝑞2(𝑠2 − 𝑠1)(𝐷2𝑠2 −𝐷1𝑠1) − (𝐷2𝑐2 −𝐷1𝑐1)(𝑞1𝑐2 − 𝑞2𝑐1) = 0 ( 611 ) 

We solve for both cases: 

 Case 1: When the polynomial has a positive real root a negative real root (𝛿 < 𝛿𝑐𝑟). 

We define: 

{
 
 
 

 
 
 

𝑞1
∗ =

−[𝛿2 (
1
𝛼2
+ 𝜇2)] + √[𝛿2 (

1
𝛼2
+ 𝜇2)]

2

− 4 [𝛿2 (
𝜇2

𝛼2
𝛿2 − 1)]

2

𝑞2
∗ =

[𝛿2 (
1
𝛼2
+ 𝜇2)] + √[𝛿2 (

1
𝛼2
+ 𝜇2)]

2

− 4 [𝛿2 (
𝜇2

𝛼2
𝛿2 − 1)]

2 }
 
 
 

 
 
 

 

( 612 ) 

So that: 

{
𝑞1 = 𝑞1

∗

𝑞2 = −𝑞2
∗} 

( 613 ) 

Replacing: 

{
 
 

 
 𝑠1 =

1

√𝑞1
∗
sinh(√𝑞1

∗) , 𝑠2 =
1

√𝑞2
∗
sin(√𝑞2

∗)

𝑐1 = cosh(√𝑞1
∗) , 𝑐2 = cos(√𝑞2

∗)

𝐷1 = (𝑞1
∗ +

𝛿2

𝛼2
) , 𝐷2 = (−𝑞2

∗ +
𝛿2

𝛼2
)

}
 
 

 
 

 

( 614 ) 

Rewriting the determinant as 𝐹(𝛿2): 

𝐹(𝛿2) = 𝑞1𝑞2(𝑠2 − 𝑠1)(𝐷2𝑠2 −𝐷1𝑠1) − (𝐷2𝑐2 −𝐷1𝑐1)(𝑞1𝑐2 − 𝑞2𝑐1) = 0 ( 615 ) 

After some simple manipulations, the modal characteristic equation is obtained, whose roots define 

a set of particular solutions that satisfy the differential equation of motion and the boundary 

conditions. 
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[2𝑞1
∗𝑞2
∗ + (

1

1 + 𝛼2𝜇2
) (𝑞2

∗ − 𝑞1
∗)2] + [(

1 − 𝛼2𝜇2

1 + 𝛼2𝜇2
) (𝑞2

∗ − 𝑞1
∗)]√𝑞1

∗√𝑞2
∗ sinh√𝑞1

∗ sin√𝑞2
∗

+ [(𝑞1
∗2 + 𝑞2

∗2) − (
1

1 + 𝛼2𝜇2
) (𝑞2

∗ − 𝑞1
∗)2] cosh√𝑞1

∗ cos√𝑞1
∗ = 0 

( 616 ) 

From the equation, the following equation is obtained in terms of the values 𝑞1
∗ and 𝑞2

∗: 

{
𝑞2
∗ − 𝑞1

∗ = 𝛿2 (
1

𝛼2
+ 𝜇2)

𝑞2
∗𝑞1

∗ = 𝛿2 −
𝜇2

𝛼2
𝛿4

} → (𝑞2
∗ − 𝑞1

∗) {[−
𝛼2𝜇2

(1 + 𝛼2𝜇2)2
] (𝑞2

∗ − 𝑞1
∗) +

𝛼2

1 + 𝛼2𝜇2
} − 𝑞2

∗𝑞1
∗ = 0 

( 617 ) 

 Case 2: When the polynomial has two negative real roots (𝛿 > 𝛿𝑐𝑟). 

We define: 

{
 
 
 

 
 
 

𝑞1
∗ =

[𝛿2 (
1
𝛼2
+ 𝜇2)] − √[𝛿2 (

1
𝛼2
+ 𝜇2)]

2

− 4 [𝛿2 (
𝜇2

𝛼2
𝛿2 − 1)]

2

𝑞2
∗ =

[𝛿2 (
1
𝛼2
+ 𝜇2)] + √[𝛿2 (

1
𝛼2
+ 𝜇2)]

2

− 4 [𝛿2 (
𝜇2

𝛼2
𝛿2 − 1)]

2 }
 
 
 

 
 
 

 

( 618 ) 

So that: 

{
𝑞
1
= −𝑞

1
∗

𝑞
2
= −𝑞

2
∗} 

( 619 ) 

Replacing: 

{
 
 

 
 𝑠1 =

1

√𝑞1
∗
sin(√𝑞1

∗) , 𝑠2 =
1

√𝑞2
∗
sin(√𝑞2

∗)

𝑐1 = cos(√𝑞1
∗) , 𝑐2 = cos(√𝑞2

∗)

𝐷1 = (−𝑞1
∗ +

𝛿2

𝛼2
) , 𝐷2 = (−𝑞2

∗ +
𝛿2

𝛼2
)
}
 
 

 
 

 

( 620 ) 

Rewriting the determinant as 𝐹(𝛿2): 
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𝐹(𝛿2) = 𝑞1𝑞2(𝑠2 − 𝑠1)(𝐷2𝑠2 −𝐷1𝑠1) − (𝐷2𝑐2 −𝐷1𝑐1)(𝑞1𝑐2 − 𝑞2𝑐1) = 0 ( 621 ) 

After some simple manipulations, the modal characteristic equation is obtained, whose roots define 

a set of particular solutions that satisfy the differential equation of motion and the boundary 

conditions. 

[2𝑞1
∗𝑞2
∗ − (

1

1 + 𝛼2𝜇2
) (𝑞1

∗ + 𝑞2
∗)2] + [(

1 − 𝛼2𝜇2

1 + 𝛼2𝜇2
) (𝑞1

∗ + 𝑞2
∗)]√𝑞1

∗√𝑞2
∗ sin√𝑞1

∗ sin√𝑞2
∗

− [(𝑞1
∗2 + 𝑞2

∗2) − (
1

1 + 𝛼2𝜇2
) (𝑞1

∗ + 𝑞2
∗)2] cos √𝑞1

∗ cos√𝑞2
∗ = 0 

( 622 ) 

From the equation, the following equation is obtained in terms of the values 𝑞1
∗ and 𝑞2

∗: 

{
𝑞2
∗ + 𝑞1

∗ = 𝛿2 (
1

𝛼2
+ 𝜇2)

𝑞2
∗𝑞1

∗ = −𝛿2 +
𝜇2

𝛼2
𝛿4

} → (𝑞1
∗ + 𝑞2

∗) {[
𝛼2𝜇2

(1 + 𝛼2𝜇2)2
] (𝑞1

∗ + 𝑞2
∗) −

𝛼2

1 + 𝛼2𝜇2
} − 𝑞1

∗𝑞2
∗ = 0 

( 623 ) 

For both cases, the eigenvalues 𝑞1
∗ and 𝑞2

∗ are derived by simultaneously solving the two equations 

that are a function of the values adopted for α and μ. Knowing the values of 𝑞1
∗ and 𝑞2

∗, the 

frequencies and periods are calculated. 

𝑤 =
𝛿

𝐻2
√
𝐾𝑏
𝜌𝐴

→ 𝑇 =
2𝜋

𝑤
=
2𝜋𝐻2

𝛿
√
𝜌𝐴

𝐾𝑏
 

( 624 ) 

The mode shapes are shown below. As shown above, the value of α→∞ exactly reproduces the 

mode shape of an EBB (Euler Bernoulli) bending beam. 
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Figure 77. Variation of the parameters 𝛿 and 𝛽 as a function of α for the first vibration mode. 

 

Figure 78. Variation of the parameters 𝛿 and 𝛽 as a function of α for the second vibration mode. 

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

𝛽
,𝜉

𝛼

𝛽-Con inercia rotacional 𝜉-Con inercia rotacional 𝛽-Sin inercia rotacional

𝜉-Sin inercia rotacional 𝛽-𝜉 EBB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

𝛽
,𝜉

𝛼

𝛽-Con inercia rotacional 𝜉-Con inercia rotacional 𝛽-Sin inercia rotacional

𝜉-Sin inercia rotacional 𝛽-𝜉 EBB



 

 

220 

 

Figure 79. Variation of the parameters 𝛿 and 𝛽 as a function of α for the third vibration mode. 

 

Figure 80. First eigenvalue of beam TB vs. EBB for the case of 𝛼 variable. 
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Figure 81. Second eigenvalue of beam TB vs. EBB for the case of 𝛼 variable. 

 

Figure 82. Third eigenvalue of beam TB vs. EBB for the case of 𝛼 variable. 

5

7

9

11

13

15

17

19

21

23

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

𝛿

𝛼

δ-TB-Con inercia rotacional δ-TB-Sin inercia rotacional δ-EBB

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

𝛿

𝛼

δ-TB-Con inercia rotacional δ-TB-Sin inercia rotacional δ-EBB



 

 

222 

 Mode Shapes 

Considering the first boundary conditions, normalizing to 1 at the top, and writing the resulting 

linear algebraic system in matrix form: 

[
 
 
 
 √𝑞1 −√𝑞1 √𝑞2 −√𝑞2

𝑞1 𝑞1 𝑞2 𝑞2

√𝑞1𝐷1𝑒√
𝑞1 −√𝑞1𝐷1𝑒

−√𝑞1 √𝑞2𝐷2𝑒√
𝑞2 −√𝑞2𝐷2𝑒

−√𝑞2

√𝑞1𝑒√
𝑞1 −√𝑞1𝑒

−√𝑞1 √𝑞2𝑒√
𝑞2 −√𝑞2𝑒

−√𝑞2 ]
 
 
 
 

{

𝐶1
𝐶2
𝐶3
𝐶4

} = {

0
0
0
1

} 

( 625 ) 

The eigenvectors can be obtained by solving the equation for the constants 𝐶𝑖. To simplify the 

matrix problem, the constants 𝐶𝑖 will be transformed into a set of new constants 𝐶�̅� using the 

transformation: 

{
 
 

 
 2𝐶2𝑖−1 = �̅�2𝑖−1 +

1

√𝑞𝑖
�̅�2𝑖

2𝐶2𝑖 = �̅�2𝑖−1 −
1

√𝑞𝑖
�̅�2𝑖

  ;   𝑖 = 1, 2

}
 
 

 
 

 

( 626 ) 

The equation reduces: 

[

0 1 0 1
𝑞1 0 𝑞2 0

𝑞1𝐷1𝑠1 𝐷1𝑐1 𝑞2𝐷2𝑠2 𝐷2𝑐2
𝑞1𝑠1 𝑐1 𝑞2𝑠2 𝑐2

]

{
 
 

 
 �̅�1
�̅�2
�̅�3
�̅�4}
 
 

 
 

= {

0
0
0
1

} 

( 627 ) 

It is possible to express 𝐶1̅, 𝐶2̅ and 𝐶3̅ in terms of 𝐶4̅; the matrix equation reduces to: 

[
0 1 0
𝑞1 0 𝑞2

𝑞1𝐷1𝑠1 𝐷1𝑐1 𝑞2𝐷2𝑠2

] {

�̅�1
�̅�2
�̅�3

} = −�̅�4 {
1
0

𝐷2𝑐2

} 

( 628 ) 

Which can be solved for the constant 𝐶�̅�: 

{

�̅�1
�̅�2
�̅�3

} = −�̅�4 [
0 1 0
𝑞1 0 𝑞2

𝑞1𝐷1𝑠1 𝐷1𝑐1 𝑞2𝐷2𝑠2

]

−1

{
1
0

𝐷2𝑐2

} 

( 629 ) 

Operating: 
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{

�̅�1
�̅�2
�̅�3

} =
�̅�4

𝐷2𝑠2 −𝐷1𝑠1

{
 
 

 
 
1

𝑞1
(𝐷2𝑐2 − 𝐷1𝑐1)

−(𝐷2𝑠2 −𝐷1𝑠1)

−
1

𝑞2
(𝐷2𝑐2 −𝐷1𝑐1)}

 
 

 
 

= �̅�4

{
 
 

 
 
𝜂

𝑞1
−1

−
𝜂

𝑞2}
 
 

 
 

 

( 630 ) 

Where the parameter 𝜂 is given by: 

𝜂 =
𝐷2𝑐2 −𝐷1𝑐1
𝐷2𝑠2 −𝐷1𝑠1

 
( 631 ) 

Now we can obtain the displacement 𝐻𝜆(𝑧) and ∅(𝑧) corresponding to the eigenvector. Rewriting: 

𝑊(𝑧) = {
𝐻𝜆(𝑧)
∅(𝑧)

} = {
[𝐷1𝑐1(𝑧)]�̅�1 + [𝐷1𝑠1(𝑧)]�̅�2 + [𝐷2𝑐2(𝑧)]�̅�3 + [𝐷2𝑠2(𝑧)]�̅�4
[𝑞1𝑠1(𝑧)]�̅�1 + [𝑐1(𝑧)]�̅�2 + [𝑞2𝑠2(𝑧)]�̅�3 + [𝑐2(𝑧)]�̅�4

} 
( 632 ) 

We normalize ∅(1) = 1 on top: 

�̅�4 =
1

(𝑐2 − 𝑐1) − 𝜂(𝑠2 − 𝑠1)
 

( 633 ) 

After some simple manipulations, we get: 

∅(𝑧) =
[𝑐2(𝑧) − 𝑐1(𝑧)] − 𝜂[𝑠2(𝑧) − 𝑠1(𝑧)]

[𝑐2 − 𝑐1] − 𝜂[𝑠2 − 𝑠1]
 

( 634 ) 

 Case 1: When the polynomial has a positive real root a negative real root (δ < δ𝑐𝑟). 

{
 
 
 
 

 
 
 
 

𝜂 =

(−𝑞
2
∗ +

𝛿2

𝛼2
) cos(√𝑞2

∗) − (−𝑞
1
∗ +

𝛿2

𝛼2
) cosh(√𝑞1

∗)

(−𝑞
2
∗ +

𝛿2

𝛼2
)
sin(√𝑞2

∗)

√𝑞2
∗

− (−𝑞
1
∗ +

𝛿2

𝛼2
)
sinh(√𝑞1

∗)

√𝑞1
∗

∅(𝑧) =

[cos(√𝑞2
∗𝑧) − cosh(√𝑞1

∗𝑧)] − 𝜂 [
sin(√𝑞2

∗𝑧)

√𝑞2
∗

−
sinh(√𝑞1

∗𝑧)

√𝑞1
∗

]

[cos(√𝑞2
∗) − cosh(√𝑞1

∗)] − 𝜂 [
sin(√𝑞2

∗)

√𝑞2
∗

−
sinh(√𝑞1

∗)

√𝑞1
∗

]
}
 
 
 
 

 
 
 
 

 

( 635 ) 
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 Case 2: When the polynomial has two negative real roots (δ > δ𝑐𝑟). 

{
 
 
 
 

 
 
 
 

𝜂 =
(−𝑞2

∗ +
𝛿2

𝛼2
) cos(√𝑞2

∗) − (−𝑞1
∗ +

𝛿2

𝛼2
) cos(√𝑞1

∗)

(−𝑞2
∗ +

𝛿2

𝛼2
)
sin(√𝑞2

∗)

√𝑞2
∗

− (−𝑞1
∗ +

𝛿2

𝛼2
)
sin(√𝑞1

∗)

√𝑞1
∗

∅(𝑧) =

[cos(√𝑞2
∗𝑧) − cos(√𝑞1

∗𝑧)] − 𝜂 [
sin(√𝑞2

∗𝑧)

√𝑞2
∗

−
sin(√𝑞1

∗𝑧)

√𝑞1
∗

]

[cos(√𝑞2
∗) − cos(√𝑞1

∗)] − 𝜂 [
sin(√𝑞2

∗)

√𝑞2
∗

−
sin(√𝑞1

∗)

√𝑞1
∗

]
}
 
 
 
 

 
 
 
 

 

( 636 ) 

 

 

Figure 83. Forms of the first vibration mode as a function of the 𝑅 value. 
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Figure 84. Forms of the second mode of vibration as a function of the 𝑅 value. 

 

Figure 85. Forms of the third mode of vibration as a function of the 𝑅 value. 
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Figure 86. Shapes of vibration modes for 𝑅 = 2.5. 

4.2.3.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 

{

𝑢𝑖+1(0)
𝜃𝑖+1(0)
𝑀𝑖+1(0)
𝑉𝑖+1(0)

} = 𝑇𝑖(0){

𝑢𝑖(0)
𝜃𝑖(0)
𝑀𝑖(0)
𝑉𝑖(0)

} + [

0 0 0 0
0 0 0 0
0 0 0 0

𝑚𝑖𝑤
2 0 0 0

]{

𝑢𝑖(0)
𝜃𝑖(0)
𝑀𝑖(0)
𝑉𝑖(0)

} = [

1 0 0 0
0 1 0 0
0 0 1 0

𝑚𝑖𝑤
2 0 0 1

]𝑇𝑖(0) {

𝑢𝑖(0)
𝜃𝑖(0)
𝑀𝑖(0)
𝑉𝑖(0)

} 

( 637 ) 

Rewriting: 

0

0

0

0

0

1

1

1

1

1

1
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{

𝑢𝑖+1(0)
𝜃𝑖+1(0)
𝑀𝑖+1(0)
𝑉𝑖+1(0)

} = 𝑇𝑤𝑖(0) {

𝑢𝑖(0)
𝜃𝑖(0)
𝑀𝑖(0)
𝑉𝑖(0)

} 

( 638 ) 

Where: 

𝑇𝑤𝑖(0) = [

1 0 0 0

0 1 0 0

0 0 1 0

𝑚𝑖𝑤
2 0 0 1

] 𝑇𝑖(0) 

( 639 ) 

Expressing the equation for the nth floor between product symbols: 

{

𝑢𝑛(0)
𝜃𝑛(0)
𝑀𝑛(0)
𝑉𝑛(0)

} =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)
𝜃1(ℎ1)
𝑀1(ℎ1)
𝑉1(ℎ1)}

 

 

 

( 640 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 641 ) 

Replacing this parameter: 

{

𝑢𝑛(0)
𝜃𝑛(0)
𝑀𝑛(0)
𝑉𝑛(0)

} = t

{
 

 
𝑢1(ℎ1)
𝜃1(ℎ1)
𝑀1(ℎ1)
𝑉1(ℎ1)}

 

 

 

( 642 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝜃(1) = 0

𝜃(0)
′ = 0

𝑢(0)
′ − 𝜃(0) = 0}

 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝜃1(ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 643 ) 
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Replacing: 

{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 644 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 645 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.4 Parallel Coupling of Bending Beam and Shear Beam of a Field (CTB) - 
Translational Behavior 

4.2.4.1 Case 1 

The potential energy and kinetic energy of the CTB model of a field are: 

𝑉 =
1

2
∫ (𝐾𝑏𝑢(𝑥,𝑡)

′′ 2
+ 𝐾𝑠𝑢(𝑥,𝑡)

′ 2
)

𝐻

0

𝑑𝑥, 𝑇 =
1

2
∫ (𝛾𝑢�̇�(𝑥,𝑡)

2)
𝐻

0

𝑑𝑥 
( 646 ) 

Where:  

𝛾𝑢 = 𝜌𝐴 ( 647 ) 

Consequently, the total potential energy of the CTB beam of a field is expressed as: 

𝒰 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 −𝐾𝑏𝑢(𝑥,𝑡)
′′ 2

− 𝐾𝑠𝑢(𝑥,𝑡)
′ 2

]
𝐻

0

𝑑𝑥 
( 648 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ [𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) − 𝐾𝑏𝑢(𝑥,𝑡)
′′ 𝛿𝑢(𝑥,𝑡)

′′ − 𝐾𝑠𝑢(𝑥,𝑡)
′ 𝛿𝑢(𝑥,𝑡)

′ ]𝑑𝑥
𝐻

0

 
( 649 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝛾𝑢�̇�(𝑥,𝑡) +𝐾𝑏𝑢(𝑥,𝑡)
′′′ −𝐾𝑠𝑢(𝑥,𝑡)

′ ]𝛿𝑢(𝑥,𝑡)0
𝐻
− [𝐾𝑏𝑢(𝑥,𝑡)

′′ ]𝛿𝑢(𝑥,𝑡)
′

0

𝐻

−∫ [𝛾𝑢�̈�(𝑥,𝑡) +𝐾𝑏𝑢(𝑥,𝑡)
′′′′ − 𝐾𝑠𝑢(𝑥,𝑡)

′′ ]𝛿𝑢
𝐻

0

 
( 650 ) 

Setting the terms equal to zero, the following equation results: 

𝛾𝑢�̈�(𝑥,𝑡) +𝐾𝑏𝑢(𝑥,𝑡)
′′′′ − 𝐾𝑠𝑢(𝑥,𝑡)

′′ = 0 ( 651 ) 

And boundary conditions: 
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{
𝐾𝑏𝑢(𝐻)

′′′ − 𝐾𝑠𝑢(𝐻)
′ = 0

𝑢(𝐻)
′′ = 0

} 

( 652 ) 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡) ( 653 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting like terms, we get the following: 

�̈�(𝑡)

𝑞(𝑡)
+
𝐾𝑏
𝛾𝑢
.
1

∅(𝑥)
∅(𝑥)
′′′′ −

𝐾𝑠
𝛾𝑢
.
1

∅(𝑥)
∅(𝑥)
′′ = 0 

( 654 ) 

Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{
�̈�
(𝑡)
+ 𝑤2𝑞

(𝑡)
= 0

𝐾𝑏∅(𝑥)
′′′′ − 𝐾𝑠∅(𝑥)

′′ − 𝛾
𝑢
𝑤2∅(𝑥) = 0

} 

( 655 ) 

Where the first equation is the same that governs the behavior of an SDOF system with vibration 

frequency w. 

A fourth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

∅(𝑧)
′′′′ − (𝐻2

𝐾𝑠
𝐾𝑏
)∅(𝑥)

′′ − (
𝛾𝑢𝑤

2𝐻4

𝐾𝑏
)∅(𝑥) = 0 

( 656 ) 

The equation is rewritten: 

∅(𝑧)
′′′′ − 𝛼2∅(𝑧)

′′ − 𝛿2∅(𝑧) = 0 ( 657 ) 

Where: 
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{𝛼 = 𝐻√
𝐾𝑠
𝐾𝑏
, 𝛿 = √

𝛾𝑢𝐻
4

𝐾𝑏
𝑤2} 

( 658 ) 

A solution can be obtained in the following way for the mode forms: 

∅(𝑧) = 𝐶1 cos(𝛽𝑧) + 𝐶2 sin(𝛽𝑧) + 𝐶3 cosh(𝜉𝑧) + 𝐶4 sinh(𝜉𝑧) ( 659 ) 

Where: 

{
 
 

 
 
𝜉 = √

𝛼2 + √𝛼4 + 4𝛿2

2

𝛽 = √
−𝛼2 +√𝛼4 + 4𝛿2

2 }
 
 

 
 

→ {
𝜉2 = 𝛽2 + 𝛼2

𝛽2𝜉2 = 𝛿2
} 

( 660 ) 

 Frequency and Periods of Vibration 

The following boundary conditions are considered: 

{
 
 

 
 

∅(0) = 0

∅(0)
′ = 0

∅(1)
′′′ − 𝛼2∅(1)

′ = 0

∅(1)
′′ = 0 }

 
 

 
 

 

( 661 ) 

Writing in matrix form the linear algebraic system resulting from expanding the boundary 

conditions: 

[
 
 
 

1 0 1 0
0 𝛽 0 𝜉

−𝛽2 cos 𝛽 −𝛽2 sin 𝛽 𝜉2 cosh 𝜉 𝜉2 sinh 𝜉

𝛽(𝛽2 + 𝛼2) sin 𝛽 −𝛽(𝛽2 + 𝛼2) cos 𝛽 𝜉(𝜉2 − 𝛼2) sinh 𝜉 𝜉(𝜉2 − 𝛼2) cosh 𝜉]
 
 
 
{

𝐶1
𝐶2
𝐶3
𝐶4

} = 0 

( 662 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). 

After some simple manipulations, the modal characteristic equation is obtained, whose roots define 

a set of particular solutions that satisfy the differential equation of motion and the boundary 

conditions. 
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[(𝛽4 + 𝜉4) − 𝛼2(𝜉2 − 𝛽2)] + [2𝛼2 − (𝜉2 − 𝛽2)]𝜉𝛽 sin𝛽 sinh 𝜉

+ [2𝛽2𝜉2 + 𝛼2(𝜉2 − 𝛽2)] cos 𝛽 cosh 𝜉 = 0 ( 663 ) 

And taking into account the relationships between the eigenvalues 𝛽, 𝜉 and 𝛼; is obtained: 

2 + (
𝜉2 − 𝛽2

𝜉𝛽
) sin 𝛽 sinh𝜉 + (

𝜉4 + 𝛽4

𝛽2𝜉2
) cos 𝛽 cosh 𝜉 = 0 

( 664 ) 

It can be seen that this characteristic equation only depends on the eigenvalues 𝜉 and 𝛽, which in 

turn depend on the parameter 𝛼; that is, the dynamic properties of the classical CTB beam of a 

field depend only on the parameter 𝛼. 

The eigenvalues 𝜉 and 𝛽 are derived by numerically solving the characteristic equation. Knowing 

the values of 𝜉 and 𝛽, the value of the parameter 𝛿 is calculated, and as a consequence, the 

frequencies and periods of vibration of the model are obtained. 

𝑤 =
𝛿

𝐻2
√
𝐾𝑏
𝜌𝐴

→ 𝑇 =
2𝜋

𝑤
=
2𝜋𝐻2

𝛿
√
𝜌𝐴

𝐾𝑏
 

( 665 ) 

 Eigenvalues 

Figures 87, 88 and 89 show the first three eigenvalues as a function of the variable 𝛼. As can be 

seen for the three eigenvalues; when 𝛼 = 0, eigenvalues are obtained that are identical to those 

obtained for the bending beam EBB and when 𝛼 = 100, eigenvalues are obtained that are identical 

to those obtained for the shear beam SB. 

It is observed that there is a strong and notable variability for the three eigenvalues in the range of 

α values; that is, the CTB model of a field is very sensitive to the variability of the parameter 𝛼. 

This variability directly affects the dynamic properties of the model such as the period of vibration 

and the mode shape. 

When analyzing the parametric analysis developed to plot the eigenvalues as a function of the 

parameter 𝛼; It is found that the percentage difference between the eigenvalues of the CTB-EBB 

and CTB-SB models are 3.79% and 23.89% for the first mode, 7.56% and 7.15% for the second 

mode, and 4.29% and 4.31% for the third mode of vibration. 
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Based on this observation, it is very important to underline that this variability is accentuated more 

in the case of the first vibration mode, directly affecting the dynamic properties such as the 

vibration period and the modal shape. On the other hand, the variability of the second and third 

modes is less pronounced; also noting that this variability decreases even more as the number of 

modes to be considered increases. 

 

Figure 87. First eigenvalue 𝛽1 for the case of 𝛼 variable. 

 

Figure 88. Second eigenvalue  𝛽2 for the case of 𝛼 variable. 
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Figure 89. Third eigenvalue 𝛽3 for the case of 𝛼 variable. 

 Mode Shapes 

Considering the first boundary conditions, normalizing to 1 at the top, and writing the resulting 

linear algebraic system in matrix form: 

Writing in matrix form the linear algebraic system resulting from expanding the boundary 

conditions: 

[

1 0 1 0
0 𝛽 0 𝜉

−𝛽2 cos 𝛽 −𝛽2 sin𝛽 𝜉2 cosh 𝜉 𝜉2 sinh𝜉
cos 𝛽 sin 𝛽 cosh 𝜉 sinh𝜉

] {

𝐶1
𝐶2
𝐶3
𝐶4

} = {

0
0
0
1

} 

( 666 ) 

After some simple manipulations: 

{

𝐶1
𝐶2
𝐶3
𝐶4

} =
1

−
𝜉
𝛽 𝑆𝑒𝑛𝛽 + 𝑆𝑒𝑛ℎ𝜉 + 𝜂

[𝐶𝑜𝑠𝛽 − 𝐶𝑜𝑠ℎ𝜉]
{
 
 

 
 
𝜂

−
𝜉

𝛽
−𝜂
1 }
 
 

 
 

 

( 667 ) 

Where: 
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𝜂 =
𝜉2𝑆𝑒𝑛ℎ𝜉 + 𝜉𝛽𝑆𝑒𝑛𝛽

𝜉2𝐶𝑜𝑠ℎ𝜉 + 𝛽2𝐶𝑜𝑠𝛽
 

( 668 ) 

Replacing these coefficients, a solution of the following form can be obtained for the mode forms: 

∅(𝑧) =
−
𝜉
𝛽 𝑆𝑒𝑛

(𝛽𝑧) + 𝑆𝑒𝑛ℎ(𝜉𝑧) + 𝜂[𝐶𝑜𝑠(𝛽𝑧) − 𝐶𝑜𝑠ℎ(𝜉𝑧)]

−
𝜉
𝛽
𝑆𝑒𝑛𝛽 + 𝑆𝑒𝑛ℎ𝜉 + 𝜂[𝐶𝑜𝑠𝛽 − 𝐶𝑜𝑠ℎ𝜉]

 

( 669 ) 

In Figures 90, 91 and 92, the first three forms of vibration mode of the classic CTB model of a 

field are presented. As mentioned, it has been normalized to one at the top of the model. In addition, 

modal forms have been represented for different values of 𝛼. 

As observed; it is easy to notice that the shapes of the corresponding modes for relatively small 

values of 𝛼 (𝛼 → 0) are identical to that found for the pure bending beam (EBB), while for 

relatively large values of 𝛼 (𝛼 → ∞) they are identical to what was found for the shear beam (SB). 

It is also observed that the CTB beam of a field adequately reproduces the mode shapes for dual 

structures with intermediate values of 𝛼 (0 < 𝛼 < ∞). 

 

Figure 90. Shapes of the first vibration mode as a function of the 𝛼 value. 
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Figure 91. Shapes of the second vibration mode as a function of the 𝛼 value. 

 

Figure 92. Shapes of the third mode of vibration as a function of the 𝛼 value. 
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 Special Cases 

a) When 𝛼 → 0. This situation corresponds to a bending beam (Euler Bernoulli). 

𝛼 = 0 →

{
 
 
 
 

 
 
 
 
𝛽1 = 1.87510 → 𝑤1 =

3.51600

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇1 = 1.78703𝐻

2√
𝛾𝑢
𝐾𝑏

𝛽2 = 4.69405 → 𝑤2 =
22.03411

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇2 = 0.28516𝐻

2√
𝛾𝑢
𝐾𝑏

𝛽3 = 7.85475 → 𝑤3 =
61.69710

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇3 = 0.10184𝐻

2√
𝛾𝑢
𝐾𝑏}
 
 
 
 

 
 
 
 

 

( 670 ) 

b) When 𝛼 = 2.5; which corresponds to a dual structure with intermediate α. 

𝛼 = 2.5 →

{
 
 
 
 

 
 
 
 
𝛽1 = 1.9455 → 𝑤1 =

6.16296

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇1 = 1.01951𝐻

2√
𝛾𝑢
𝐾𝑏

𝛽2 = 4.8195 → 𝑤2 =
26.16664

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇2 = 0.24012𝐻

2√
𝛾𝑢
𝐾𝑏

𝛽3 = 7.90190 → 𝑤3 =
65.49051

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇3 = 0.09594𝐻

2√
𝛾𝑢
𝐾𝑏}
 
 
 
 

 
 
 
 

 

( 671 ) 

c) When 𝛼 = 30; which roughly corresponds to a shear beam. 

𝛼 = 30 →

{
 
 
 
 

 
 
 
 
𝛽1 = 1.62465 → 𝑤1 =

48.81092

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇1 = 0.12872𝐻

2√
𝛾𝑢
𝐾𝑏

𝛽2 = 4.86705 → 𝑤2 =
147.92045

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇2 = 0.04248𝐻

2√
𝛾𝑢
𝐾𝑏

𝛽3 = 8.09105 → 𝑤3 =
251.40457

𝐻2
√
𝐾𝑏
𝛾𝑢
→ 𝑇3 = 0.02499𝐻

2√
𝛾𝑢
𝐾𝑏}
 
 
 
 

 
 
 
 

 

( 672 ) 

It is observed that the values are almost identical to those obtained when considering a pure 

shear beam. The error made is 3.43%, 3.28% and 3.02% for the first, second and third 

modes, respectively. However, these errors are acceptable from an engineering point of 
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view; Therefore, it is practical to set a value of 𝛼 = 30 to characterize buildings whose 

behavior is pure shear. Considering a value of α=100 reduces the error to 1.01%. 

4.2.4.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 

{
 
 

 
 𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)
𝑀𝑖+1(0)
𝑉𝑖+1(0)}

 
 

 
 

= 𝑇𝑖(0)

{
 
 

 
 𝑢𝑖(0)

𝑢𝑖
′(0)
𝑀𝑖(0)
𝑉𝑖(0)}

 
 

 
 

+ [

0 0 0 0
0 0 0 0
0 0 0 0

𝑚𝑖𝑤
2 0 0 0

]

{
 
 

 
 𝑢𝑖(0)

𝑢𝑖
′(0)
𝑀𝑖(0)
𝑉𝑖(0)}

 
 

 
 

= [

1 0 0 0
0 1 0 0
0 0 1 0

𝑚𝑖𝑤
2 0 0 1

]𝑇𝑖(0)

{
 
 

 
 𝑢𝑖(0)

𝑢𝑖
′(0)
𝑀𝑖(0)
𝑉𝑖(0)}

 
 

 
 

 

( 673 ) 

Rewriting: 

{
 

 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝑀𝑖+1(0)
𝑉𝑖+1(0)}

 

 
= 𝑇𝑤𝑖(0)

{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)
𝑉𝑖(0)}

 

 
 

( 674 ) 

Where: 

𝑇𝑤𝑖(0) = [

1 0 0 0
0 1 0 0
0 0 1 0

𝑚𝑖𝑤
2 0 0 1

] 𝑇𝑖(0) 

( 675 ) 

Expressing the equation for the nth floor between product symbols: 

{

𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)
𝑉𝑛(0)

} =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

{

𝑢1(ℎ1)

𝑢𝑛
′ (ℎ1)

𝑀1(ℎ1)
𝑉1(ℎ1)

} 

( 676 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 677 ) 

Replacing this parameter: 



 

 

239 

{

𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)
𝑉𝑛(0)

} = t{

𝑢1(ℎ1)

𝑢𝑛
′ (ℎ1)

𝑀1(ℎ1)
𝑉1(ℎ1)

} 

( 678 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝐾𝑏𝑢(0)
′′′ −𝐾𝑠𝑢(0)

′ = 0}
 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 679 ) 

Replacing: 

{

𝑢𝑛(0)

𝑢𝑛
′ (0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 680 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 681 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.5 Parallel Coupling of Bending Beam and Shear Beam of a Field (CTB) - 
Torsional Behavior 

Just as the torsional displacement analysis can be derived based on the analogy that exists between 

the stresses of thin-walled structures in bending and torsion, the torsional vibration analysis of a 

structural core can also be extended using this analogy. The model to be used is a thin-walled open 

cross-section equivalent cantilever having an effective Saint Venant stiffness (𝐺𝐽𝑒) and 

deformation stiffness (𝐸𝐼𝑤). 

4.2.5.1 Case 1 

When analyzing the balance of an elementary section of the structural core, its differential equation 

is: 

𝐸𝐼𝑤𝜑
′′′′ − 𝐺𝐽∗𝜑′′ + 𝜌𝐼�̈� = 0 ( 682 ) 

Where: 

{
 
 
 

 
 
 

𝐽∗ = 𝐽 + 𝐽̅

𝐽 =
1

3
∑ℎ𝑖𝑣𝑖

3

𝑚

𝑖=1

(𝑆𝑒𝑐𝑐𝑖ó𝑛 𝑎𝑏𝑖𝑒𝑟𝑡𝑎 ), 𝐽 =
4𝐴0

2

∑
ℎ𝑖
𝑣𝑖

𝑚
𝑖=1

(𝑆𝑒𝑐𝑐𝑖ó𝑛 𝑒𝑟𝑟𝑎𝑑𝑎)

𝐽 ̅ =
4𝐴0

2

𝑙3𝑠𝐺
12𝐸𝐼𝑏

+
1.2𝑙𝑠
𝐴𝑏

, 𝐴𝑏 = 𝑡𝑏𝑑, 𝐼𝑏 =
𝑡𝑏𝑑

3

12
}
 
 
 

 
 
 

 

( 683 ) 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

𝑤(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡) ( 684 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting like terms, we get the following: 

�̈�(𝑡)

𝑞(𝑡)
−
𝐸𝐼𝑤
𝜌𝐼

.
1

∅(𝑥)
∅(𝑥)
′′′′ +

𝐺𝐽

𝜌𝐼
.
1

∅(𝑥)
∅(𝑥)
′′ = 0 

( 685 ) 
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Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{
�̈�
(𝑡)
+ 𝑤2𝑞

(𝑡)
= 0

𝐸𝐼𝑤∅(𝑥)
′′′′ − 𝐺𝐽∅(𝑥)

′′ − 𝜌𝐼𝑤2∅(𝑥) = 0
} 

( 686 ) 

The first equation is the same one that governs the behavior of an SDOF system with vibration 

frequency 𝑤. 

The second differential equation is identical to the equation presented for the case of lateral 

vibration of a CTB beam, with the difference that only the nomenclature of its stiffnesses changes; 

furthermore, the same boundary conditions hold, so the solution given in the previous section is 

completely valid for the pure torsional analysis of a structural core. To solve it, it is necessary to 

use the equivalent stiffnesses: 

{
𝐾𝑏 → 𝐸𝐼𝑤
𝐾𝑠 → 𝐺𝐽
𝜌𝐴 → 𝜌𝐼

} 

( 687 ) 

4.2.5.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 

{
 

 
𝜑𝑖+1(0)

𝜑𝑖+1
′ (0)

𝑀𝑖+1(0)

𝑉𝑖+1(0)}
 

 
= {𝑇𝑖(0) + [

0 0 0 0
0 0 0 0
0 0 0 0

𝑚𝑡𝑖𝑤
2 0 0 0

]}

{
 

 
𝜑𝑖(0)

𝜑𝑖
′(0)

𝑀𝑖(0)

𝑉𝑖(0)}
 

 
= [

1 0 0 0
0 1 0 0
0 0 1 0

𝑚𝑡𝑖𝑤
2 0 0 1

]𝑇𝑖(0)

{
 

 
𝜑𝑖(0)

𝜑𝑖
′(0)

𝑀𝑖(0)

𝑉𝑖(0)}
 

 
 

( 688 ) 

Rewriting: 

{
 
 

 
 
𝜑
𝑖+1
(0)

𝜑
𝑖+1
′ (0)

𝑀𝑖+1(0)
𝑉𝑖+1(0)}

 
 

 
 

= 𝑇𝑤𝑖(0)

{
 
 

 
 
𝜑
𝑖
(0)

𝜑
𝑖
′(0)

𝑀𝑖(0)
𝑉𝑖(0)}

 
 

 
 

 

( 689 ) 

Where: 
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𝑇𝑤𝑖(0) = [

1 0 0 0

0 1 0 0

0 0 1 0

𝑚𝑡𝑖𝑤
2 0 0 1

] 𝑇𝑖(0) 

( 690 ) 

Expressing the equation for the nth floor between product symbols: 

{
 
 

 
 
𝜑
𝑛
(0)

𝜑
𝑛
′ (0)

𝑀𝑛(0)
𝑉𝑛(0)}

 
 

 
 

=∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

{
 
 

 
 
𝜑
1
(ℎ1)

𝜑
1
′ (ℎ1)

𝑀1(ℎ1)
𝑉1(ℎ1)}

 
 

 
 

 

( 691 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 692 ) 

Replacing this parameter: 

{
 
 

 
 
𝜑
𝑛
(0)

𝜑
𝑛
′ (0)

𝑀𝑛(0)
𝑉𝑛(0)}

 
 

 
 

= t

{
 
 

 
 
𝜑
1
(ℎ1)

𝜑
1
′ (ℎ1)

𝑀1(ℎ1)
𝑉1(ℎ1)}

 
 

 
 

 

( 693 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝜑(1) = 0

𝜑(1)
′ = 0

𝜑(0)
′′ = 0

𝐸𝐼𝑤𝜑(0)
′′′ − 𝐺𝐽∗𝜑(0)

′ = 0}
 
 

 
 

→

{
 

 
𝜑1(ℎ1) = 0

𝜑1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 

 

( 694 ) 

Replacing: 
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{

𝜑𝑛(0)

𝜑𝑛
′ (0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 695 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 696 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.6 Sandwich Beam of Two Field (SWB) 

4.2.6.1 Case 1 

The potential energy and kinetic energy of the two-field SWB model are: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+ 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑏2𝑢(𝑥)

′′ 2
𝐻

0

𝑑𝑥

𝑇 =
1

2
∫ [𝛾𝑢(�̇�)

2 + 𝛾𝜃(�̇�)
2
]

𝐻

0

𝑑𝑥

 

( 697 ) 

Where:  

{𝛾𝑢 = 𝜌𝐴, 𝛾𝜃 = 𝜌𝐼} ( 698 ) 

Consequently, the total potential energy of the two-field beam SWB is expressed as: 

𝒰 =
1

2
∫ [𝛾𝑢(�̇�)

2 + 𝛾𝜃(�̇�)
2
]

𝐻

0

𝑑𝑥 −
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
+ 𝐾𝑏2𝑢(𝑥)

′′ 2
}

𝐻

0

𝑑𝑥 
( 699 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) + 𝛾𝜃 �̇�(𝑡𝑥,𝑡)𝛿�̇�(𝑥,𝑡) − 𝐾𝑏1𝜃(𝑥,𝑡)
′ 𝛿𝜃(𝑥,𝑡)

′ − 𝐾𝑠1[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)
′ ]𝛿𝜃(𝑥,𝑡)

𝐻

0

+ 𝐾𝑠1[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)
′ ]𝛿𝑢(𝑥,𝑡)

′ − 𝐾𝑏2𝑢(𝑥,𝑡)
′′ 𝛿𝑢(𝑥,𝑡)

′′ }𝑑𝑥 ( 700 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = {{𝛾𝑢�̇�(𝑥,𝑡) + 𝐾𝑠1[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)
′ ] + 𝐾𝑏2𝑢(𝑥,𝑡)

′′′′ }𝛿𝑢(𝑥,𝑡)}
0

𝐻
− [𝐾𝑏2𝑢(𝑥,𝑡)

′′ 𝛿𝑢(𝑥,𝑡)
′ ]

0

𝐻

+ {[𝛾𝜃 �̇�(𝑥,𝑡) −𝐾𝑏1𝜃(𝑥,𝑡)
′ ]𝛿𝜃(𝑥,𝑡)}

0

𝐻

−∫ {𝛾𝑢�̈�(𝑥,𝑡) +𝐾𝑠1[𝜃(𝑥,𝑡)
′ − 𝑢(𝑥,𝑡)

′′ ] + 𝐾𝑏2𝑢(𝑥,𝑡)
′′′′ }𝛿𝑢(𝑥,𝑡)

𝐻

0

−∫ [𝛾𝜃�̈�(𝑥,𝑡) −𝐾𝑏1𝜃(𝑥,𝑡)
′′ +𝐾𝑠1[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)

′ ]] 𝛿𝜃(𝑥,𝑡)

𝐻

0

 
( 701 ) 

Setting the terms equal to zero, the following equations result: 
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{
𝛾
𝑢
�̈�(𝑥,𝑡) + 𝐾𝑠[𝜃(𝑥,𝑡)

′ − 𝑢(𝑥,𝑡)
′′ ] + 𝐾𝑏2𝑢(𝑥,𝑡)

′′′′ = 0

𝛾
𝜃
�̈�(𝑥,𝑡) − 𝐾𝑏1𝜃(𝑥,𝑡)

′′ + 𝐾𝑠[𝜃(𝑥,𝑡) − 𝑢(𝑥,𝑡)
′ ] = 0

} 
( 702 ) 

And boundary conditions: 

{

𝜃(𝐻)
′ = 0

𝑢(𝐻)
′′ = 0

𝐾𝑠[𝜃(𝐻) − 𝑢(𝐻)
′ ] + 𝐾𝑏2𝑢(𝐻)

′′′ = 0

} 

( 703 ) 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

{
𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡)
𝜃(𝑥,𝑡) = 𝜆(𝑥)𝑞(𝑡)

} 
( 704 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting like terms, we get the following: 

{
 
 

 
 
�̈�
(𝑡)

𝑞
(𝑡)

+
[𝐾𝑠𝜆(𝑥)

′ − 𝐾𝑠∅(𝑥)
′′ + 𝐾𝑏2∅(𝑥)

′′′′ ]

𝛾
𝑢
∅(𝑥)

= 0

�̈�
(𝑡)

𝑞
(𝑡)

+
[−𝐾𝑏1𝜆(𝑥)

′′ + 𝐾𝑠𝜆(𝑥) − 𝐾𝑠∅(𝑥)
′ ]

𝛾
𝜃
𝜆(𝑥)

= 0
}
 
 

 
 

 

( 705 ) 

Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{

�̈�
(𝑡)
+ 𝑤2𝑞

(𝑡)
= 0

𝐾𝑏2∅(𝑥)
′′′′ − 𝐾𝑠∅(𝑥)

′′ + 𝐾𝑠𝜆(𝑥)
′ − 𝑤2𝛾

𝑢
∅(𝑥) = 0

𝐾𝑏1𝜆(𝑥)
′′ + 𝐾𝑠∅(𝑥)

′ − 𝐾𝑠𝜆(𝑥) + 𝑤
2𝛾
𝜃
𝜆(𝑥) = 0

} 

( 706 ) 

The first equation is the same one that governs the behavior of an SDOF system with vibration 

frequency w. 

Solving for 𝜆(𝑥)
′ , differentiating twice and replacing: 



 

 

246 

∅(𝑥)
′′′′′′ − [

𝐾𝑠1
𝐾𝑏2

+
𝐾𝑠1
𝐾𝑏1

−
𝛾𝜃𝑤

2

𝐾𝑏1
] ∅(𝑥)

′′′′ − [
𝛾𝑢𝑤

2

𝐾𝑏2
(1 +

𝛾𝜃
𝛾𝑢

𝐾𝑠1
𝐾𝑏1

)]∅(𝑥)
′′ +

𝛾𝑢𝑤
2

𝐾𝑏2
(
𝐾𝑠1
𝐾𝑏1

−
𝛾𝜃𝑤

2

𝐾𝑏1
)∅(𝑥) = 0 

( 707 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

∅(𝑧)
′′′′′′ − [

𝐾𝑠1
𝐾𝑏2

+
𝐾𝑠1
𝐾𝑏1

−
𝛾𝜃𝑤

2

𝐾𝑏1
]𝐻2∅(𝑧)

′′′′ − [
𝛾𝑢𝑤

2

𝐾𝑏2
(1 +

𝛾𝜃
𝛾𝑢

𝐾𝑠1
𝐾𝑏1

)]𝐻4∅(𝑧)
′′

+
𝛾𝑢𝑤

2

𝐾𝑏2
(
𝐾𝑠1
𝐾𝑏1

−
𝛾𝜃𝑤

2

𝐾𝑏1
)𝐻6∅(𝑧) = 0 

( 708 ) 

The equation can be rewritten as: 

∅(𝑧)
′′′′′′ − [𝛼2𝜅2 − 𝛿2𝜇2]∅(𝑧)

′′′′ − 𝛿2[1 + 𝛼2𝜇2]∅(𝑧)
′′ + 𝛿2[𝛼2(𝜅2 − 1) − 𝛿2𝜇2]∅(𝑧) = 0 ( 709 ) 

Where: 

{𝛼 = 𝐻√
𝐾𝑠1
𝐾𝑏2

, 𝜅 = √1 +
𝐾𝑏2
𝐾𝑏1

, 𝜇 =
1

𝐻
√
𝛾𝜃
𝛾𝑢

𝐾𝑏2
𝐾𝑏1

, 𝛿 = √
𝛾𝑢𝐻

4

𝐾𝑏2
𝑤2} 

( 710 ) 

We rewrite the equation again: 

∅(𝑧)
′′′′′′ − [𝜋1 + 𝜋1𝜋2 − 𝛿

2𝜋3]∅(𝑧)
′′′′ − [𝛿2(1 + 𝜋1𝜋3)]∅(𝑧)

′′ + [𝛿2(𝜋1𝜋2 − 𝛿
2𝜋3)]∅(𝑧) = 0 ( 711 ) 

Where: 

{𝜋1 = 𝛼
2, 𝜋2 = 𝜅

2 − 1, 𝜋3 = 𝜇
2} ( 712 ) 

To solve the differential equation we consider the characteristic polynomial: 

𝑃(𝑟) = 𝑟
6 − [𝜋1 + 𝜋1𝜋2 − 𝛿

2𝜋3]𝑟
4 − [𝛿2(1 + 𝜋1𝜋3)]𝑟

2 + [𝛿2(𝜋1𝜋2 − 𝛿
2𝜋3)] = 0 ( 713 ) 

We change the variable and denote: 

𝑞𝑖 = 𝑟𝑖
2 → {

𝑟2𝑖−1 = √𝑞𝑖

𝑟2𝑖 = −√𝑞𝑖
  ;   𝑖 = 1, 2, 3} 

( 714 ) 

We rewrite the characteristic polynomial: 
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𝑃(𝑟) = 𝑞
3 − (𝜋1 + 𝜋1𝜋2 − 𝛿

2𝜋3)𝑞
2 − [𝛿2(1 + 𝜋1𝜋3)]𝑞 + [𝛿

2(𝜋1𝜋2 − 𝛿
2𝜋3)] = 0 ( 715 ) 

This equation will have three real and unequal roots in q, if: 

𝑎3

27
+
𝑏2

4
< 0 

( 716 ) 

Where: 

{
𝑎 = −

1

3
[3(1 + 𝜋1𝜋3)𝛿

2 + (𝜋1 + 𝜋1𝜋2 − 𝛿
2𝜋3)

2
]

𝑏 = −
1

27
{2(𝜋1 + 𝜋1𝜋2 − 𝛿

2𝜋3)
3
+ 9(𝜋1 + 𝜋1𝜋2 − 𝛿

2𝜋3)(1 + 𝜋1𝜋3)𝛿
2 − 27(𝜋1 + 𝜋1𝜋2 − 𝛿

2𝜋3)𝛿
2}
} 

 ( 717 ) 

Replacing: 

𝑎3

27
+
𝑏2

4
= −

𝛿2

108
{𝜋1

4[4𝜋2(1 + 𝜋2)
3]

+ 𝜋1
2[(1 + 20𝜋2 − 8𝜋2

2) − 2(1 + 𝜋2)(1 + 8𝜋2
2)𝜋1𝜋3 + (1 + 𝜋2)

2𝜋1
2𝜋3

2]𝛿2

+ [4 − 8(1 − 2𝜋1)𝜋1𝜋3 + 2(1 − 2𝜋1 + 12𝜋2
2)𝜋1

2𝜋3
2 + 2(1 − 𝜋1)𝜋1

3𝜋3
3]𝛿4

+ 𝜋3
2[−8 − 8(1 − 2𝜋2)𝜋1𝜋3 + 𝜋1

2𝜋3
2]𝛿6 + (4𝜋3

4)𝛿8} ( 718 ) 

Numerically, it can be shown that the equation is always negative when: 

{
0 < 𝜋1 < 106

0 < 𝜋2 < 0.5

0 < 𝜋3 < 0.5

} → {
0 < 𝛼 < 103

0 < 𝜅 < 1.2247

0 < 𝜇 < 0.7071

} 

( 719 ) 

We define a critical eigenvalue: 

𝜋1𝜋2 − 𝛿
2𝜋3 = 0 → 𝛿𝑐

2 =
𝜋1𝜋2
𝜋3

 
( 720 ) 

Two cases are presented: 

 Case 1: When the polynomial has two positive real roots and one negative real root. 
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𝜋1𝜋2 − 𝛿
2𝜋3 > 0 → 𝛿2 <

𝜋1𝜋2
𝜋3

→ 𝛿 < 𝛿𝑐𝑟 
( 721 ) 

 Case 2: When the polynomial has a positive real root and two negative real roots. 

𝜋1𝜋2 − 𝛿
2𝜋3 < 0 → 𝛿2 >

𝜋1𝜋2
𝜋3

→ 𝛿 > 𝛿𝑐𝑟 
( 722 ) 

We define 𝑞𝑖 in such a way that: 

𝑞1 < 𝑞2 < 𝑞3 ( 723 ) 

In such a way that 𝑞1 < 0, 𝑞3 > 0 and 𝑞2 > 0 for 𝛿 < 𝛿𝑐𝑟 and 𝑞2 < 0 for 𝛿 > 𝛿𝑐𝑟. 

The roots of the equation are calculated as: 

{
 
 

 
 𝑞𝑖 = 2√−

𝑎

3
cos (

∅

3
+
2𝜋𝑖

3
) +

𝜋1 + 𝜋1𝜋2 − 𝛿
2𝜋3

3
  ;   𝑖 = 1, 2, 3

∅ = arccos (
3𝑏

2𝑎
√−

3

𝑎
)

}
 
 

 
 

 

( 724 ) 

 Frequency and Periods of Vibration 

Normalizing by the variable 𝑧 = 𝑥/𝐻 the two coupled differential equations: 

{
∅(𝑧)
′′′′ − 𝛼2∅(𝑧)

′′ + 𝛼2𝐻𝜆(𝑧)
′ − 𝛿2∅(𝑧) = 0

𝐻𝜆(𝑧)
′′ + [𝛼2(𝜅2 − 1)]∅(𝑧)

′ − [𝛼2(𝜅2 − 1) − 𝛿2𝜇2]𝐻𝜆(𝑧) = 0
} 

( 725 ) 

Expressing it in terms of 𝜋1, 𝜋2 and 𝜋3: 

{
∅(𝑧)
′′′′ − 𝜋1∅(𝑧)

′′ + 𝜋1𝐻𝜆(𝑧)
′ − 𝛿2∅(𝑧) = 0

𝐻𝜆(𝑧)
′′ + 𝜋1𝜋2∅(𝑧)

′ − (𝜋1𝜋2 − 𝛿
2𝜋3)𝐻𝜆(𝑧) = 0

} 
( 726 ) 

The solution will be of the form: 

𝑊(𝑧) = {
𝐻𝜆(𝑧)
∅(𝑧)

} = {
𝜂1
𝜂2
} 𝑒𝑟𝑧  

( 727 ) 
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Substituting the equation in the equation, two homogeneous equations are obtained which, written 

in matrix form, result in: 

[
𝜋1𝑟 𝑟4 − 𝜋1𝑟

2 − 𝛿2

𝑟2 − (𝜋1𝜋2 − 𝛿
2𝜋3) 𝜋1𝜋2𝑟

] {
𝜂1
𝜂2
} = {

0
0
} 

( 728 ) 

To avoid trivial solutions, the determinant must be equal to zero, that is: 

𝑟6 − [𝜋1 + 𝜋1𝜋2 − 𝛿
2𝜋3]𝑟

4 − [𝛿2(1 + 𝜋1𝜋3)]𝑟
2 + [𝛿2(𝜋1𝜋2 − 𝛿

2𝜋3)] = 0 ( 729 ) 

For all roots, the equation implies: 

{
𝜂1
𝜂2
} = [

𝑟𝑖
4 − 𝜋1𝑟𝑖

2 − 𝛿2

−𝜋1𝑟𝑖
] 𝐶  ;   𝑖 = 1, 2, … , 6 

( 730 ) 

Where C is an arbitrary constant. We change the variable and denote: 

𝑞𝑖 = 𝑟𝑖
2 → {

𝑟2𝑖−1 = √𝑞𝑖

𝑟2𝑖 = −√𝑞𝑖
  ;   𝑖 = 1, 2, 3} 

( 731 ) 

Substituting in the equation: 

𝑞3 − (𝜋1 + 𝜋1𝜋2 − 𝛿
2𝜋3)𝑞

2 − [𝛿2(1 + 𝜋1𝜋3)]𝑞 + [𝛿
2(𝜋1𝜋2 − 𝛿

2𝜋3)] = 0 ( 732 ) 

It was shown that the roots are always real for the given intervals in the equation. 

Rewriting the complete solution: 

𝑊(𝑧) = {
𝐻𝜆(𝑧)
∅(𝑧)

} = {
𝜂1
𝜂2
} 𝑒𝑟𝑧 =∑𝐶𝑖

6

𝑖=1

[
𝑟𝑖
4 − 𝜋1𝑟𝑖

2 − 𝛿2

−𝜋1𝑟𝑖
] 𝑒𝑟𝑖𝑧 

( 733 ) 

Substituting this complete equation in the boundary conditions, we obtain: 
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 At the base (𝑧 = 0): 

{
 
 
 
 

 
 
 
 

∅(0) = 0 →∑𝐶𝑖

6

𝑖=1

𝑟𝑖 = 0

∅(0)
′ = 0 →∑𝐶𝑖

6

𝑖=1

𝑟𝑖
2 = 0

𝐻𝜆(0) = 0 →∑𝐶𝑖(𝑟𝑖
4 − 𝜋1𝑟𝑖

2 − 𝛿2)

6

𝑖=1

= 0
}
 
 
 
 

 
 
 
 

 

( 734 ) 

 At the top (𝑧 = 1): 

{
 
 
 
 

 
 
 
 

∅(1)
′′ = 0 →∑𝐶𝑖

6

𝑖=1

𝑟𝑖
3𝑒𝑟𝑖 = 0

∅(1)
′′′ − 𝜋1[∅(1)

′ − 𝐻𝜆(1)] = 0 →∑𝐶𝑖

6

𝑖=1

𝑒𝑟𝑖 = 0

𝐻𝜆(1)
′ = 0 →∑𝐶𝑖

6

𝑖=1

𝑟𝑖(𝑟𝑖
4 − 𝜋1𝑟𝑖

2 − 𝛿2)𝑒𝑟𝑖 = 0
}
 
 
 
 

 
 
 
 

 

( 735 ) 

Defining: 

𝐷𝑖 = 𝑟𝑖
4 − 𝜋1𝑟𝑖

2 − 𝛿2 = 𝑞𝑖
2 − 𝜋1𝑞𝑖 − 𝛿

2   ;    𝑖 = 1, 2, 3  ( 736 ) 

The linear algebraic system resulting from developing the boundary conditions is written in the 

form of a matrix: 

[
 
 
 
 
 
 √𝑞1 −√𝑞1 √𝑞2 −√𝑞2 √𝑞3 −√𝑞3

𝑞1 𝑞1 𝑞2 𝑞2 𝑞3 𝑞3
𝐷1 𝐷1 𝐷2 𝐷2 𝐷3 𝐷3

𝑞1
3/2
𝑒√𝑞1 −𝑞1

3/2
𝑒−√𝑞1 𝑞2

3/2
𝑒√𝑞2 −𝑞2

3/2
𝑒−√𝑞2 𝑞3

3/2
𝑒√𝑞3 −𝑞3

3/2
𝑒−√𝑞3

𝑒√𝑞1 𝑒−√𝑞1 𝑒√𝑞2 𝑒−√𝑞2 𝑒√𝑞3 𝑒−√𝑞3

√𝑞1𝐷1𝑒√
𝑞1 −√𝑞1𝐷1𝑒

−√𝑞1 √𝑞2𝐷2𝑒√
𝑞2 −√𝑞2𝐷2𝑒

−√𝑞2 √𝑞3𝐷3𝑒
√𝑞3 −√𝑞3𝐷3𝑒

−√𝑞3]
 
 
 
 
 
 

{
 
 

 
 
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5
𝐶6}
 
 

 
 

=

{
 
 

 
 
0
0
0
0
0
0}
 
 

 
 

 

 ( 737 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). 

By some simple manipulations of the determinant in the equation, it can be written as: 
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|

|

1 0 1 0 1 0
0 𝑞1 0 𝑞2 0 𝑞3
0 𝐷1 0 𝐷2 0 𝐷3
𝑞1𝑐1 𝑞1

2𝑠1 𝑞2𝑐2 𝑞2
2𝑠2 𝑞3𝑐3 𝑞3

2𝑠3
𝑠1 𝑐1 𝑠2 𝑐2 𝑠3 𝑐3
𝐷1𝑐1 𝑞1𝐷1𝑠1 𝐷2𝑐2 𝑞2𝐷2𝑠2 𝐷3𝑐3 𝑞3𝐷3𝑠3

|

|
= 0 

( 738 ) 

Where: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑠𝑖(𝑧) =
1

2√𝑞𝑖
[𝑒√𝑞1𝑧 − 𝑒−√𝑞1𝑧] =

{
 
 
 
 

 
 
 
 𝑠1(𝑧) =

1

|𝑞1|
sin (√|𝑞1|𝑧)

𝑠2(𝑧) =

{
 
 

 
 

1

√|𝑞2|
sinh (√|𝑞2|𝑧)  ;   𝜆 < 𝜆𝑐

1

√|𝑞2|
sin (√|𝑞2|𝑧)  ;   𝜆 > 𝜆𝑐

}
 
 

 
 

𝑠3(𝑧) =
1

√|𝑞3|
sinh(√|𝑞3|𝑧)

}
 
 
 
 

 
 
 
 

𝑐𝑖(𝑧) =
1

2
[𝑒√𝑞1𝑧 + 𝑒−√𝑞1𝑧] =

{
  
 

  
 𝑐1(𝑧) = cos (√|𝑞1|𝑧)

𝑐2(𝑧) = {
cosh (√|𝑞2|𝑧)  ;   𝜆 < 𝜆𝑐

cos (√|𝑞2|𝑧)  ;   𝜆 > 𝜆𝑐
}

𝑐3(𝑧) = cosh (√|𝑞3|𝑧) }
  
 

  
 

𝑠𝑖 = 𝑠𝑖(1)  ;   𝑐𝑖 = 𝑐𝑖(1) }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

( 739 ) 

A further reduction in the equation: 

|

(𝑞1
2𝑄1𝑠1 + 𝑞2

2𝑄2𝑠2 + 𝑞3
2𝑄3𝑠3) (𝑞2𝑐2 − 𝑞1𝑐1) (𝑞3𝑐3 − 𝑞1𝑐1)

(𝑄1𝑐1 + 𝑄2𝑐2 +𝑄3𝑐3) (𝑠2 − 𝑠1) (𝑠3 − 𝑠1)

(𝑞1𝐷1𝑄1𝑠1 + 𝑞2𝐷2𝑄2𝑠2 + 𝑞3𝐷3𝑄3𝑠3) (𝐷2𝑐2 − 𝐷1𝑐1) (𝐷3𝑐3 −𝐷1𝑐1)

| = 0 

( 740 ) 

Taking into account that: 

𝑐𝑖
2 − 𝑞𝑖𝑠𝑖

2 = 1; 𝑖 = 1, 2, 3 ( 741 ) 

The determinant can be written in its simplest form: 

𝑄2𝑄3[2 + (𝑞2 + 𝑞3)𝑠2𝑠3]𝑐1 +𝑄3𝑄1[2 + (𝑞3 + 𝑞1)𝑠3𝑠1]𝑐2 +𝑄1𝑄2[2 + (𝑞1 + 𝑞2)𝑠1𝑠2]𝑐3

+ (𝑄1
2 +𝑄2

2 + 𝑄3
2)𝑐1𝑐2𝑐3 = 0 ( 742 ) 

Where: 
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{

𝑄1 = 𝑞3𝐷2 − 𝑞2𝐷3 = (𝑞2 − 𝑞3)(𝑞2𝑞3 + 𝛿
2)

𝑄2 = 𝑞1𝐷3 − 𝑞3𝐷1 = (𝑞3 − 𝑞1)(𝑞3𝑞1 + 𝛿
2)

𝑄3 = 𝑞2𝐷1 − 𝑞1𝐷2 = (𝑞1 − 𝑞2)(𝑞1𝑞2 + 𝛿
2)

} 

( 743 ) 

Rewriting the determinant as 𝐹(𝛿2): 

𝐹(𝛿2) = 𝑄2𝑄3[2 + (𝑞2 + 𝑞3)𝑠2𝑠3]𝑐1 +𝑄3𝑄1[2 + (𝑞3 + 𝑞1)𝑠3𝑠1]𝑐2

+𝑄1𝑄2[2 + (𝑞1 + 𝑞2)𝑠1𝑠2]𝑐3 + (𝑄1
2 + 𝑄2

2 + 𝑄3
2)𝑐1𝑐2𝑐3 = 0 ( 744 ) 

Solving this characteristic equation, solutions for 𝛿 are obtained by numerical methods and 

consequently the vibration periods are obtained. It is important to mention that in general 𝑞3 tends 

to a large numerical value, so care must be taken to avoid numerical problems. 

𝑤 =
𝛿

𝐻2
√
𝐾𝑏2
𝛾𝑢

→ 𝑇 =
2𝜋

𝑤
=
2𝜋𝐻2

𝛿
√
𝛾𝑢
𝐾𝑏2

 

( 745 ) 

 Mode Shapes 

The eigenvectors can be obtained by solving the equation for the constants 𝐶𝑖. To simplify the 

matrix problem, the constants 𝐶𝑖 will be transformed into a set of new constants 𝐶�̅� using the 

transformation: 

{
 
 

 
 2𝐶2𝑖−1 = �̅�2𝑖−1 +

1

√𝑞𝑖
�̅�2𝑖

2𝐶2𝑖 = �̅�2𝑖−1 −
1

√𝑞𝑖
�̅�2𝑖

; 𝑖 = 1, 2, 3

}
 
 

 
 

 

( 746 ) 

The equation reduces: 

[
 
 
 
 
 

0 1 0 1 0 1
𝑞1 0 𝑞2 0 𝑞3 0
𝐷1 01 𝐷2 0 𝐷3 0

𝑞1
2𝑠1 𝑞1𝑐1 𝑞2

2𝑠2 𝑞2𝑐2 𝑞3
2𝑠3 𝑞3𝑐3

𝑐1 𝑠1 𝑐2 𝑠2 𝑐3 𝑠3
𝑞1𝐷1𝑠1 𝐷1𝑐1 𝑞2𝐷2𝑠2 𝐷2𝑐2 𝑞3𝐷3𝑠3 𝐷3𝑐3]

 
 
 
 
 

{
  
 

  
 
�̅�1
�̅�2
�̅�3
�̅�4
�̅�5
�̅�6}
  
 

  
 

=

{
 
 

 
 
0
0
0
0
0
0}
 
 

 
 

 

( 747 ) 
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Since the determinant of this matrix is zero, the constants 𝐶1̅ to 𝐶5̅ can be expressed as a function 

of 𝐶6̅. The matrix equation reduces to: 

[
 
 
 
 

0 1 0 1 0
𝑞1 0 𝑞2 0 𝑞3
𝐷1 0 𝐷2 0 𝐷3
𝑞1
2𝑠1 𝑞1𝑐1 𝑞2

2𝑠2 𝑞2𝑐2 𝑞3
2𝑠3

𝑞1𝐷1𝑠1 𝐷1𝑐1 𝑞2𝐷2𝑠2 𝐷2𝑐2 𝑞3𝐷3𝑠3]
 
 
 
 

{
 
 

 
 
�̅�1
�̅�2
�̅�3
�̅�4
�̅�5}
 
 

 
 

= −�̅�6

{
 
 

 
 

1
0
0
𝑞3𝑐3
𝐷3𝑐3}

 
 

 
 

 

( 748 ) 

Which can be solved for the constant 𝐶�̅�: 

{
 
 

 
 
�̅�1
�̅�2
�̅�3
�̅�4
�̅�5}
 
 

 
 

= −�̅�6

[
 
 
 
 

0 1 0 1 0
𝑞1 0 𝑞2 0 𝑞3
𝐷1 0 𝐷2 0 𝐷3
𝑞1
2𝑠1 𝑞1𝑐1 𝑞2

2𝑠2 𝑞2𝑐2 𝑞3
2𝑠3

𝑞1𝐷1𝑠1 𝐷1𝑐1 𝑞2𝐷2𝑠2 𝐷2𝑐2 𝑞3𝐷3𝑠3]
 
 
 
 
−1

{
 
 

 
 

1
0
0
𝑞3𝑐3
𝐷3𝑐3}

 
 

 
 

 

( 749 ) 

Operating: 

{
 
 

 
 
�̅�1
�̅�2
�̅�3
�̅�4
�̅�5}
 
 

 
 

=
�̅�6

𝑄2𝑄3(𝑞2𝑠2 − 𝑞3𝑠3) − 𝑄3𝑄1(𝑞3𝑠3 − 𝑞1𝑠1)

{
 
 

 
 

𝑄1(𝑄1𝑐2𝑐3 +𝑄2𝑐3𝑐1 + 𝑄3𝑐1𝑐2)

𝑄3𝑄1(𝑞3𝑠3 − 𝑞1𝑠1)𝑐2 − 𝑄1𝑄2(𝑞1𝑠1 − 𝑞2𝑠2)𝑐3
𝑄2(𝑄1𝑐2𝑐3 + 𝑄2𝑐3𝑐1 +𝑄3𝑐1𝑐2)

𝑄1𝑄2(𝑞1𝑠1 − 𝑞2𝑠2)𝑐3 − 𝑄2𝑄3(𝑞2𝑠2 − 𝑞3𝑠3)𝑐1
𝑄3(𝑄1𝑐2𝑐3 + 𝑄2𝑐3𝑐1 +𝑄3𝑐1𝑐2) }

 
 

 
 

 

( 750 ) 

Finally: 

{
  
 

  
 
�̅�1
�̅�2
�̅�3
�̅�4
�̅�5
�̅�6}
  
 

  
 

= C

{
 
 

 
 
𝑄1𝜒4
𝜒2 − 𝜒3
𝑄2𝜒4
𝜒3 − 𝜒1
𝑄3𝜒4
𝜒1 − 𝜒2}

 
 

 
 

 

( 751 ) 

Where C is a constant and 

{
 

 
𝜒1 = 𝑄2𝑄3(𝑞2𝑠2 − 𝑞3𝑠3)𝑐1
𝜒2 = 𝑄3𝑄1(𝑞3𝑠3 − 𝑞1𝑠1)𝑐2
𝜒3 = 𝑄1𝑄2(𝑞1𝑠1 − 𝑞2𝑠2)𝑐3

𝜒4 = 𝑄1𝑐2𝑐3 + 𝑄2𝑐3𝑐1 +𝑄3𝑐1𝑐2}
 

 
 

( 752 ) 

Now we can obtain the displacement ∅(𝑧) corresponding to the eigenvector: 
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∅(𝑧) = −𝜋1[�̅�1𝑞1𝑠1(𝑧) + �̅�2𝑐1(𝑧) + �̅�3𝑞2𝑠2(𝑧) + �̅�4𝑐2(𝑧) + �̅�5𝑞3𝑠3(𝑧) + �̅�6𝑐3(𝑧)] ( 753 ) 

And substituting the values of 𝐶�̅� given in the equation 

∅(𝑧) = −𝜋1𝐶{𝜒4[𝑄1𝑞1𝑠1(𝑧) + 𝑄2𝑞2𝑠2(𝑧) + 𝑄3𝑞3𝑠3(𝑧)] + (𝜒2 − 𝜒3)𝑐1(𝑧)

+ (𝜒3 − 𝜒1)𝑐2(𝑧) + (𝜒1 − 𝜒2)𝑐3(𝑧)} ( 754 ) 

We normalize in such a way that ∅(1) = 1: 

∅̅(𝑧) =
∅(𝑧)

∅(1)
 

( 755 ) 

4.2.6.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 

{
 
 
 
 
 
 

 
 
 
 
 
 

{
  
 

  
 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝜃𝑖+1(0)

𝑀l𝑖+1(0)

𝑀r𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

=

{
 
 

 
 

𝑇𝑖(0) +

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

𝑚𝑖𝑤
2 0 0 0 0 0]

 
 
 
 
 

}
 
 

 
 

{
  
 

  
 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝜃𝑖(0)

𝑀l𝑖(0)

𝑀r𝑖(0)

𝑉𝑖(0) }
  
 

  
 

{
  
 

  
 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝜃𝑖+1(0)

𝑀l𝑖+1(0)

𝑀r𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

=

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

𝑚𝑖𝑤
2 0 0 0 0 1]

 
 
 
 
 

𝑇𝑖(0)

{
  
 

  
 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝜃𝑖(0)

𝑀l𝑖(0)

𝑀r𝑖(0)

𝑉𝑖(0) }
  
 

  
 

}
 
 
 
 
 
 

 
 
 
 
 
 

 

( 756 ) 

Rewriting: 

{
  
 

  
 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝜃𝑖+1(0)

𝑀l𝑖+1(0)

𝑀r𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

= 𝑇𝑤𝑖(0)

{
  
 

  
 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝜃𝑖(0)

𝑀l𝑖(0)

𝑀r𝑖(0)

𝑉𝑖(0) }
  
 

  
 

 

( 757 ) 

Where: 
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𝑇𝑤𝑖(0) =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

𝑚𝑖𝑤
2 0 0 0 0 1]

 
 
 
 
 

𝑇𝑖(0) 

( 758 ) 

Expressing the equation for the nth floor between product symbols: 

{
  
 

  
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)

𝑀l𝑛(0)

𝑀r𝑛(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑤𝑘(0)

{
  
 

  
 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

𝑛

𝑘=1

= t

{
  
 

  
 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

 

( 759 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 760 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝜃(1) = 0

𝜃(0)
′ = 0

𝑢(0)
′′ = 0

𝐾𝑠1[𝜃(0) − 𝑢(0)
′ ] + 𝐾𝑏2𝑢(0)

′′′ = 0}
 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝜃1(ℎ1) = 0

𝑀𝑙𝑛(0) = 0

𝑀𝑟𝑛(0) = 0

𝑉𝑛(0) = 0 }
  
 

  
 

 

( 761 ) 

Replacing: 
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{
 
 

 
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

 

( 762 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]{

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} 

( 763 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.7 Generalized Sandwich Beam of Three Field (GSB1) 

4.2.7.1 Case 1 

The potential energy and kinetic energy of the three-field GSB1 model are: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜓(𝑥,𝑡)

′ 2
+𝐾𝑠1[𝑢(𝑥,𝑡)

′ − 𝜓(𝑥,𝑡)]
2
+ 𝐾𝑏2𝜃(𝑥,𝑡)

′ 2
+ 𝐾𝑠2[𝑢(𝑥,𝑡)

′ − 𝜃(𝑥,𝑡)]
2
}

𝐻

0

𝑑𝑥

𝑇 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝜓�̇�(𝑥,𝑡)
2
+ 𝛾𝜃 �̇�(𝑥,𝑡)

2
]

𝐻

0

𝑑𝑥

 

( 764 ) 

Where: 

{𝛾𝑢 = 𝜌(𝐴1 + 𝐴2);  𝛾𝜓 = 𝜌𝐼1;   𝛾𝜃 = 𝜌𝐼2} ( 765 ) 

Consequently, the total potential energy of the three-field beam GSB1 is expressed as: 

𝒰 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝜓�̇�(𝑥,𝑡)
2
+ 𝛾𝜃 �̇�(𝑥,𝑡)

2
]

𝐻

0

𝑑𝑥

−
1

2
∫ {𝐾𝑏1𝜓(𝑥,𝑡)

′ 2
+𝐾𝑠1[𝑢(𝑥,𝑡)

′ −𝜓(𝑥,𝑡)]
2
+𝐾𝑏2𝜃(𝑥,𝑡)

′ 2
+𝐾𝑠2[𝑢(𝑥,𝑡)

′ − 𝜃(𝑥,𝑡)]
2
}

𝐻

0

𝑑𝑥 

 ( 766 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) + 𝛾𝜓�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) + 𝛾𝜃�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) − 𝐾𝑏1𝜓(𝑥,𝑡)
′ 𝛿𝜓(𝑥,𝑡)

′
𝐻

0

−𝐾𝑠1[𝑢(𝑥,𝑡)
′ −𝜓(𝑥,𝑡)]𝛿𝑢(𝑥,𝑡)

′ +𝐾𝑠1[𝑢(𝑥,𝑡)
′ −𝜓(𝑥,𝑡)]𝛿𝜓(𝑥,𝑡) −𝐾𝑏2𝜃(𝑥,𝑡)

′ 𝛿𝜃(𝑥,𝑡)
′

−𝐾𝑠2[𝑢(𝑥,𝑡)
′ − 𝜃(𝑥,𝑡)]𝛿𝑢(𝑥,𝑡)

′ + 𝐾𝑠2[𝑢(𝑥,𝑡)
′ − 𝜃(𝑥,𝑡)]𝛿𝜃(𝑥,𝑡)}𝑑𝑥 ( 767 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 
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𝛿𝒰 = {[𝛾𝑢�̇�(𝑥,𝑡) − (𝐾𝑠1 +𝐾𝑠2)𝑢(𝑥,𝑡)
′ + 𝐾𝑠1𝜓(𝑥,𝑡) + 𝐾𝑠2𝜃(𝑥,𝑡)]𝛿𝑢(𝑥,𝑡)}

0

𝐻

+ [𝛾𝜓�̇�(𝑥,𝑡) − 𝐾𝑏1𝜓(𝑥,𝑡)
′ ]𝛿𝜓(𝑥,𝑡)0

𝐻
+ [𝛾𝜃𝜃(𝑥,𝑡) −𝐾𝑏2𝜃(𝑥,𝑡)

′ ]𝛿𝜃(𝑥,𝑡)0
𝐻

−∫ {𝛾𝑢�̈�(𝑥,𝑡) − (𝐾𝑠1 +𝐾𝑠2)𝑢(𝑥,𝑡)
′′ +𝐾𝑠1𝜓(𝑥,𝑡)

′ +𝐾𝑠2𝜃(𝑥,𝑡)
′ }𝛿𝑢(𝑥,𝑡)

𝐻

0

−∫ {𝛾𝜓�̈�(𝑥,𝑡) −𝐾𝑏1𝜓(𝑥,𝑡)
′′ −𝐾𝑠1[𝑢(𝑥,𝑡)

′ −𝜓(𝑥,𝑡)]}𝛿𝜓(𝑥,𝑡)

𝐻

0

−∫ {𝛾𝜃�̈�(𝑥,𝑡) −𝐾𝑏2𝜃(𝑥,𝑡)
′′ −𝐾𝑠2[𝑢(𝑥,𝑡)

′ − 𝜃(𝑥,𝑡)]}𝛿𝜃(𝑥,𝑡)

𝐻

0

 
( 768 ) 

Setting the terms equal to zero, the following equations result: 

{
 
 

 
 𝛿𝑢(𝑥,𝑡):   𝛾𝑢�̈�(𝑥,𝑡) − (𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥,𝑡)

′′ + 𝐾𝑠1𝜓(𝑥,𝑡)
′ + 𝐾𝑠2𝜃(𝑥,𝑡)

′ = 0

𝛿𝜓
(𝑥,𝑡)

:   𝛾
𝜓
�̈�
(𝑥,𝑡)

− 𝐾𝑏1𝜓(𝑥,𝑡)
′′ − 𝐾𝑠1 [𝑢(𝑥,𝑡)

′ − 𝜓(𝑥,𝑡)] = 0

𝛿𝜃(𝑥,𝑡):   𝛾𝜃�̈�(𝑥,𝑡) − 𝐾𝑏2𝜃(𝑥,𝑡)
′′ − 𝐾𝑠2[𝑢(𝑥,𝑡)

′ − 𝜃(𝑥,𝑡)] = 0 }
 
 

 
 

 

( 769 ) 

And boundary conditions: 

{
 

 
𝛿𝑢(𝑥,𝑡):   (𝐾𝑠1 + 𝐾𝑠2)𝑢(𝐻)

′ − 𝐾𝑠1𝜓(𝐻) − 𝐾𝑠2𝜃(𝐻) = 0

𝛿𝜓
(𝑥,𝑡)

:   𝜓(𝐻)
′ = 0

𝛿𝜃(𝑥,𝑡):   𝜃(𝐻)
′ = 0 }

 

 
 

( 770 ) 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

{

𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡)
𝜓
(𝑥,𝑡)

= 𝜆1(𝑥)𝑞(𝑡)
𝜃(𝑥,𝑡) = 𝜆2(𝑥)𝑞(𝑡)

} 

( 771 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting like terms, we get the following: 
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{
 
 
 
 

 
 
 
 
�̈�
(𝑡)

𝑞
(𝑡)

+ [
−(𝐾𝑠1 + 𝐾𝑠2)∅(𝑥)

′′ + 𝐾𝑠1𝜆1(𝑥)
′ + 𝐾𝑠2𝜆2(𝑥)

′

𝛾
𝑢
∅(𝑥)

] = 0

�̈�
(𝑡)

𝑞
(𝑡)

+ [
−𝐾𝑏1𝜆1(𝑥)

′′ − 𝐾𝑠1∅(𝑥)
′ + 𝐾𝑠1𝜆1(𝑥)

𝛾
𝜓
𝜆1(𝑥)

] = 0

�̈�
(𝑡)

𝑞
(𝑡)

+ [
−𝐾𝑏2𝜆2(𝑥)

′′ − 𝐾𝑠2∅(𝑥)
′ + 𝐾𝑠2𝜆2(𝑥)

𝛾
𝜃
𝜆2(𝑥)

] = 0
}
 
 
 
 

 
 
 
 

 

( 772 ) 

Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{
 
 

 
 

�̈�
(𝑡)
+ 𝑤2𝑞

(𝑡)
= 0

(𝐾𝑠1 + 𝐾𝑠2)∅(𝑥)
′′ − 𝐾𝑠1𝜆1(𝑥)

′ − 𝐾𝑠2𝜆2(𝑥)
′ + 𝑤2𝛾

𝑢
∅(𝑥) = 0

𝐾𝑏1𝜆1(𝑥)
′′ + 𝐾𝑠1∅(𝑥)

′ − 𝐾𝑠1𝜆1(𝑥) + 𝑤
2𝛾
𝜓
𝜆1(𝑥) = 0

𝐾𝑏2𝜆2(𝑥)
′′ + 𝐾𝑠2∅(𝑥)

′ − 𝐾𝑠2𝜆2(𝑥) + 𝑤
2𝛾
𝜃
𝜆2(𝑥) = 0 }

 
 

 
 

 

( 773 ) 

The first equation is the same one that governs the behavior of an SDOF system with vibration 

frequency w. 

Using the method of differential operators for the solution of the system of equations: 

[

(𝐾𝑠1 +𝐾𝑠2)𝐷
2 +𝑤2𝛾𝑢 −𝐾𝑠1𝐷 −𝐾𝑠2𝐷

𝐾𝑠1𝐷 𝐾𝑏1𝐷
2 + (𝑤2𝛾𝜓 −𝐾𝑠1) 0

𝐾𝑠2𝐷 0 𝐾𝑏2𝐷
2 + (𝑤2𝛾𝜃 − 𝐾𝑠2)

] {

∅(𝑥)
𝜆1(𝑥)
𝜆2(𝑥)

} = {
0
0
0
} 

( 774 ) 

i.e., 

∅(𝑥)
′′′′′′ − [

𝐾𝑠1𝐾𝑠2(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 + (𝐾𝑏1𝛾𝜃 +𝐾𝑏2𝛾𝜓)(𝐾𝑠1 +𝐾𝑠2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑤2] ∅(𝑥)

′′′′

− 𝑤2 {
𝐾𝑠1𝐾𝑠2(𝛾𝜃 + 𝛾𝜓) + (𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1)𝛾𝑢

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

−
(𝐾𝑠1 +𝐾𝑠2)𝛾𝜃𝛾𝜓 + (𝐾𝑏1𝛾𝜃 + 𝐾𝑏2𝛾𝜓)𝛾𝑢

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑤2} ∅(𝑥)

′′

+
𝛾𝑢𝑤

2(𝑤2𝛾𝜓 −𝐾𝑠1)(𝑤
2𝛾𝜃 −𝐾𝑠2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
∅(𝑧) = 0 

( 775 ) 
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A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

∅(𝑧)
′′′′′′ − [

𝐾𝑠1𝐾𝑠2(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 + (𝐾𝑏1𝛾𝜃 +𝐾𝑏2𝛾𝜓)(𝐾𝑠1 + 𝐾𝑠2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝑤2]𝐻2∅(𝑧)

′′′′

−𝑤2 {
𝐾𝑠1𝐾𝑠2(𝛾𝜃 + 𝛾𝜓) + (𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1)𝛾𝑢

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

−
(𝐾𝑠1 +𝐾𝑠2)𝛾𝜃𝛾𝜓 + (𝐾𝑏1𝛾𝜃 +𝐾𝑏2𝛾𝜓)𝛾𝑢

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝑤2}𝐻4∅(𝑧)

′′

+
𝛾𝑢𝑤

2(𝑤2𝛾𝜓 − 𝐾𝑠1)(𝑤
2𝛾𝜃 −𝐾𝑠2)𝐻

6

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
= 0 

( 776 ) 

The equation can be rewritten as: 

∅(𝑧)
′′′′′′ − [𝛼2𝜅2 − (1 + 𝜇𝜓

2 + 𝜇𝜃
2)𝛿2]∅(𝑧)

′′′′

− 𝛿2{𝛼2[(𝜅2 − 1)𝜇𝜃
2 + 𝜇𝜓

2 ] + (𝜂𝜃
2 + 𝜂𝜑

2 ) − (𝜇𝜓
2 𝜇𝜃

2 + 𝜇𝜓
2 + 𝜇𝜃

2)𝛿2}∅(𝑧)
′′

+ 𝛿2(𝛿2𝜇𝜓
2 − 𝜂𝜓

2 )(𝛿2𝜇𝜃
2 − 𝜂𝜃

2)∅(𝑧) = 0 ( 777 ) 

Where: 

{
 
 

 
 

𝛼 = 𝐻√
𝐾𝑠1𝐾𝑠2

𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
, 𝜅 = √1 +

𝐾𝑏2
𝐾𝑏1

, 𝛿 = √
𝛾𝑢𝐻

2

𝐾𝑠1 +𝐾𝑠2
𝑤2

𝜇𝜑 = √
𝐾𝑠1 +𝐾𝑠2
𝐾𝑏1

𝛾𝜓

𝛾𝑢
, 𝜇𝜃 = √

𝐾𝑠1 + 𝐾𝑠2
𝐾𝑏2

𝛾𝜃
𝛾𝑢
, 𝜂𝜑 = 𝐻√

𝐾𝑠1
𝐾𝑏1

, 𝜂𝜃 = 𝐻√
𝐾𝑠2
𝐾𝑏2}

 
 

 
 

 

( 778 ) 

To solve the differential equation we consider the characteristic polynomial: 

𝑃(𝑟) = 𝑟
6 − [𝛼2𝜅2 − (1 + 𝜇𝜓

2 + 𝜇𝜃
2)𝛿2]𝑟4

− 𝛿2{𝛼2[(𝜅2 − 1)𝜇𝜃
2 + 𝜇𝜓

2 ] + (𝜂𝜃
2 + 𝜂𝜑

2 ) − (𝜇𝜓
2 𝜇𝜃

2 + 𝜇𝜓
2 + 𝜇𝜃

2)𝛿2}𝑟2

+ 𝛿2(𝛿2𝜇𝜓
2 − 𝜂𝜓

2 )(𝛿2𝜇𝜃
2 − 𝜂𝜃

2) = 0 ( 779 ) 

We change the variable and denote: 

𝑞𝑖 = 𝑟𝑖
2 → {

𝑟2𝑖−1 = √𝑞𝑖

𝑟2𝑖 = −√𝑞𝑖
  ;   𝑖 = 1, 2, 3} 

( 780 ) 
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We rewrite the characteristic polynomial: 

𝑃(𝑟) = 𝑞
3 − [𝛼2𝜅2 − (1 + 𝜇𝜓

2 + 𝜇𝜃
2)𝛿2]𝑞2

− 𝛿2{𝛼2[(𝜅2 − 1)𝜇𝜃
2 + 𝜇𝜓

2 ] + (𝜂𝜃
2 + 𝜂𝜑

2 ) − (𝜇𝜓
2 𝜇𝜃

2 + 𝜇𝜓
2 + 𝜇𝜃

2)𝛿2}𝑞

+ 𝛿2(𝛿2𝜇𝜓
2 − 𝜂𝜓

2 )(𝛿2𝜇𝜃
2 − 𝜂𝜃

2) = 0 ( 781 ) 

This equation will have three real and unequal roots in 𝑞, if: 

𝑎3

27
+
𝑏2

4
< 0 

( 782 ) 

Where: 

𝑎 = −
1

3
[3𝛿2{𝛼2[(𝜅2 − 1)𝜇𝜃

2 + 𝜇𝜓
2 ] + (𝜂𝜃

2 + 𝜂𝜑
2 ) − (𝜇𝜓

2 𝜇𝜃
2 + 𝜇𝜓

2 + 𝜇𝜃
2)𝛿2}

+ [𝛼2𝜅2 − (1 + 𝜇𝜓
2 + 𝜇𝜃

2)𝛿2]
2
] 

𝑏 = −
1

27
{2 [𝛼2𝜅2 − (1+ 𝜇𝜓

2 + 𝜇𝜃
2)𝛿

2
]
3

+ 9 [𝛼2𝜅2 − (1+ 𝜇𝜓
2 +𝜇𝜃

2)𝛿2]𝛿2 {𝛼2 [(𝜅2 −1)𝜇𝜃
2 +𝜇𝜓

2 ]+ (𝜂
𝜃
2 +𝜂

𝜑
2 )

− (𝜇𝜓
2𝜇𝜃

2 +𝜇𝜓
2 +𝜇𝜃

2)𝛿
2
} − 27𝛿

2
(𝛿

2
𝜇𝜓
2 − 𝜂

𝜓
2 ) (𝛿

2
𝜇𝜃
2 − 𝜂

𝜃
2)} 

( 783 ) 

Two cases are presented: 

 Case 1: When the polynomial has two positive real roots and one negative real root. 

 Case 2: When the polynomial has a positive real root and two negative real roots. 

We define 𝑞𝑖 in such a way that: 

𝑞1 < 𝑞2 < 𝑞3 ( 784 ) 

Las raíces de la ecuación se calculan como: 

{
 
 

 
 𝑞𝑖 = 2√−

𝑎

3
cos (

∅

3
+
2𝜋𝑖

3
) +

𝜋1 + 𝜋1𝜋2 − 𝛿
2𝜋3

3
  ;   𝑖 = 1, 2, 3

∅ = arccos (
3𝑏

2𝑎
√−

3

𝑎
)

}
 
 

 
 

 

( 785 ) 
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 Frequency and Periods of Vibration 

Normalizing by the variable 𝑧 = 𝑥/𝐻 the two coupled differential equations: 

{
 
 

 
 (𝐾𝑠1 +𝐾𝑠2)∅(𝑧)

′′ −𝐾𝑠1𝐻𝜆1(𝑥)
′ −𝐾𝑠2𝐻𝜆2(𝑥)

′ +𝐻2𝑤2𝛾𝑢∅(𝑥) = 0

𝐾𝑏1𝐻𝜆1(𝑧)
′′ +𝐻2𝐾𝑠1∅(𝑧)

′
−𝐻2𝐾𝑠1𝐻𝜆1(𝑧) +𝐻

2𝑤2𝛾𝜓𝐻𝜆1(𝑧) = 0

𝐾𝑏2𝐻𝜆2(𝑧)
′′ +𝐻2𝐾𝑠2∅(𝑧)

′
−𝐻2𝐾𝑠2𝐻𝜆2(𝑧) +𝐻

2𝑤2𝛾𝜃𝐻𝜆2(𝑧) = 0}
 
 

 
 

 

( 786 ) 

The solution will be of the form: 

𝑊(𝑧) = {

∅(𝑧)
𝐻𝜆1(𝑧)
𝐻𝜆2(𝑧)

} = {

𝜂1
𝜂2
𝜂3
} 𝑒𝑟𝑧  

( 787 ) 

Substituting the equation in the equation, two homogeneous equations are obtained which, written 

in matrix form, result in: 

[

(𝐾𝑠1 +𝐾𝑠2)𝑟
2 + 𝐻2𝑤2𝛾𝑢 −𝐾𝑠1𝑟 −𝐾𝑠2𝑟

𝐻2𝐾𝑠1𝑟 𝐾𝑏1𝑟
2 +𝐻2(𝑤2𝛾𝜓 −𝐾𝑠1) 0

𝐻2𝐾𝑠2𝑟 0 𝐾𝑏2𝑟
2 + 𝐻2(𝑤2𝛾𝜃 − 𝐾𝑠2)

] {

𝜂1
𝜂2
𝜂3
} = {

0
0
0
} 

 ( 788 ) 

To avoid trivial solutions, the determinant must be equal to zero, that is: 

𝑃(𝑟) = 𝑟
6 − [𝛼2𝜅2 − (1 + 𝜇𝜓

2 + 𝜇𝜃
2)𝛿2]𝑟4

− 𝛿2{𝛼2[(𝜅2 − 1)𝜇𝜃
2 + 𝜇𝜓

2 ] + (𝜂𝜃
2 + 𝜂𝜑

2 ) − (𝜇𝜓
2 𝜇𝜃

2 + 𝜇𝜓
2 + 𝜇𝜃

2)𝛿2}𝑟2

+ 𝛿2(𝛿2𝜇𝜓
2 − 𝜂𝜓

2 )(𝛿2𝜇𝜃
2 − 𝜂𝜃

2) = 0 ( 789 ) 

For all roots, the equation implies: 

{

𝜂1
𝜂2
𝜂3
} = {

𝐾𝑏1𝐾𝑏2{𝑟𝑖
4 + [(𝜇𝜓

2 + 𝜇𝜃
2)𝛿2 − (𝜂𝜃

2 + 𝜂𝜑
2 )]𝑟𝑖

2 + (𝛿2𝜇𝜓
2 − 𝜂𝜓

2 )(𝛿2𝜇𝜃
2 − 𝜂𝜃

2)}

−𝐻2𝐾𝑠1𝐾𝑏2𝑟𝑖[𝑟𝑖
2 + (𝛿2𝜇𝜃

2 − 𝜂𝜃
2)]

−𝐻2𝐾𝑠2𝐾𝑏1𝑟𝑖[𝑟𝑖
2 + (𝛿2𝜇𝜓

2 − 𝜂𝜓
2 )]

}𝐶 

( 790 ) 

Where i=1, 2, 3,.., 6 and C is an arbitrary constant. We change the variable and denote: 
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𝑞𝑖 = 𝑟𝑖
2 → {

𝑟2𝑖−1 = √𝑞𝑖

𝑟2𝑖 = −√𝑞𝑖
  ;   𝑖 = 1, 2, 3} 

( 791 ) 

Substituting in the equation: 

𝑞3 − [𝛼2𝜅2 − (1 + 𝜇𝜓
2 + 𝜇𝜃

2)𝛿2]𝑞2

− 𝛿2{𝛼2[(𝜅2 − 1)𝜇𝜃
2 + 𝜇𝜓

2 ] + (𝜂𝜃
2 + 𝜂𝜑

2 ) − (𝜇𝜓
2 𝜇𝜃

2 + 𝜇𝜓
2 + 𝜇𝜃

2)𝛿2}𝑞

+ 𝛿2(𝛿2𝜇𝜓
2 − 𝜂𝜓

2 )(𝛿2𝜇𝜃
2 − 𝜂𝜃

2) = 0 ( 792 ) 

Rewriting the complete solution: 

𝑊(𝑧) =∑𝐶𝑖

6

𝑖=1

[

𝐾𝑏1𝐾𝑏2{𝑟𝑖
4 + [(𝜇𝜓

2 + 𝜇𝜃
2)𝛿2 − (𝜂𝜑

2 + 𝜂𝜃
2)]𝑟𝑖

2 + (𝛿2𝜇𝜓
2 − 𝜂𝜓

2 )(𝛿2𝜇𝜃
2 − 𝜂𝜃

2)}

−𝐻2𝐾𝑠1𝐾𝑏2𝑟𝑖[𝑟𝑖
2 + (𝛿2𝜇𝜃

2 − 𝜂𝜃
2)]

−𝐻2𝐾𝑠2𝐾𝑏1𝑟𝑖[𝑟𝑖
2 + (𝛿2𝜇𝜓

2 − 𝜂𝜓
2 )]

] 𝑒𝑟𝑖𝑧 

( 793 ) 

Substituting this complete equation in the boundary conditions, we obtain: 

 At the base (z=0): 

{
 
 
 
 

 
 
 
 ∅(0) = 0 →∑𝐶𝑖{𝑟𝑖

4 + [(𝜇𝜓
2 + 𝜇𝜃

2)𝛿2 − (𝜂𝜑
2 + 𝜂𝜃

2)]𝑟𝑖
2 + (𝛿2𝜇𝜓

2 − 𝜂𝜓
2 )(𝛿2𝜇𝜃

2 − 𝜂𝜃
2)}

6

𝑖=1

= 0

𝐻𝜆1(0) = 0 →∑𝐶𝑖

6

𝑖=1

𝑟𝑖[𝑟𝑖
2 + (𝛿2𝜇𝜃

2 − 𝜂𝜃
2)] = 0

𝐻𝜆2(0) = 0 →∑𝑟𝑖[𝑟𝑖
2 + (𝛿2𝜇𝜓

2 − 𝜂𝜓
2 )]

6

𝑖=1

= 0
}
 
 
 
 

 
 
 
 

 

( 794 ) 

 At the top (z=1): 

{
 
 
 
 
 

 
 
 
 
 
{

(𝐾𝑠1 + 𝐾𝑠2)∅(1)
′ −𝐾𝑠1𝐻𝜆1(1) −𝐾𝑠2𝐻𝜆2(1) = 0

→∑𝐶𝑖

6

𝑖=1

𝑟𝑖 {𝑟𝑖
4 − [𝛼2𝜅2− (𝜇𝜓

2 + 𝜇𝜃
2)𝛿2]𝑟𝑖

2 − 𝛿2{𝛼2[(𝜅2 − 1)𝜇𝜃
2 + 𝜇𝜓

2 ] − 𝜇𝜓
2 𝜇𝜃

2𝛿2}} 𝑒𝑟𝑖 = 0
}

𝐻𝜆(1)
′ = 0 →∑𝐶𝑖

6

𝑖=1

𝑟𝑖
2[𝑟𝑖

2 + (𝛿2𝜇𝜃
2 − 𝜂𝜃

2)]𝑒𝑟𝑖 = 0

𝐻𝜆(2)
′ = 0 →∑𝐶𝑖

6

𝑖=1

𝑟𝑖
2[𝑟𝑖

2 + (𝛿2𝜇𝜓
2 − 𝜂𝜓

2 )]𝑒𝑟𝑖 = 0
}
 
 
 
 
 

 
 
 
 
 

 

( 795 ) 

Defining: 
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{
 
 

 
 

𝑍1𝑖 = 𝑞𝑖
2 + [(𝜇𝜓

2 + 𝜇𝜃
2)𝛿2 − (𝜂𝜑

2 + 𝜂𝜃
2)]𝑞𝑖 + (𝛿

2𝜇𝜓
2 − 𝜂𝜓

2 )(𝛿2𝜇𝜃
2 − 𝜂𝜃

2)

𝑍2𝑖 = 𝑞𝑖
2 − [𝛼2𝜅2 − (𝜇𝜓

2 + 𝜇𝜃
2)𝛿2]𝑞𝑖 − 𝛿

2{𝛼2[(𝜅2 − 1)𝜇𝜃
2 + 𝜇𝜓

2 ] − 𝜇𝜓
2 𝜇𝜃

2𝛿2}

𝑂𝑖 = 𝑟𝑖
2 + (𝛿2𝜇𝜃

2 − 𝜂𝜃
2) = 𝑞𝑖 + (𝛿

2𝜇𝜃
2 − 𝜂𝜃

2)

𝐸𝑖 = 𝑟𝑖
2 + (𝛿2𝜇𝜓

2 − 𝜂𝜓
2 ) = 𝑞𝑖 + (𝛿

2𝜇𝜓
2 − 𝜂𝜓

2 )

; 𝑖 = 1, 2, 3   

}
 
 

 
 

 

( 796 ) 

The linear algebraic system resulting from developing the boundary conditions is written in the 

form of a matrix: 

[
 
 
 
 
 
 
 

𝑍11 −𝑍11 𝑍12 −𝑍12 𝑍13 −𝑍13

√𝑞1𝑂1 −√𝑞1𝑂1 √𝑞2𝑂2 −√𝑞2𝑂2 √𝑞3𝑂3 −√𝑞3𝑂3

√𝑞1𝐸1 −√𝑞1𝐸1 √𝑞2𝐸2 −√𝑞2𝐸2 √𝑞3𝐸3 −√𝑞3𝐸3

√𝑞1𝑍21𝑒√
𝑞1 −√𝑞1𝑍21𝑒

−√𝑞1 √𝑞2𝑍22𝑒√
𝑞2 −√𝑞2𝑍22𝑒

−√𝑞2 √𝑞3𝑍23𝑒
√𝑞3 −√𝑞3𝑍23𝑒

−√𝑞3

𝑞1𝑂1𝑒√
𝑞1 𝑞1𝑂1𝑒

−√𝑞1 𝑞2𝑂2𝑒√
𝑞2 𝑞2𝑂2𝑒

−√𝑞2 𝑞3𝑂3𝑒
√𝑞3 𝑞3𝑂3𝑒

−√𝑞3

𝑞1𝐸1𝑒√
𝑞1 𝑞1𝐸1𝑒

−√𝑞1 𝑞2𝐸2𝑒√
𝑞2 𝑞2𝐸2𝑒

−√𝑞2 𝑞3𝐸3𝑒
√𝑞3 𝑞3𝐸3𝑒

−√𝑞3 ]
 
 
 
 
 
 
 

{
 
 

 
 
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5
𝐶6}
 
 

 
 

=

{
 
 

 
 
0
0
0
0
0
0}
 
 

 
 

 

 ( 797 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). 

By some simple manipulations of the determinant in the equation, it can be written as: 

|

|

1 0 1 0 1 0

√𝑞1𝑂1/𝑍11 0 √𝑞2𝑂2/𝑍12 0 √𝑞3𝑂3/𝑍13 0

√𝑞1𝐸1/𝑍11 0 √𝑞2𝐸2/𝑍12 0 √𝑞3𝐸3/𝑍13 0

√𝑞1𝐶1𝑍21/𝑍11 √𝑞1𝑆1𝑍21 √𝑞2𝐶2𝑍22/𝑍12 √𝑞2𝑆2𝑍22 √𝑞3𝐶3𝑍23/𝑍13 √𝑞3𝑆3𝑍23
𝑞
1
𝐶1𝑂1/𝑍11 𝑞

1
𝑆1𝑂1 𝑞

2
𝐶2𝑂2/𝑍12 𝑞

2
𝑆2𝑂2 𝑞

3
𝐶3𝑂3/𝑍13 𝑞

3
𝑆3𝑂3

𝑞
1
𝐶1𝐸1/𝑍11 𝑞

1
𝑆1𝐸1 𝑞

2
𝐶2𝐸2/𝑍12 𝑞

2
𝑆2𝐸2 𝑞

3
𝐶3𝐸3/𝑍13 𝑞

3
𝑆3𝐸3

|

|

= 0 

( 798 ) 

Where: 

{
 
 
 
 

 
 
 
 
𝑠𝑖(𝑧) =

1

2
[𝑒√𝑞1𝑧 − 𝑒−√𝑞1𝑧] = {𝑠𝑖(𝑧) = {

sinh(√|𝑞𝑖|𝑧) ; 𝑞𝑖 > 0

sin (√|𝑞𝑖|𝑧) ; 𝑞𝑖 < 0
}}

𝑐𝑖(𝑧) =
1

2
[𝑒√𝑞1𝑧 + 𝑒−√𝑞1𝑧] = {𝑐𝑖(𝑧) = {

cosh (√|𝑞𝑖|𝑧) ; 𝑞𝑖 > 0

cos (√|𝑞𝑖|𝑧) ; 𝑞𝑖 < 0
}}

𝑠𝑖 = 𝑠𝑖(1)  ;   𝑐𝑖 = 𝑐𝑖(1) }
 
 
 
 

 
 
 
 

 

( 799 ) 

A further reduction in the equation: 
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||

𝑂2
𝑍12

−
𝑂1
𝑍12

𝐸2
𝐸1

𝑂3
𝑍13

−
𝑂1
𝑍13

𝐸3
𝐸1

𝐸2
𝑍12

−
𝐸1
𝑍12

𝑂2
𝑂1

𝐸3
𝑍13

−
𝐸1
𝑍13

𝑂3
𝑂1

|| = 0 

( 800 ) 

The determinant can be written in its simplest form: 

(
𝑂2
𝑍12

−
𝑂1
𝑍12

𝐸2
𝐸1
)(
𝐸3
𝑍13

−
𝐸1
𝑍13

𝑂3
𝑂1
) − (

𝐸2
𝑍12

−
𝐸1
𝑍12

𝑂2
𝑂1
) (
𝑂3
𝑍13

−
𝑂1
𝑍13

𝐸3
𝐸1
) = 0 

( 801 ) 

Rewriting the determinant as 𝐹(𝛿2): 

𝐹(𝛿2) =
𝑂2𝐸3
𝑍12𝑍13

(1 −
𝑂1
𝑂2

𝐸2
𝐸1
)(1 −

𝐸1
𝐸3

𝑂3
𝑂1
) −

𝑂3𝐸2
𝑍12𝑍13

(1 −
𝑂1
𝑂3

𝐸3
𝐸1
)(1 −

𝐸1
𝐸2

𝑂2
𝑂1
) = 0 

( 802 ) 

Solving this characteristic equation, solutions for 𝛿 are obtained by numerical methods and 

consequently the vibration periods are obtained. It is important to mention that in general 𝑞3tends 

to a large numerical value, so care must be taken to avoid numerical problems. 

𝑤 =
𝛿

𝐻
√
𝐾𝑠2
𝛾𝑢

→ 𝑇 =
2𝜋

𝑤
=
2𝜋𝐻

𝛿
√

𝛾𝑢
𝐾𝑠1 +𝐾𝑠2

 

( 803 ) 

4.2.7.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 

{
 
 
 
 
 
 

 
 
 
 
 
 

{
  
 

  
 
𝑢𝑖+1(0)

𝜓𝑖+1(0)

𝜃𝑖+1(0)

𝑀l𝑖+1(0)

𝑀r𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

=

{
 
 

 
 

𝑇𝑖(0) +

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

𝑚𝑖𝑤
2 0 0 0 0 0]

 
 
 
 
 

}
 
 

 
 

{
  
 

  
 
𝑢𝑖(0)

𝜓𝑖(0)

𝜃𝑖(0)

𝑀l𝑖(0)

𝑀r𝑖(0)

𝑉𝑖(0) }
  
 

  
 

{
  
 

  
 
𝑢𝑖+1(0)

𝜓𝑖+1(0)

𝜃𝑖+1(0)

𝑀l𝑖+1(0)

𝑀r𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

=

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

𝑚𝑖𝑤
2 0 0 0 0 1]

 
 
 
 
 

𝑇𝑖(0)

{
  
 

  
 
𝑢𝑖(0)

𝜓𝑖(0)

𝜃𝑖(0)

𝑀l𝑖(0)

𝑀r𝑖(0)

𝑉𝑖(0) }
  
 

  
 

}
 
 
 
 
 
 

 
 
 
 
 
 

 

( 804 ) 
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Rewriting: 

{
  
 

  
 
𝑢𝑖+1(0)

𝜓𝑖+1(0)

𝜃𝑖+1(0)

𝑀l𝑖+1(0)

𝑀r𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

= 𝑇𝑤𝑖(0)

{
  
 

  
 
𝑢𝑖(0)

𝜓𝑖(0)

𝜃𝑖(0)

𝑀l𝑖(0)

𝑀r𝑖(0)

𝑉𝑖(0) }
  
 

  
 

 

( 805 ) 

Where: 

𝑇𝑤𝑖(0) =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

𝑚𝑖𝑤
2 0 0 0 0 1]

 
 
 
 
 

𝑇𝑖(0) 

( 806 ) 

Expressing the equation for the nth floor between product symbols: 

{
  
 

  
 
𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)

𝑀l𝑛(0)

𝑀r𝑛(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑤𝑘(0)

{
  
 

  
 
𝑢1(ℎ1)

𝜓1(ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

𝑛

𝑘=1

= t

{
  
 

  
 
𝑢1(ℎ1)

𝜓1(ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

 

( 807 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 808 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 
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{
 
 
 

 
 
 

𝑢(1) = 0

𝜓(1) = 0

𝜃(1) = 0

𝜓(0)
′ = 0

𝜃(0)
′ = 0

(𝐾𝑠1 +𝐾𝑠2)𝑢(0)
′ − 𝐾𝑠1𝜓(0) −𝐾𝑠2𝜃(0) = 0}

 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝜓1(ℎ1) = 0

𝜃1(ℎ1) = 0
𝑀𝑙𝑛 (0) = 0

𝑀𝑟𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
  
 

  
 

 

( 809 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

 

( 810 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]{

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} 

( 811 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.8 Generalized Sandwich Beam of Three Field (GSB2) 

4.2.8.1 Case 1 

The potential energy and kinetic energy of the three-field GSB2 model are: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜃(𝑥,𝑡)

′ 2
+ 𝐾𝑠1[𝜃(𝑥,𝑡) −𝜓(𝑥,𝑡)]

2
+𝐾𝑏2𝜓(𝑥,𝑡)

′ 2
}

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠2[𝜓(𝑥,𝑡) − 𝑢(𝑥,𝑡)

′ ]
2

𝐻

0

𝑑𝑥

𝑇 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝜓�̇�(𝑥,𝑡)
2
+ 𝛾𝜃�̇�(𝑥,𝑡)

2
]

𝐻

0

𝑑𝑥

 

( 812 ) 

Where: 

{𝛾𝑢 = 𝜌(𝐴1 + 𝐴2);  𝛾𝜓 = 𝜌𝐼1;   𝛾𝜃 = 𝜌𝐼2} ( 813 ) 

Consequently, the total potential energy of the three-field beam GSB2 is expressed as: 

𝒰 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝜓�̇�(𝑥,𝑡)
2
+ 𝛾𝜃�̇�(𝑥,𝑡)

2
]

𝐻

0

𝑑𝑥

−
1

2
∫ {𝐾𝑏1𝜃(𝑥,𝑡)

′ 2
+𝐾𝑠1[𝜃(𝑥,𝑡) − 𝜓(𝑥,𝑡)]

2
+ 𝐾𝑏2𝜓(𝑥,𝑡)

′ 2
𝐻

0

+𝐾𝑠2[𝜓(𝑥,𝑡) − 𝑢(𝑥,𝑡)
′ ]

2
} 𝑑𝑥 

( 814 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) + 𝛾𝜓�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) + 𝛾𝜃�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) − 𝐾𝑏1𝜃(𝑥,𝑡)
′ 𝛿𝜃(𝑥,𝑡)

′
𝐻

0

− 𝐾𝑠1[𝜃(𝑥,𝑡) − 𝜓(𝑥,𝑡)]𝛿𝜃(𝑥,𝑡) + 𝐾𝑠1[𝜃(𝑥,𝑡) −𝜓(𝑥,𝑡)]𝛿𝜓(𝑥,𝑡) −𝐾𝑏2𝜓(𝑥,𝑡)
′ 𝛿𝜓(𝑥,𝑡)

′

− 𝐾𝑠2[𝜓(𝑥,𝑡) − 𝑢(𝑥,𝑡)
′ ]𝛿𝜓(𝑥,𝑡) +𝐾𝑠2[𝜓(𝑥,𝑡) − 𝑢(𝑥,𝑡)

′ ]𝛿𝑢(𝑥,𝑡)
′ }𝑑𝑥 ( 815 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 
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𝛿𝒰 = {𝛾𝑢�̇�(𝑥,𝑡) + 𝐾𝑠2[𝜓(𝑥,𝑡) − 𝑢(𝑥,𝑡)
′ ]}𝛿𝑢(𝑥,𝑡)0

𝐻
+ [𝛾𝜓�̇�(𝑥,𝑡) − 𝐾𝑏2𝜓(𝑥,𝑡)

′ ]𝛿𝜓(𝑥,𝑡)0
𝐻

+ [𝛾𝜃𝜃(𝑥,𝑡) −𝐾𝑏1𝜃(𝑥,𝑡)
′ ]𝛿𝜃(𝑥,𝑡)0

𝐻
−∫ {𝛾𝑢�̈�(𝑥,𝑡) + 𝐾𝑠2[𝜓(𝑥,𝑡)

′ − 𝑢(𝑥,𝑡)
′′ ]}𝛿𝑢(𝑥,𝑡)

𝐻

0

−∫ {𝛾𝜓�̈�(𝑥,𝑡) −𝐾𝑏2𝜓(𝑥,𝑡)
′′ +𝐾𝑠2[𝜓(𝑥,𝑡) − 𝑢(𝑥,𝑡)

′ ] − 𝐾𝑠1[𝜃(𝑥,𝑡) −𝜓(𝑥,𝑡)]}𝛿𝜓(𝑥,𝑡)

𝐻

0

−∫ {𝛾𝜃�̈�(𝑥,𝑡) −𝐾𝑏1𝜃(𝑥,𝑡)
′′ +𝐾𝑠1[𝜃(𝑥,𝑡) −𝜓(𝑥,𝑡)]}𝛿𝜃(𝑥,𝑡)

𝐻

0

 
( 816 ) 

Setting the terms equal to zero, the following equations result: 

{

𝛿𝑢(𝑥,𝑡):   𝛾𝑢�̈�(𝑥,𝑡) +𝐾𝑠2[𝜓(𝑥,𝑡)
′ − 𝑢(𝑥,𝑡)

′′ ] = 0

𝛿𝜃(𝑥,𝑡):   𝛾𝜃 �̈�(𝑥,𝑡) −𝐾𝑏1𝜃(𝑥,𝑡)
′′ +𝐾𝑠1[𝜃(𝑥,𝑡) −𝜓(𝑥,𝑡)] = 0

𝛿𝜓(𝑥,𝑡):   𝛾𝜓�̈�(𝑥,𝑡) − 𝐾𝑏2𝜓(𝑥,𝑡)
′′ + 𝐾𝑠2[𝜓(𝑥,𝑡) − 𝑢(𝑥,𝑡)

′ ] − 𝐾𝑠1[𝜃(𝑥,𝑡) −𝜓(𝑥,𝑡)] = 0

} 

( 817 ) 

And boundary conditions: 

{

𝛿𝑢(𝑥,𝑡): 𝜓(𝐻) − 𝑢(𝐻)
′ = 0

𝛿𝜃(𝑥,𝑡):   𝜃(𝐻)
′ = 0

𝛿𝜓(𝑥,𝑡):   𝜓(𝐻)
′ = 0

} 

( 818 ) 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

{

𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡)
𝜃(𝑥,𝑡) = 𝜆1(𝑥)𝑞(𝑡)
𝜓(𝑥,𝑡) = 𝜆2(𝑥)𝑞(𝑡)

} 

( 819 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting like terms, we get the following: 

{
 
 
 

 
 
 

�̈�(𝑡)

𝑞(𝑡)
+ {

𝐾𝑠2[𝜆2(𝑥)
′ − ∅(𝑥)

′′ ]

𝛾𝑢∅(𝑥)
} = 0

�̈�(𝑡)

𝑞(𝑡)
+ {

−𝐾𝑏1𝜆1(𝑥)
′′ + 𝐾𝑠1[𝜆1(𝑥) − 𝜆2(𝑥)]

𝛾𝜃𝜆1(𝑥)
} = 0

�̈�(𝑡)

𝑞(𝑡)
+ [
−𝐾𝑏2𝜆2(𝑥)

′′ −𝐾𝑠2∅(𝑥)
′ + (𝐾𝑠1 + 𝐾𝑠2)𝜆2(𝑥) −𝐾𝑠1𝜆1(𝑥)

𝛾𝜓𝜆2(𝑥)
] = 0

}
 
 
 

 
 
 

 

( 820 ) 
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Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{
 
 

 
 

�̈�(𝑡) +𝑤
2𝑞(𝑡) = 0

𝐾𝑠2[𝜆2(𝑥)
′ − ∅(𝑥)

′′ ] − 𝑤2𝛾𝑢∅(𝑥) = 0

−𝐾𝑏1𝜆1(𝑥)
′′ +𝐾𝑠1[𝜆1(𝑥) − 𝜆2(𝑥)] − 𝑤

2𝛾𝜃𝜆1(𝑥) = 0

−𝐾𝑏2𝜆2(𝑥)
′′ − 𝐾𝑠2∅(𝑥)

′ + (𝐾𝑠1 +𝐾𝑠2)𝜆2(𝑥) − 𝐾𝑠1𝜆1(𝑥) −𝑤
2𝛾𝜓𝜆2(𝑥) = 0}

 
 

 
 

 

( 821 ) 

The first equation is the same one that governs the behavior of an SDOF system with vibration 

frequency w. 

Using the method of differential operators for the solution of the system of equations: 

[

𝐾𝑠2𝐷
2 + 𝑤2𝛾𝑢 0 −𝐾𝑠2𝐷

0 𝐾𝑏1𝐷
2 + [𝑤2𝛾𝜃 − 𝐾𝑠1] 𝐾𝑠1

𝐾𝑠2𝐷 𝐾𝑠1 𝐾𝑏2𝐷
2 + [𝑤2𝛾𝜓 − (𝐾𝑠1 + 𝐾𝑠2)]

] {

∅(𝑥)
𝜆1(𝑥)
𝜆2(𝑥)

} = {
0
0
0
} 

( 822 ) 

i.e., 

∅(𝑥)
′′′′′′ − [

𝐾𝑠1(𝐾𝑏1 + 𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 +𝐾𝑠2(𝐾𝑏1𝛾𝜓 +𝐾𝑏2𝛾𝜃)

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2] ∅(𝑥)

′′′′

−𝑤2 {
𝐾𝑠1𝐾𝑠2(𝛾𝜓 + 𝛾𝜃) + (𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1 + 𝐾𝑠1𝐾𝑏1)𝛾𝑢

𝐾𝑏1𝐾𝑏2𝐾𝑠2

−
𝐾𝑏1𝛾𝑢𝛾𝜓 + 𝐾𝑏2𝛾𝑢𝛾𝜃 +𝐾𝑆2𝛾𝜓𝛾𝜃

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2} ∅(𝑥)

′′

+
𝛾𝑢𝑤

2[𝛾𝜓𝛾𝜃𝑤
4 − [(𝐾𝑠1 +𝐾𝑠2)𝛾𝜃 +𝐾𝑠1𝛾𝜓]𝑤

2 + 𝐾𝑠1𝐾𝑠2]

𝐾𝑏1𝐾𝑏2𝐾𝑠2
∅(𝑧) = 0 

( 823 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 
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∅(𝑧)
′′′′′′ − [

𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 +𝐾𝑠2(𝐾𝑏1𝛾𝜓 +𝐾𝑏2𝛾𝜃)

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2]𝐻2∅(𝑧)

′′′′

−𝑤2 {
𝐾𝑠1𝐾𝑠2(𝛾𝜓 + 𝛾𝜃) + (𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝛾𝑢

𝐾𝑏1𝐾𝑏2𝐾𝑠2

−
𝐾𝑏1𝛾𝑢𝛾𝜓 +𝐾𝑏2𝛾𝑢𝛾𝜃 + 𝐾𝑆2𝛾𝜓𝛾𝜃

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2}𝐻4∅(𝑧)

′′

+
𝛾𝑢𝑤

2{𝛾𝜓𝛾𝜃𝑤
4 − [(𝐾𝑠1 +𝐾𝑠2)𝛾𝜃 +𝐾𝑠1𝛾𝜓]𝑤

2 +𝐾𝑠1𝐾𝑠2}𝐻
6

𝐾𝑏1𝐾𝑏2𝐾𝑠2
∅(𝑧) = 0 

( 824 ) 

When the rotational inertias are ignored, it results: 

∅(𝑧)
′′′′′′ − [

𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−

1

𝐾𝑠2
𝛾𝑢𝑤

2]𝐻2∅(𝑧)
′′′′ − (

𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1
𝐾𝑏1𝐾𝑏2𝐾𝑠2

) 𝛾𝑢𝑤
2𝐻4∅(𝑧)

′′

+
𝐾𝑠1

𝐾𝑏1𝐾𝑏2
𝛾𝑢𝑤

2𝐻6∅(𝑧) = 0 
( 825 ) 

Or its equivalent: 

𝐾𝑏1𝐾𝑏2
𝐾𝑠1

∅(𝑧)
′′′′′′ − [(𝐾𝑏1 +𝐾𝑏2) −

𝐾𝑏1𝐾𝑏2
𝐾𝑠1𝐾𝑠2

𝛾𝑢𝑤
2]𝐻2∅(𝑧)

′′′′ − [
𝐾𝑏2
𝐾𝑠2

+ 𝐾𝑏1 (
1

𝐾𝑠1
+
1

𝐾𝑠2
)] 𝛾𝑢𝑤

2𝐻4∅(𝑧)
′′ + 𝛾𝑢𝑤

2𝐻6∅(𝑧) = 0 

 ( 826 ) 

This differential equation is identical to the differential equation proposed by Chesnais (2010) in 

his doctoral thesis. 

To solve the differential equation we consider the characteristic polynomial: 

𝑃(𝑟) = 𝑟
6 − {[

𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 + 𝐾𝑠2(𝐾𝑏1𝛾𝜓 +𝐾𝑏2𝛾𝜃)

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2]𝐻2} 𝑟4

− {{
𝐾𝑠1𝐾𝑠2(𝛾𝜓 + 𝛾𝜃) + (𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝛾𝑢

𝐾𝑏1𝐾𝑏2𝐾𝑠2

−
𝐾𝑏1𝛾𝑢𝛾𝜓 + 𝐾𝑏2𝛾𝑢𝛾𝜃 +𝐾𝑆2𝛾𝜓𝛾𝜃

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2}𝑤2𝐻4} 𝑟2

+ {
𝛾𝑢𝑤

2{𝛾𝜓𝛾𝜃𝑤
4 − [(𝐾𝑠1 + 𝐾𝑠2)𝛾𝜃 +𝐾𝑠1𝛾𝜓]𝑤

2 +𝐾𝑠1𝐾𝑠2}𝐻
6

𝐾𝑏1𝐾𝑏2𝐾𝑠2
} = 0 

( 827 ) 

We change the variable and denote: 
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𝑞𝑖 = 𝑟𝑖
2 → {

𝑟2𝑖−1 = √𝑞𝑖

𝑟2𝑖 = −√𝑞𝑖
  ;   𝑖 = 1, 2, 3} 

( 828 ) 

We rewrite the characteristic polynomial: 

𝑃(𝑟) = 𝑞
3 − {[

𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 + 𝐾𝑠2(𝐾𝑏1𝛾𝜓 +𝐾𝑏2𝛾𝜃)

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2]𝐻2}𝑞2

− {{
𝐾𝑠1𝐾𝑠2(𝛾𝜓 + 𝛾𝜃) + (𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝛾𝑢

𝐾𝑏1𝐾𝑏2𝐾𝑠2

−
𝐾𝑏1𝛾𝑢𝛾𝜓 + 𝐾𝑏2𝛾𝑢𝛾𝜃 +𝐾𝑆2𝛾𝜓𝛾𝜃

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2}𝑤2𝐻4} 𝑞

+ {
𝛾𝑢𝑤

2{𝛾𝜓𝛾𝜃𝑤
4 − [(𝐾𝑠1 + 𝐾𝑠2)𝛾𝜃 +𝐾𝑠1𝛾𝜓]𝑤

2 +𝐾𝑠1𝐾𝑠2}𝐻
6

𝐾𝑏1𝐾𝑏2𝐾𝑠2
} = 0 

( 829 ) 

This equation will have three real and unequal roots in q, if: 

𝑎3

27
+
𝑏2

4
< 0 

( 830 ) 

Where: 

𝑎 = −
1

3
[3 {{

𝐾𝑠1𝐾𝑠2(𝛾𝜓 + 𝛾𝜃) + (𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝛾𝑢

𝐾𝑏1𝐾𝑏2𝐾𝑠2
−
𝐾𝑏1𝛾𝑢𝛾𝜓 +𝐾𝑏2𝛾𝑢𝛾𝜃 +𝐾𝑆2𝛾𝜓𝛾𝜃

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2}𝑤2𝐻4}

+ {[
𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 + 𝐾𝑠2(𝐾𝑏1𝛾𝜓 +𝐾𝑏2𝛾𝜃)

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2]𝐻2}

2

] 

𝑏

= −
1

27
{2{[

𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 +𝐾𝑠2(𝐾𝑏1𝛾𝜓 +𝐾𝑏2𝛾𝜃)

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2]𝐻2}

3

+ 9{[
𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2

−
𝐾𝑏1𝐾𝑏2𝛾𝑢 +𝐾𝑠2(𝐾𝑏1𝛾𝜓 +𝐾𝑏2𝛾𝜃)

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2]𝐻2}{{

𝐾𝑠1𝐾𝑠2(𝛾𝜓 + 𝛾𝜃) + (𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝛾𝑢
𝐾𝑏1𝐾𝑏2𝐾𝑠2

−
𝐾𝑏1𝛾𝑢𝛾𝜓 +𝐾𝑏2𝛾𝑢𝛾𝜃 +𝐾𝑆2𝛾𝜓𝛾𝜃

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2}𝑤2𝐻4}

− 27{
𝛾𝑢𝑤

2{𝛾𝜓𝛾𝜃𝑤
4 − [(𝐾𝑠1 +𝐾𝑠2)𝛾𝜃 +𝐾𝑠1𝛾𝜓]𝑤

2 + 𝐾𝑠1𝐾𝑠2}𝐻
6

𝐾𝑏1𝐾𝑏2𝐾𝑠2
}} 

( 831 ) 
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Two cases are presented: 

 Case 1: When the polynomial has two positive real roots and one negative real root. 

 Case 2: When the polynomial has a positive real root and two negative real roots. 

We define 𝑞𝑖 in such a way that: 

𝑞1 < 𝑞2 < 𝑞3 ( 832 ) 

In such a way that 𝑞1 < 0, 𝑞3 > 0 and 𝑞2 > 0. 

The roots of the equation are calculated as: 

{
 
 

 
 𝑞𝑖 = 2√−

𝑎

3
cos (

∅

3
+
2𝜋𝑖

3
) +

𝜋1 + 𝜋1𝜋2 − 𝛿
2𝜋3

3
  ;   𝑖 = 1, 2, 3

∅ = arccos (
3𝑏

2𝑎
√−

3

𝑎
)

}
 
 

 
 

 

( 833 ) 

 Frequency and Periods of Vibration 

Normalizing by the variable 𝑧 = 𝑥/𝐻 the two coupled differential equations: 

{

𝐾𝑠2[𝐻𝜆2(𝑧)
′ − ∅(𝑧)

′′ ] − 𝐻2𝑤2𝛾𝑢∅(𝑧) = 0

−𝐾𝑏1𝜆1(𝑧)
′′ + 𝐻2𝐾𝑠1[𝜆1(𝑧) − 𝜆2(𝑧)] − 𝐻

2𝑤2𝛾𝜃𝜆1(𝑧) = 0

−𝐾𝑏2𝐻𝜆2(𝑧)
′′ −𝐻2𝐾𝑠2∅(𝑧)

′ + 𝐻2(𝐾𝑠1 +𝐾𝑠2)𝐻𝜆2(𝑧) −𝐻
2𝐾𝑠1𝐻𝜆1(𝑧) −𝐻

2𝑤2𝛾𝜓𝐻𝜆2(𝑧) = 0

} 

( 834 ) 

The solution will be of the form: 

𝑊(𝑧) = {

∅(𝑧)
𝐻𝜆1(𝑧)
𝐻𝜆2(𝑧)

} = {

𝜂1
𝜂2
𝜂3
} 𝑒𝑟𝑧  

( 835 ) 

Substituting the equation in the equation, two homogeneous equations are obtained which, written 

in matrix form, result in: 

[

𝐾𝑠2𝑟
2 + 𝐻2𝑤2𝛾

𝑢
0 −𝐾𝑠2𝑟

0 𝐾𝑏1𝑟
2 + 𝐻2[𝑤2𝛾

𝜃
− 𝐾𝑠1] 𝐻2𝐾𝑠1

𝐻2𝐾𝑠2𝑟 𝐻2𝐾𝑠1 𝐾𝑏2𝑟
2 + [𝑤2𝛾

𝜓
− 𝐻2(𝐾𝑠1 + 𝐾𝑠2)]

] {

𝜂
1
𝜂
2
𝜂
3

} = {
0

0

0

} 
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 ( 836 ) 

To avoid trivial solutions, the determinant must be equal to zero, that is: 

𝑃(𝑟) = 𝑟
6 − {[

𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 + 𝐾𝑠2(𝐾𝑏1𝛾𝜓 +𝐾𝑏2𝛾𝜃)

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2]𝐻2} 𝑟4

− {{
𝐾𝑠1𝐾𝑠2(𝛾𝜓 + 𝛾𝜃) + (𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝛾𝑢

𝐾𝑏1𝐾𝑏2𝐾𝑠2

−
𝐾𝑏1𝛾𝑢𝛾𝜓 + 𝐾𝑏2𝛾𝑢𝛾𝜃 +𝐾𝑆2𝛾𝜓𝛾𝜃

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2}𝑤2𝐻4} 𝑟2

+ {
𝛾𝑢𝑤

2{𝛾𝜓𝛾𝜃𝑤
4 − [(𝐾𝑠1 + 𝐾𝑠2)𝛾𝜃 +𝐾𝑠1𝛾𝜓]𝑤

2 +𝐾𝑠1𝐾𝑠2}𝐻
6

𝐾𝑏1𝐾𝑏2𝐾𝑠2
} = 0 

( 837 ) 

For all roots, the equation implies: 

{

𝜂1
𝜂2
𝜂3
} =

[
 
 
 
 
 
 𝑟𝑖 (𝑟𝑖

2 −
𝐾𝑠1
𝐾𝑏1

𝐻2)

𝑟𝑖
2 +

𝐻2𝑤2𝛾𝑢
𝐾𝑠2

𝑟𝑖
4 + (

𝐻2𝑤2𝛾𝑢
𝐾𝑠2

−
𝐾𝑠1𝐻

2

𝐾𝑏1
) 𝑟𝑖

2 −
𝐾𝑠1𝐻

2𝑤2𝛾𝑢
𝐾𝑏1𝐾𝑠2 ]

 
 
 
 
 
 

𝐶  ;   𝑖 = 1, 2, … , 6 

( 838 ) 

Where C is an arbitrary constant. We change the variable and denote: 

𝑞𝑖 = 𝑟𝑖
2 → {

𝑟2𝑖−1 = √𝑞𝑖

𝑟2𝑖 = −√𝑞𝑖
  ;   𝑖 = 1, 2, 3} 

( 839 ) 

Substituting in the equation: 
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𝑞3 − {[
𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 +𝐾𝑠2(𝐾𝑏1𝛾𝜓 + 𝐾𝑏2𝛾𝜃)

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2]𝐻2} 𝑞2

− {{
𝐾𝑠1𝐾𝑠2(𝛾𝜓 + 𝛾𝜃) + (𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝛾𝑢

𝐾𝑏1𝐾𝑏2𝐾𝑠2

−
𝐾𝑏1𝛾𝑢𝛾𝜓 + 𝐾𝑏2𝛾𝑢𝛾𝜃 +𝐾𝑆2𝛾𝜓𝛾𝜃

𝐾𝑏1𝐾𝑏2𝐾𝑠2
𝑤2}𝑤2𝐻4} 𝑞

+ {
𝛾𝑢𝑤

2{𝛾𝜓𝛾𝜃𝑤
4 − [(𝐾𝑠1 + 𝐾𝑠2)𝛾𝜃 +𝐾𝑠1𝛾𝜓]𝑤

2 +𝐾𝑠1𝐾𝑠2}𝐻
6

𝐾𝑏1𝐾𝑏2𝐾𝑠2
} = 0 

( 840 ) 

It was shown that the roots are always real for the given intervals in the equation. 

Rewriting the complete solution: 

𝑊(𝑧) = {

∅(𝑧)
𝐻𝜆1(𝑧)
𝐻𝜆2(𝑧)

} = {

𝜂1
𝜂2
𝜂3
} 𝑒𝑟𝑧 =∑𝐶𝑖

6

𝑖=1

[
 
 
 
 
 
 𝑟𝑖 (𝑟𝑖

2 −
𝐾𝑠1
𝐾𝑏1

𝐻2)

𝑟𝑖
2 +

𝐻2𝑤2𝛾𝑢
𝐾𝑠2

𝑟𝑖
4 + (

𝐻2𝑤2𝛾𝑢
𝐾𝑠2

−
𝐾𝑠1𝐻

2

𝐾𝑏1
)𝑟𝑖

2 −
𝐾𝑠1𝐻

2𝑤2𝛾𝑢
𝐾𝑏1𝐾𝑠2 ]

 
 
 
 
 
 

𝑒𝑟𝑖𝑧 

( 841 ) 

Substituting this complete equation in the boundary conditions, we obtain: 

 At the base (z=0): 

{
 
 
 
 

 
 
 
 

∅(0) = 0 →∑𝐶𝑖

6

𝑖=1

𝑟𝑖(𝑟𝑖
2 − 𝜂𝜃

2) = 0

𝐻𝜆1(0) = 0 →∑𝐶𝑖

6

𝑖=1

(𝑟𝑖
2 + 𝛿2) = 0

𝐻𝜆2(0) = 0 →∑𝐶𝑖[𝑟𝑖
4 − (𝛿2 − 𝜂𝜃

2)𝑟𝑖
2 − 𝜂𝜃

2𝛿2]

6

𝑖=1

= 0
}
 
 
 
 

 
 
 
 

 

( 842 ) 

 At the top (z=1): 
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{
 
 
 
 

 
 
 
 

𝐻𝜆2(1) − ∅(1)
′ = 0 →∑𝐶𝑖

6

𝑖=1

(𝑟𝑖
2 − 𝜂𝜃

2)𝑒𝑟𝑖 = 0

𝐻𝜆(1)
′ = 0 →∑𝐶𝑖

6

𝑖=1

𝑟𝑖(𝑟𝑖
2 + 𝛿2) = 0

𝐻𝜆(2)
′ = 0 →∑𝐶𝑖

6

𝑖=1

𝑟𝑖[𝑟𝑖
4 − (𝛿2 − 𝜂𝜃

2)𝑟𝑖
2 − 𝜂𝜃

2𝛿2]𝑒𝑟𝑖 = 0
}
 
 
 
 

 
 
 
 

 

( 843 ) 

Defining: 

   {

𝑍𝑖 = 𝑟𝑖
2 − 𝜂𝜃

2 = 𝑞𝑖 − 𝜂𝜃
2

𝑂𝑖 = 𝑟𝑖
2 + 𝛿2 = 𝑞𝑖 + 𝛿

2

𝐸𝑖 = 𝑟𝑖
4 − (𝛿2 − 𝜂𝜃

2)𝑟𝑖
2 − 𝜂𝜃

2𝛿2 = 𝑞𝑖
2 − (𝛿2 − 𝜂𝜃

2)𝑞𝑖 − 𝜂𝜃
2𝛿2

; 𝑖 = 1, 2, 3   } 

( 844 ) 

The linear algebraic system resulting from developing the boundary conditions is written in the 

form of a matrix: 

[
 
 
 
 
 
 
 √𝑞1𝑍1 −√𝑞1𝑍1 √𝑞2𝑍2 −√𝑞2𝑍2 √𝑞3𝑍3 −√𝑞3𝑍3
𝑂1 𝑂1 𝑂2 𝑂2 𝑂3 𝑂3
𝐸1 𝐸1 𝐸2 𝐸2 𝐸3 𝐸3

𝑍1𝑒√
𝑞1 𝑍1𝑒

−√𝑞1 𝑍2𝑒√
𝑞2 𝑍2𝑒

−√𝑞2 𝑍3𝑒
√𝑞3 𝑍3𝑒

−√𝑞3

√𝑞1𝑂1 −√𝑞1𝑂1 √𝑞2𝑂2 −√𝑞2𝑂2 √𝑞3𝑂3 −√𝑞3𝑂3

√𝑞1𝐸1 −√𝑞1𝐸1 √𝑞2𝐸2 −√𝑞2𝐸2 √𝑞3𝐸3 −√𝑞3𝐸3]
 
 
 
 
 
 
 

{
 
 

 
 
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5
𝐶6}
 
 

 
 

=

{
 
 

 
 
0
0
0
0
0
0}
 
 

 
 

 

( 845 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). 

By some simple manipulations of the determinant in the equation, it can be written as: 

|

|

1 0 1 0 1 0
0 𝑂1/𝑍1 0 𝑂2/𝑍2 0 𝑂3/𝑍3
0 𝐸1/𝑍1 0 𝐸2/𝑍2 0 𝐸3/𝑍3
𝑆1 𝐶1 𝑆2 𝐶2 𝑆3 𝐶3

𝑂1/𝑍1 0 𝑂2/𝑍2 0 𝑂3/𝑍3 0
𝐸1/𝑍1 0 𝐸2/𝑍2 0 𝐸3/𝑍3 0

|

|
= 0 

( 846 ) 

Where: 
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{
 
 
 
 
 

 
 
 
 
 

𝑠𝑖(𝑧) =
1

2√𝑞𝑖
[𝑒√𝑞1𝑧 − 𝑒−√𝑞1𝑧] =

{
 
 

 
 

𝑠𝑖(𝑧) =

{
 
 

 
 

1

√|𝑞𝑖|
sinh(√|𝑞𝑖|𝑧) ; 𝑞𝑖 > 0

1

√|𝑞𝑖|
sin (√|𝑞𝑖|𝑧) ; 𝑞𝑖 < 0

}
 
 

 
 

}
 
 

 
 

𝑐𝑖(𝑧) =
1

2
[𝑒√𝑞1𝑧 + 𝑒−√𝑞1𝑧] = {𝑐𝑖(𝑧) = {

cosh (√|𝑞𝑖|𝑧) ; 𝑞𝑖 > 0

cos (√|𝑞𝑖|𝑧) ; ; 𝑞𝑖 < 0
}}

𝑠𝑖 = 𝑠𝑖(1)  ;   𝑐𝑖 = 𝑐𝑖(1) }
 
 
 
 
 

 
 
 
 
 

 

( 847 ) 

A further reduction in the equation: 

||

𝑂2
𝑍2
−
𝑂1
𝑍1

𝑂3
𝑍3
−
𝑂1
𝑍1

𝐸2
𝑍2
−
𝐸1
𝑍1

𝐸3
𝑍3
−
𝐸1
𝑍1

|| = 0 

( 848 ) 

The determinant can be written in its simplest form: 

(
𝑂2
𝑍2
−
𝑂1
𝑍1
) (
𝐸3
𝑍3
−
𝐸1
𝑍1
) − (

𝑂3
𝑍3
−
𝑂1
𝑍1
) (
𝐸2
𝑍2
−
𝐸1
𝑍1
) = 0 

( 849 ) 

Rewriting the determinant as 𝐹(𝛿2): 

𝐹(𝛿2) = (
𝑂2
𝑍2
−
𝑂1
𝑍1
) (
𝐸3
𝑍3
−
𝐸1
𝑍1
) − (

𝑂3
𝑍3
−
𝑂1
𝑍1
) (
𝐸2
𝑍2
−
𝐸1
𝑍1
) = 0 

( 850 ) 

Solving this characteristic equation, solutions for 𝛿 are obtained by numerical methods and 

consequently the vibration periods are obtained. It is important to mention that in general 𝑞3 tends 

to a large numerical value, so care must be taken to avoid numerical problems. 

𝑤 =
𝛿

𝐻
√
𝐾𝑠2
𝛾𝑢

→ 𝑇 =
2𝜋

𝑤
=
2𝜋𝐻

𝛿
√
𝛾𝑢
𝐾𝑠2

 

( 851 ) 

4.2.8.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 
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{
 
 
 
 
 
 

 
 
 
 
 
 

{
  
 

  
 
𝑢𝑖+1(0)

𝜃𝑖+1(0)

𝜓𝑖+1(0)

𝑀l𝑖+1(0)

𝑀r𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

=

{
 
 

 
 

𝑇𝑖(0) +

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

𝑚𝑖𝑤
2 0 0 0 0 0]

 
 
 
 
 

}
 
 

 
 

{
  
 

  
 
𝑢𝑖(0)

𝜃𝑖(0)

𝜓𝑖(0)

𝑀l𝑖(0)

𝑀r𝑖(0)

𝑉𝑖(0) }
  
 

  
 

{
  
 

  
 
𝑢𝑖+1(0)

𝜃𝑖+1(0)

𝜓𝑖+1(0)

𝑀l𝑖+1(0)

𝑀r𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

=

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

𝑚𝑖𝑤
2 0 0 0 0 1]

 
 
 
 
 

𝑇𝑖(0)

{
  
 

  
 
𝑢𝑖(0)

𝜃𝑖(0)

𝜓𝑖(0)

𝑀l𝑖(0)

𝑀r𝑖(0)

𝑉𝑖(0) }
  
 

  
 

}
 
 
 
 
 
 

 
 
 
 
 
 

 

( 852 ) 

Rewriting: 

{
  
 

  
 
𝑢𝑖+1(0)

𝜃𝑖+1(0)

𝜓𝑖+1(0)

𝑀l𝑖+1(0)

𝑀r𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

= 𝑇𝑤𝑖(0)

{
  
 

  
 
𝑢𝑖(0)

𝜃𝑖(0)

𝜓𝑖(0)

𝑀l𝑖(0)

𝑀r𝑖(0)

𝑉𝑖(0) }
  
 

  
 

 

( 853 ) 

Where: 

𝑇𝑤𝑖(0) =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

𝑚𝑖𝑤
2 0 0 0 0 1]

 
 
 
 
 

𝑇𝑖(0) 

( 854 ) 

Expressing the equation for the nth floor between product symbols: 

{
  
 

  
 
𝑢𝑛(0)

𝜃𝑛(0)

𝜓𝑛(0)

𝑀l𝑛(0)

𝑀r𝑛(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑤𝑘(0)

{
  
 

  
 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝜓1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

𝑛

𝑘=1

= t

{
  
 

  
 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝜓1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

 

( 855 ) 

Where: 
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t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 856 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝜃(1) = 0

𝜓(1) = 0

𝜃(0)
′ = 0

𝜓(0)
′ = 0

𝜓(0) − 𝑢(0)
′ = 0}

 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝜃1(ℎ1) = 0

𝜓1(ℎ1) = 0
𝑀𝑙𝑛 (0) = 0

𝑀𝑟𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
  
 

  
 

 

( 857 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

 

( 858 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]{

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} 

( 859 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.9 Modified Generalized Sandwich Beam of Two Field (MGSB) 

4.2.9.1 Case 1 

The differential equation according to the beam TB is: 

∅(𝑧)
′′′′ + [𝛿2 (

1

𝛼2
+ 𝜇2)]∅(𝑧)

′′ + [𝛿2(
𝜇2

𝛼2
𝛿2 − 1)]∅(𝑧) = 0 

( 860 ) 

Where: 

{𝛼 = 𝐻√
𝐾𝑠
𝐾𝑏
, 𝜇 =

1

𝐻
√
𝜌𝐼

𝜌𝐴
, 𝛿 = √

𝜌𝐴𝐻4

𝐾𝑏
𝑤2} 

( 861 ) 

The roots of the equation are calculated as: 

𝑞1,2 =

−[𝛿2 (
1
𝛼2
+ 𝜇2)] ± √[𝛿2 (

1
𝛼2
+ 𝜇2)]

2

− 4 [𝛿2 (
𝜇2

𝛼2
𝛿2 − 1)]

2
 

( 862 ) 

 Case 1: When the polynomial has a positive real root and a negative real root. 

{
𝑞2
∗ − 𝑞1

∗ = 𝛿2 (
1

𝛼2
+ 𝜇2)

𝑞2
∗𝑞1

∗ = 𝛿2 −
𝜇2

𝛼2
𝛿4

} → (𝑞2
∗ − 𝑞1

∗) {[−
𝛼2𝜇2

(1 + 𝛼2𝜇2)2
] (𝑞2

∗ − 𝑞1
∗) +

𝛼2

1 + 𝛼2𝜇2
} − 𝑞2

∗𝑞1
∗ = 0 

( 863 ) 

Where: 

{
𝑞1 = 𝑞1

∗

𝑞2 = −𝑞2
∗} 

( 864 ) 

 Case 2: When the polynomial has two negative real roots. 

{
𝑞2
∗ + 𝑞1

∗ = 𝛿2 (
1

𝛼2
+ 𝜇2)

𝑞2
∗𝑞1

∗ = −𝛿2 +
𝜇2

𝛼2
𝛿4

} → (𝑞1
∗ + 𝑞2

∗) {[
𝛼2𝜇2

(1 + 𝛼2𝜇2)2
] (𝑞1

∗ + 𝑞2
∗) −

𝛼2

1 + 𝛼2𝜇2
} − 𝑞1

∗𝑞2
∗ = 0 

( 865 ) 

Where: 
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{
𝑞
1
= −𝑞

1
∗

𝑞
2
= −𝑞

2
∗} 

( 866 ) 

4.2.9.2 Case 2 

The relationship between the forces and displacements of the upper part and the base of the beam, 

according to the beam TB, is: 

{
 

 
𝑢𝑖+1(0)

𝜃𝑖+1(0)

𝑀𝑖+1(0)

𝑉𝑖+1(0)}
 

 
= 𝑇𝑤𝑖(0)

{
 

 
𝑢𝑖(0)

𝜃𝑖(0)

𝑀𝑖(0)

𝑉𝑖(0)}
 

 
 

( 867 ) 

Where: 

𝑇𝑤𝑖(0) = [

1 0 0 0

0 1 0 0

0 0 1 0

𝑚𝑖𝑤
2 0 0 0

] 𝑇𝑖(0) 

( 868 ) 

Expressing the equation for the nth floor between product symbols: 

{
 

 
𝑢𝑛(0)

𝜃𝑛(0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑤𝑘(0)

{
 

 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 𝑛

𝑘=1

= t

{
 

 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 869 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 870 ) 

Replacing: 

{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 871 ) 

Solving for the bending moment and shear force at the base of the model: 
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{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 872 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.10 Parallel Coupling of Shear Beam and Timoshenko Beam of Two Field 
(MCTB) 

4.2.10.1 Case 1 

The potential energy and kinetic energy of the two-field MCTB model: 

𝑉 =
1

2
∫ {𝐾𝑠1𝑢(𝑥)

′ 2
+𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝐻

0

𝑑𝑥,

𝑇 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝜃 �̇�(𝑥,𝑡)
2
]

𝐻

0

𝑑𝑥

 

( 873 ) 

Where: 

{𝛾𝑢 = 𝜌(𝐴1 + 𝐴2); 𝛾𝜃 = 𝜌(𝐼1 + 𝐼2)} ( 874 ) 

Consequently, the total potential energy of the two-field beam MCTB is expressed as: 

𝒰 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝜃 �̇�(𝑥,𝑡)
2
]

𝐻

0

𝑑𝑥 −
1

2
∫ {𝐾𝑠1𝑢(𝑥)

′ 2
+𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 
( 875 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) + 𝛾𝜃�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) −𝐾𝑠1𝑢(𝑥,𝑡)
′ 𝛿𝑢(𝑥,𝑡)

′ −𝐾𝑏2𝜃(𝑥,𝑡)
′ 𝛿𝜃(𝑥,𝑡)

′
𝐻

0

− 𝐾𝑠2[𝑢(𝑥,𝑡)
′ − 𝜃(𝑥,𝑡)]𝛿𝑢(𝑥,𝑡)

′ + 𝐾𝑠2[𝑢(𝑥,𝑡)
′ − 𝜃(𝑥,𝑡)]𝛿𝜃(𝑥,𝑡)}𝑑𝑥 ( 876 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = {[𝛾𝑢�̇�(𝑥,𝑡) − (𝐾𝑠1 +𝐾𝑠2)𝑢(𝑥,𝑡)
′ +𝐾𝑠2𝜃(𝑥,𝑡)]𝛿𝑢(𝑥,𝑡)}

0

𝐻
+ [𝛾𝜃𝜃(𝑥,𝑡) −𝐾𝑏2𝜃(𝑥,𝑡)

′ ]𝛿𝜃(𝑥,𝑡)0
𝐻

−∫ {𝛾𝑢�̈�(𝑥,𝑡) − (𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥,𝑡)
′′ + 𝐾𝑠2𝜃(𝑥,𝑡)

′ }𝛿𝑢(𝑥,𝑡)

𝐻

0

−∫ {𝛾𝜃 �̈�(𝑥,𝑡) −𝐾𝑏2𝜃(𝑥,𝑡)
′′ − 𝐾𝑠2[𝑢(𝑥,𝑡)

′ − 𝜃(𝑥,𝑡)]}𝛿𝜃(𝑥,𝑡)

𝐻

0

 
( 877 ) 

Setting the terms equal to zero, the following equations result: 
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{
 𝛾
𝑢
�̈�(𝑥,𝑡) − (𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥,𝑡)

′′ + 𝐾𝑠2𝜃(𝑥,𝑡)
′ = 0

𝛾
𝜃
�̈�(𝑥,𝑡) − 𝐾𝑏2𝜃(𝑥,𝑡)

′′ − 𝐾𝑠2[𝑢(𝑥,𝑡)
′ − 𝜃(𝑥,𝑡)] = 0

} 
( 878 ) 

And boundary conditions: 

{
(𝐾𝑠1 + 𝐾𝑠2)𝑢(𝐻)

′ − 𝐾𝑠2𝜃(𝐻) = 0

𝛿𝜃(𝑥,𝑡):   𝜃(𝐻)
′ = 0

} 

( 879 ) 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

{
𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡)
𝜃(𝑥,𝑡) = 𝜆(𝑥)𝑞(𝑡)

} 
( 880 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting like terms, we get the following: 

{
 
 

 
 
�̈�
(𝑡)

𝑞
(𝑡)

+ [
−(𝐾𝑠1 + 𝐾𝑠2)∅(𝑥)

′′ + 𝐾𝑠2𝜆(𝑥)
′

𝛾
𝑢
∅(𝑥)

] = 0

�̈�
(𝑡)

𝑞
(𝑡)

+ [
−𝐾𝑏2𝜆(𝑥)

′′ − 𝐾𝑠2∅(𝑥)
′ + 𝐾𝑠2𝜆(𝑥)

𝛾
𝜃
𝜆(𝑥)

] = 0
}
 
 

 
 

 

( 881 ) 

Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{

�̈�
(𝑡)
+ 𝑤2𝑞

(𝑡)
= 0

(𝐾𝑠1 + 𝐾𝑠2)∅(𝑥)
′′ − 𝐾𝑠2𝜆(𝑥)

′ + 𝑤2𝛾
𝑢
∅(𝑥) = 0

𝐾𝑏2𝜆(𝑥)
′′ + 𝐾𝑠2∅(𝑥)

′ − 𝐾𝑠2𝜆(𝑥) + 𝑤
2𝛾
𝜃
𝜆(𝑥) = 0

} 

( 882 ) 

The first equation is the same one that governs the behavior of an SDOF system with vibration 

frequency w. 

Using the parameter variation method for the solution of the system of equations: 
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[
(𝐾𝑠1 +𝐾𝑠2)𝐷

2 + 𝑤2𝛾𝑢 −𝐾𝑠2𝐷

𝐾𝑠2𝐷 𝐾𝑏2𝐷
2 + (𝑤2𝛾𝜃 −𝐾𝑠2)

] {
∅(𝑥)
𝜆(𝑥)

} = {
0
0
} 

( 883 ) 

i.e., 

∅(𝑥)
′′′′ − [

𝐾𝑠1𝐾𝑠2
𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

−
𝐾𝑏2𝛾𝑢 + 𝛾𝜃(𝐾𝑠1 + 𝐾𝑠2)

𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑤2] ∅(𝑥)

′′ +
𝛾𝑢𝑤

2(𝑤2𝛾𝜃 −𝐾𝑠2)

𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
∅(𝑧) = 0 

( 884 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

∅(𝑧)
′′′′ − [

𝐾𝑠1𝐾𝑠2
𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

−
𝐾𝑏2𝛾𝑢 + (𝐾𝑠1 + 𝐾𝑠2)𝛾𝜃

𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑤2]𝐻2∅(𝑧)

′′ +
𝛾𝑢𝑤

2(𝑤2𝛾𝜃 − 𝐾𝑠2)𝐻
4

𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
∅(𝑧) = 0 

( 885 ) 

The equation can be rewritten as: 

∅(𝑧)
′′′′ − [𝛼2𝜅2 − (1 + 𝜇)𝛿2]∅(𝑧)

′′ − 𝛿2[𝛼2(𝜅2 + 1) − 𝜇2𝛿2]∅(𝑧) = 0 ( 886 ) 

Where: 

{𝛼 = 𝐻√
𝐾𝑠2
2

𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
 , 𝜅 = √

𝐾𝑠1
𝐾𝑠2

, 𝜇 = √
𝐾𝑠1 + 𝐾𝑠2
𝐾𝑏2

.
𝛾𝜃
𝛾𝑢
, 𝛿 = √

𝛾𝑢𝐻
2

𝐾𝑠1 + 𝐾𝑠2
𝑤2} 

( 887 ) 

The differential equation obtained can be easily solved with the procedures presented in the 

previous subchapters. 

4.2.10.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 

{
 

 
𝑢𝑖+1(0)

𝜃𝑖+1(0)

𝑀i+1(0)

𝑉𝑖+1(0)}
 

 
= {𝑇𝑖(0) + [

0 0 0 0

0 0 0 0

0 0 0 0

𝑚𝑖𝑤
2 0 0 0

]}

{
 

 
𝑢𝑖(0)

𝜃𝑖(0)

𝑀i(0)

𝑉𝑖(0)}
 

 
= [

1 0 0 0

0 1 0 0

0 0 1 0

𝑚𝑖𝑤
2 0 0 1

] 𝑇𝑖(0)

{
 

 
𝑢𝑖(0)

𝜃𝑖(0)

𝑀i(0)

𝑉𝑖(0)}
 

 
 

( 888 ) 

Rewriting: 
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{
 

 
𝑢𝑖+1(0)

𝜃𝑖+1(0)

𝑀i+1(0)

𝑉𝑖+1(0)}
 

 
= 𝑇𝑤𝑖(0)

{
 

 
𝑢𝑖(0)

𝜃𝑖(0)

𝑀i(0)

𝑉𝑖(0)}
 

 
 

( 889 ) 

Where: 

𝑇𝑤𝑖(0) = [

1 0 0 0

0 1 0 0

0 0 1 0

𝑚𝑖𝑤
2 0 0 1

] 𝑇𝑖(0) 

( 890 ) 

Expressing the equation for the nth floor between product symbols: 

{
 

 
𝑢𝑛(0)

𝜃𝑛(0)

𝑀n(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑤𝑘(0)

{
 

 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 𝑛

𝑘=1

= t

{
 

 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 891 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 892 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝜃(1) = 0

𝐾𝑏2𝜃(0)
′ = 0

(𝐾𝑠1 +𝐾𝑠2)𝑢(0)
′ −𝐾𝑠2𝜃(0) = 0}

 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝜃1(ℎ1) = 0
𝑀𝑟𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
 

 

 

( 893 ) 

Replacing: 
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{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 894 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,5
𝑡4,3 𝑡4,5

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 895 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.11 Generalized Parallel Coupling of Two Beams of Three Field (GCTB) 

4.2.11.1 Case 1 

The potential energy and kinetic energy of the three-field GCTB model are: 

𝑉 =
1

2
∫ {𝐾𝑏1𝑤(𝑥)

′ 2
+ 𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
+ 𝐾𝑠1[𝑢(𝑥)

′ +𝑚𝜃(𝑥) − 𝑛𝑤(𝑥)]
2
}

𝐻

0

𝑑𝑥

𝑇 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝜃 �̇�(𝑥,𝑡)
2
+ 𝛾𝑤�̇�(𝑥,𝑡)

2]
𝐻

0

𝑑𝑥

 

( 896 ) 

Where: 

{𝛾𝑢 = 𝜌(𝐴1 + 𝐴2), 𝛾𝜓 = 𝜌(𝐼1 + 𝐼2), 𝛾𝑤 = 𝜌
𝐴2
𝐴1
(𝐴1 + 𝐴2)} 

( 897 ) 

Consequently, the total potential energy of the three-field beam GCTB is expressed as: 

𝒰 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝜃 �̇�(𝑥,𝑡)
2
+ 𝛾𝑤�̇�(𝑥,𝑡)

2]
𝐻

0

𝑑𝑥

−
1

2
∫ {𝐾𝑏1𝑤(𝑥)

′ 2
+ 𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
+ 𝐾𝑠1[𝑢(𝑥)

′ +𝑚𝜃(𝑥) − 𝑛𝑤(𝑥)]
2
}

𝐻

0

𝑑𝑥 

 ( 898 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) + 𝛾𝜃 �̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) + 𝛾𝑤�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) − 𝐾𝑏1𝑤(𝑥)
′ 𝛿𝑤(𝑥)

′
𝐻

0

− 𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ − 𝐾𝑠2[𝑢(𝑥)
′ − 𝜃(𝑥)][𝛿𝑢(𝑥)

′ − 𝛿𝜃(𝑥)]

− 𝐾𝑠1[𝑢(𝑥)
′ +𝑚𝜃(𝑥) − 𝑛𝑤(𝑥)][𝛿𝑢(𝑥)

′ +𝑚𝛿𝜃(𝑥) − 𝑛𝛿𝑤(𝑥)]}𝑑𝑥 ( 899 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 
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𝛿𝒰 = [𝛾𝑢�̇�(𝑥,𝑡) − (𝐾𝑠1 +𝐾𝑠2)𝑢(𝑥)
′ + (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥) + 𝑛𝐾𝑠1𝑤(𝑥)]𝛿𝑢(𝑥)0

𝐻

+ [𝛾𝜃 �̇�(𝑥,𝑡) −𝐾𝑏2𝜃(𝑥)
′ ]𝛿𝜃(𝑥)0

𝐻
+ [𝛾𝑤�̇�(𝑥,𝑡) − 𝐾𝑏1𝑤(𝑥)

′ ]𝛿𝜃(𝑥)0
𝐻

−∫ {𝛾𝑢�̈�(𝑥,𝑡) − (𝐾𝑠1 +𝐾𝑠2)𝑢(𝑥)
′′ + (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥)

′ + 𝑛𝐾𝑠1𝑤(𝑥)
′ }𝛿𝑢(𝑥)

𝐻

0

−∫ {𝛾𝜃�̈�(𝑥,𝑡) −𝐾𝑏2𝜃(𝑥)
′′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝑢(𝑥)

′ + (𝐾𝑠2 +𝑚
2𝐾𝑠1)𝜃(𝑥)

𝐻

0

−𝑚𝑛𝐾𝑠1𝑤(𝑥)}𝛿𝜃(𝑥)

−∫ {𝛾𝑤�̈�(𝑥,𝑡) − 𝐾𝑏1𝑤(𝑥)
′′ − 𝑛𝐾𝑠1𝑢(𝑥)

′ −𝑚𝑛𝐾𝑠1𝜃(𝑥) + 𝑛
2𝐾𝑠1𝑤(𝑥)}𝛿𝑤(𝑥)

𝐻

0

 
( 900 ) 

Setting the terms equal to zero, the following equations result: 

{

𝛾
𝑢
�̈�(𝑥,𝑡) − (𝐾𝑠1 + 𝐾𝑠2)𝑢(𝑥)

′′ + (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥)
′ + 𝑛𝐾𝑠1𝑤(𝑥)

′ = 0

𝛾
𝜃
�̈�(𝑥,𝑡) − 𝐾𝑏2𝜃(𝑥)

′′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝑢(𝑥)
′ + (𝐾𝑠2 +𝑚

2𝐾𝑠1)𝜃(𝑥) −𝑚𝑛𝐾𝑠1𝑤(𝑥) = 0

𝛾
𝑤
�̈�(𝑥,𝑡) − 𝐾𝑏1𝑤(𝑥)

′′ − 𝑛𝐾𝑠1𝑢(𝑥)
′ −𝑚𝑛𝐾𝑠1𝜃(𝑥) + 𝑛

2𝐾𝑠1𝑤(𝑥) = 0

} 

( 901 ) 

And boundary conditions: 

{

(𝐾𝑠1 + 𝐾𝑠2)𝑢(𝐻)
′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝐻) − 𝑛𝐾𝑠1𝑤(𝐻) = 0

𝜃(𝐻)
′ = 0

𝑤(𝐻)
′ = 0

} 

( 902 ) 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

{

𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡)
𝜃(𝑥,𝑡) = 𝜆1(𝑥)𝑞(𝑡)
𝑤(𝑥,𝑡) = 𝜆2(𝑥)𝑞(𝑡)

} 

( 903 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡)does 

so with time. Replacing and collecting like terms, we get the following: 
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{
 
 
 
 

 
 
 
 

�̈�
(𝑡)

𝑞
(𝑡)

+ [
−(𝐾𝑠1 + 𝐾𝑠2)∅(𝑥)

′′ + (𝐾𝑠2 −𝑚𝐾𝑠1)𝜆1(𝑥)
′ + 𝑛𝐾𝑠1𝜆2(𝑥)

′ =

𝛾
𝑢
∅(𝑥)

] = 0

�̈�
(𝑡)

𝑞
(𝑡)

+ [
−𝐾𝑏2𝜆1(𝑥)

′′ − (𝐾𝑠2 −𝑚𝐾𝑠1)∅(𝑥)
′ + (𝐾𝑠2 +𝑚

2𝐾𝑠1)𝜆1(𝑥) − 𝑚𝑛𝐾𝑠1𝜆2(𝑥)

𝛾
𝜃
𝜆1(𝑥)

] = 0

�̈�
(𝑡)

𝑞
(𝑡)

+ [
−𝐾𝑏1𝜆2(𝑥)

′′ − 𝑛𝐾𝑠1∅(𝑥)
′ − 𝑚𝑛𝐾𝑠1𝜆1(𝑥) + 𝑛

2𝐾𝑠1𝜆2(𝑥)

𝛾
𝑤
𝜆2(𝑥)

] = 0
}
 
 
 
 

 
 
 
 

 

( 904 ) 

Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{
 
 

 
 

�̈�
(𝑡)
+ 𝑤2𝑞

(𝑡)
= 0

(𝐾𝑠1 + 𝐾𝑠2)∅(𝑥)
′′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜆1(𝑥)

′ − 𝑛𝐾𝑠1𝜆2(𝑥)
′ + 𝑤2𝛾

𝑢
∅(𝑥) = 0

𝐾𝑏2𝜆1(𝑥)
′′ + (𝐾𝑠2 − 𝑚𝐾𝑠1)∅(𝑥)

′ − (𝐾𝑠2 +𝑚
2𝐾𝑠1)𝜆1(𝑥) +𝑚𝑛𝐾𝑠1𝜆2(𝑥) + 𝑤

2𝛾
𝜃
𝜆1(𝑥) = 0

𝐾𝑏1𝜆2(𝑥)
′′ + 𝑛𝐾𝑠1∅(𝑥)

′ +𝑚𝑛𝐾𝑠1𝜆1(𝑥) − 𝑛
2𝐾𝑠1𝜆2(𝑥) + 𝑤

2𝛾
𝑤
𝜆2(𝑥) = 0 }

 
 

 
 

 

( 905 ) 

The first equation is the same one that governs the behavior of an SDOF system with vibration 

frequency 𝑤. 

Using the method of differential operators for the solution of the system of equations: 

[

(𝐾𝑠1 +𝐾𝑠2)𝐷
2 + 𝑤2𝛾𝑢 −(𝐾𝑠2 −𝑚𝐾𝑠1)𝐷 −𝑛𝐾𝑠1𝐷

(𝐾𝑠2 −𝑚𝐾𝑠1)𝐷 𝐾𝑏2𝐷
2 + [𝑤2𝛾𝜃 − (𝐾𝑠2 +𝑚

2𝐾𝑠1)] 𝑚𝑛𝐾𝑠1
𝑛𝐾𝑠1𝐷 𝑚𝑛𝐾𝑠1 𝐾𝑏1𝐷

2 + [𝑤2𝛾𝑤 − 𝑛
2𝐾𝑠1]

]{

∅(𝑥)
𝜆1(𝑥)
𝜆2(𝑥)

} = {
0
0
0
} 

 ( 906 ) 

i.e., 

∅(𝑥)
′′′′′′ − [

𝐾𝑠1𝐾𝑠2[𝐾𝑏2𝑛
2 +𝐾𝑏1(𝑚 + 1)2]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 + (𝐾𝑏1𝛾𝜃 +𝐾𝑏2𝛾𝑤)(𝐾𝑠1 +𝐾𝑠2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑤2] ∅(𝑥)

′′′′

− 𝑤2 {
𝐾𝑠1𝐾𝑠2[𝛾𝜃𝑛

2 + 𝛾𝑤(𝑚 + 1)2] + [𝐾𝑠1𝐾𝑏2𝑛
2 + (𝐾𝑠2 +𝑚

2𝐾𝑠1)𝐾𝑏1]𝛾𝑢
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

−
(𝐾𝑠1 +𝐾𝑠2)𝛾𝜃𝛾𝑤 + (𝐾𝑏1𝛾𝜃 + 𝐾𝑏2𝛾𝑤)𝛾𝑢

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑤2}∅(𝑥)

′′

+
𝛾𝑢𝑤

2{(𝑤2𝛾𝑤 − 𝑛
2𝐾𝑠1)[𝑤

2𝛾𝜃 − (𝐾𝑠2 +𝑚
2𝐾𝑠1)] −𝑚

2𝑛2𝐾𝑠1
2 }

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
∅(𝑧) = 0 

( 907 ) 
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A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

∅(𝑧)
′′′′′′ − [

𝐾𝑠1𝐾𝑠2[𝐾𝑏2𝑛
2 +𝐾𝑏1(𝑚 + 1)2]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
−
𝐾𝑏1𝐾𝑏2𝛾𝑢 + (𝐾𝑏1𝛾𝜃 + 𝐾𝑏2𝛾𝑤)(𝐾𝑠1 +𝐾𝑠2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑤2]𝐻2∅(𝑧)

′′′′

− 𝑤2 {
𝐾𝑠1𝐾𝑠2[𝛾𝜃𝑛

2 + 𝛾𝑤(𝑚 + 1)2] + [𝐾𝑠1𝐾𝑏2𝑛
2 + (𝐾𝑠2 +𝑚

2𝐾𝑠1)𝐾𝑏1]𝛾𝑢
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

−
(𝐾𝑠1 +𝐾𝑠2)𝛾𝜃𝛾𝑤 + (𝐾𝑏1𝛾𝜃 + 𝐾𝑏2𝛾𝑤)𝛾𝑢

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑤2}𝐻4∅(𝑧)

′′

+
𝛾𝑢𝑤

2{(𝑤2𝛾𝑤 − 𝑛
2𝐾𝑠1)[𝑤

2𝛾𝜃 − (𝐾𝑠2 +𝑚
2𝐾𝑠1)] −𝑚

2𝑛2𝐾𝑠1
2 }

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝐻6∅(𝑧) = 0 

( 908 ) 

The equation can be rewritten as: 

∅(𝑧)
′′′′′′ − [𝛼2𝜅2 − (1 + 𝜇𝜓

2 + 𝜇𝜃
2)𝛿2]∅(𝑧)

′′′′

− 𝛿2 {𝛼2 [
𝜅2 − (𝑚 + 1)2

𝑛2
𝜇𝜃
2 + 𝜇𝜓

2 ] + (𝜂𝜃
2 + 𝑛2𝜂𝑤

2 )

− [(
𝜇𝑤

𝑚+ 1
)
2

(
𝜇𝜃
𝑛
)
2

+ (
𝜇𝑤

𝑚+ 1
)
2

+ (
𝜇𝜃
𝑛
)
2

] 𝛿2}∅(𝑧)
′′

+ 𝛿2 {[𝛿2 (
𝜇𝑤

𝑚+ 1
)
2

− 𝑛2𝜂𝑤
2 ] [𝛿2 (

𝜇𝜃
𝑛
)
2

− 𝜂𝜃
2] − 𝑛2𝜂𝑤

2 (𝜂𝜃
2 − 𝐻2)}∅(𝑧) = 0 

( 909 ) 

Where: 

{
 
 
 
 

 
 
 
 

𝛼 = 𝐻√
𝐾𝑠1𝐾𝑠2

𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
, 𝜅 = √(𝑚 + 1)2 + 𝑛2

𝐾𝑏2

𝐾𝑏1

𝜇
𝑤
= (𝑚 + 1)√

𝐾𝑠1 + 𝐾𝑠2

𝐾𝑏1

𝛾
𝑤

𝛾
𝑢

, 𝜇
𝜃
= 𝑛√

𝐾𝑠1 + 𝐾𝑠2

𝐾𝑏2

𝛾
𝜃

𝛾
𝑢

=, 𝛿 = √
𝛾
𝑢
𝐻2

𝐾𝑠1 + 𝐾𝑠2
𝑤2

𝜂
𝑤
= 𝐻√

𝐾𝑠1

𝐾𝑏1
, 𝜂
𝜃
= 𝐻√

𝐾𝑠2 + 𝑚
2𝐾𝑠1

𝐾𝑏2 }
 
 
 
 

 
 
 
 

 

( 910 ) 

The differential equation obtained can be easily solved with the procedures presented in the 

previous subchapters. 



 

 

292 

4.2.11.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 

{
 
 
 
 
 
 

 
 
 
 
 
 

{
  
 

  
 
𝑢𝑖+1(0)

𝑤𝑖+1(0)

𝜃𝑖+1(0)

𝑀1𝑖+1(0)

𝑀2𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

=

{
 
 

 
 

𝑇𝑖(0) +

[
 
 
 
 
 
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

𝑚𝑖𝑤
2 0 0 0 0 0]

 
 
 
 
 

}
 
 

 
 

{
  
 

  
 
𝑢𝑖(0)

𝑤𝑖(0)

𝜃𝑖(0)

𝑀1𝑖(0)

𝑀2𝑖(0)

𝑉𝑖(0) }
  
 

  
 

{
  
 

  
 
𝑢𝑖+1(0)

𝑤𝑖+1(0)

𝜃𝑖+1(0)

𝑀1𝑖+1(0)

𝑀2𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

=

[
 
 
 
 
 
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

𝑚𝑖𝑤
2 0 0 0 0 1]

 
 
 
 
 

𝑇𝑖(0)

{
  
 

  
 
𝑢𝑖(0)

𝑤𝑖(0)

𝜃𝑖(0)

𝑀1𝑖(0)

𝑀2𝑖(0)

𝑉𝑖(0) }
  
 

  
 

}
 
 
 
 
 
 

 
 
 
 
 
 

 

( 911 ) 

Rewriting: 

{
  
 

  
 
𝑢𝑖+1(0)

𝑤𝑖+1(0)

𝜃𝑖+1(0)

𝑀1𝑖+1(0)

𝑀2𝑖+1(0)

𝑉𝑖+1(0) }
  
 

  
 

= 𝑇𝑤𝑖(0)

{
  
 

  
 
𝑢𝑖(0)

𝑤𝑖(0)

𝜃𝑖(0)

𝑀1𝑖(0)

𝑀2𝑖(0)

𝑉𝑖(0) }
  
 

  
 

 

( 912 ) 

Where: 

𝑇𝑤𝑖(0) =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

𝑚𝑖𝑤
2 0 0 0 0 1]

 
 
 
 
 

𝑇𝑖(0) 

( 913 ) 

Expressing the equation for the nth floor between product symbols: 
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{
  
 

  
 
𝑢𝑛(0)

𝑤𝑛(0)

𝜃𝑛(0)

𝑀1𝑛(0)

𝑀2𝑛(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑤𝑘(0)

{
  
 

  
 
𝑢1(ℎ𝑖)

𝑤1(ℎ𝑖)

𝜃1(ℎ𝑖)

𝑀11(ℎ𝑖)

𝑀21(ℎ𝑖)

𝑉1(ℎ𝑖) }
  
 

  
 

𝑛

𝑘=1

= t

{
  
 

  
 
𝑢1(ℎ𝑖)

𝑤1(ℎ𝑖)

𝜃1(ℎ𝑖)

𝑀11(ℎ𝑖)

𝑀21(ℎ𝑖)

𝑉1(ℎ𝑖) }
  
 

  
 

 

( 914 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 915 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
  
 

  
 

𝑢(1) = 0

𝑤(1) = 0

𝜃(1) = 0

𝑤(0)
′ = 0

𝜃(0)
′ = 0

(𝐾𝑠1 + 𝐾𝑠2)𝑢(0)
′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(0) − 𝑛𝐾𝑠1𝑤(0) = 0}

  
 

  
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝑤1(ℎ1) = 0

𝜃1(ℎ1) = 0
𝑀1𝑛 (0) = 0

𝑀2𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
  
 

  
 

 

( 916 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝑤𝑛(0)

𝜃𝑛(0)
0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

 

( 917 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1)
} 

( 918 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.12 Modified Generalized Parallel Coupling of Two Beams (GCTB) of Two Field 

4.2.12.1 Case 1 

The potential energy and kinetic energy of the three-field GSB model are: 

𝑉 =
1

2
∫ {𝐾𝑏1𝑤(𝑥)

′ 2
+𝐾𝑏2𝑢(𝑥)

′′ 2
+ 𝐾𝑠1[(𝑚 + 1)𝑢(𝑥)

′ − 𝑛𝑤(𝑥)]
2
}

𝐻

0

𝑑𝑥

𝑇 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝑤�̇�(𝑥,𝑡)
2]

𝐻

0

𝑑𝑥

 

( 919 ) 

Where: 

{𝛾𝑢 = 𝜌(𝐴1 + 𝐴2), 𝛾𝑤 = 𝜌
𝐴2
𝐴1
(𝐴1 + 𝐴2)} 

( 920 ) 

Consequently, the total potential energy of the three-field beam GSB is expressed as: 

𝒰 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2 + 𝛾𝑤�̇�(𝑥,𝑡)
2]

𝐻

0

𝑑𝑥 −
1

2
∫ {𝐾𝑏1𝑤(𝑥)

′ 2
+ 𝐾𝑏2𝑢(𝑥)

′′ 2
+ 𝐾𝑠1[(𝑚 + 1)𝑢(𝑥)

′ − 𝑛𝑤(𝑥)]
2
}

𝐻

0

𝑑𝑥 

 ( 921 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) + 𝛾𝑤�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) − 𝐾𝑏1𝑤(𝑥)
′ 𝛿𝑤(𝑥)

′ −𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′
𝐻

0

− 𝐾𝑠1[(𝑚 + 1)𝑢(𝑥)
′ − 𝑛𝑤(𝑥)][(𝑚 + 1)𝛿𝑢(𝑥)

′ − 𝑛𝛿𝑤(𝑥)]}𝑑𝑥 ( 922 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = {[𝛾𝑢�̇�(𝑥,𝑡) +𝐾𝑏2𝑢(𝑥)
′′′ − (𝑚 + 1)2𝐾𝑠1𝑢(𝑥)

′ + 𝑛(𝑚 + 1)𝐾𝑠1𝑤(𝑥)]𝛿𝑢(𝑥)}0
𝐻
−𝐾𝑏2𝑢(𝑥)

′′ 𝛿𝑢(𝑥)
′

0

𝐻

+ [𝛾𝑤�̇�(𝑥,𝑡) − 𝐾𝑏1𝑤(𝑥)
′ ]𝛿𝑤(𝑥)0

𝐻

−∫ {𝛾𝑢�̈�(𝑥,𝑡) +𝐾𝑏2𝑢(𝑥)
′′′′ − (𝑚 + 1)2𝐾𝑠1𝑢(𝑥)

′′ + 𝑛(𝑚 + 1)𝐾𝑠1𝑤(𝑥)
′ }𝛿𝑢(𝑥)

𝐻

0

−∫ {𝛾𝑤�̈�(𝑥,𝑡) −𝐾𝑏1𝑤(𝑥)
′′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑢(𝑥)

′ + 𝑛2𝐾𝑠1𝑤(𝑥)}𝛿𝑤(𝑥)

𝐻

0

 
( 923 ) 
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Setting the terms equal to zero, the following equations result: 

{
𝛿𝑢(𝑥,𝑡): 𝛾𝑢�̈�(𝑥,𝑡) + 𝐾𝑏2𝑢(𝑥)

′′′′ − (𝑚 + 1)2𝐾𝑠1𝑢(𝑥)
′′ + 𝑛(𝑚+ 1)𝐾𝑠1𝑤(𝑥)

′ = 0

𝛿𝑤(𝑥,𝑡): 𝛾𝑤�̈�(𝑥,𝑡) − 𝐾𝑏1𝑤(𝑥)
′′ − 𝑛(𝑚+ 1)𝐾𝑠1𝑢(𝑥)

′ + 𝑛2𝐾𝑠1𝑤(𝑥) = 0
} 

( 924 ) 

And boundary conditions: 

{

𝛿𝑢(𝑥,𝑡):   𝐾𝑏2𝑢(𝐻)
′′′ − (𝑚 + 1)2𝐾𝑠1𝑢(𝐻)

′ + 𝑛(𝑚 + 1)𝐾𝑠1𝑤(𝐻) = 0

𝛿𝑢(𝑥,𝑡)
′ :   𝑢(𝐻)

′′ = 0

𝛿𝑤(𝑥,𝑡):   𝑤(𝐻)
′ = 0

} 

( 925 ) 

The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

{
𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡)
𝑤(𝑥,𝑡) = 𝜆(𝑥)𝑞(𝑡)

} 
( 926 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting like terms, we get the following: 

{
 
 

 
 
�̈�(𝑡)

𝑞(𝑡)
+ [
𝐾𝑏2∅(𝑥)

′′′ − (𝑚 + 1)2𝐾𝑠1∅(𝑥)
′′ + 𝑛(𝑚 + 1)𝐾𝑠1𝜆(𝑥)

′ =

𝛾𝑢∅(𝑥)
] = 0

�̈�(𝑡)

𝑞(𝑡)
+ [
−𝐾𝑏1𝜆(𝑥)

′′ − 𝑛(𝑚 + 1)𝐾𝑠1∅(𝑥)
′ + 𝑛2𝐾𝑠1𝜆(𝑥)

𝛾𝑤𝜆(𝑥)
] = 0

}
 
 

 
 

 

( 927 ) 

Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{

�̈�(𝑡) +𝑤
2𝑞(𝑡) = 0

−𝐾𝑏2∅(𝑥)
′′′ + (𝑚 + 1)2𝐾𝑠1∅(𝑥)

′′ − 𝑛(𝑚 + 1)𝐾𝑠1𝜆(𝑥)
′ + 𝑤2𝛾𝑢∅(𝑥) = 0

𝐾𝑏1𝜆(𝑥)
′′ + 𝑛(𝑚 + 1)𝐾𝑠1∅(𝑥)

′ − 𝑛2𝐾𝑠1𝜆(𝑥) +𝑤
2𝛾𝑤𝜆(𝑥) = 0

} 

( 928 ) 

The first equation is the same one that governs the behavior of an SDOF system with vibration 

frequency w. 

Using the method of differential operators for the solution of the system of equations: 
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[
−𝐾𝑏2𝐷

4 + (𝑚+1)2𝐾𝑠1𝐷
2 +𝑤2𝛾𝑢 −𝑛(𝑚+1)𝐾𝑠1𝐷

𝑛(𝑚+1)𝐾𝑠1𝐷 𝐾𝑏1𝐷
2 + [𝑤2𝛾𝑤 −𝑛

2𝐾𝑠1]
] {
∅(𝑥)
𝜆(𝑥)

} = {
0
0
} 

( 929 ) 

i.e., 

∅(𝑥)
′′′′′′ − [

𝐾𝑠1[𝐾𝑏2𝑛
2 + 𝐾𝑏1(𝑚 + 1)2]

𝐾𝑏1𝐾𝑏2
−
𝛾𝑤
𝐾𝑏1

𝑤2] ∅(𝑥)
′′′′ −𝑤2 [

𝛾𝑢
𝐾𝑏2

+
(𝑚 + 1)2𝐾𝑠1𝛾𝑤

𝐾𝑏1𝐾𝑏2
] ∅(𝑥)

′′

+
𝛾𝑢𝑤

2(𝑤2𝛾𝑤 − 𝑛
2𝐾𝑠1)

𝐾𝑏1𝐾𝑏2
∅(𝑧) = 0 

( 930 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable 𝑧 = 𝑥/𝐻: 

∅(𝑧)
′′′′′′ − [

𝐾𝑠1[𝐾𝑏2𝑛
2 + 𝐾𝑏1(𝑚 + 1)2]

𝐾𝑏1𝐾𝑏2
−
𝛾𝑤
𝐾𝑏1

𝑤2] 𝐻2∅(𝑧)
′′′′

−𝑤2 [
𝛾𝑢
𝐾𝑏2

+
(𝑚 + 1)2𝐾𝑠1𝛾𝑤

𝐾𝑏1𝐾𝑏2
]𝐻4∅(𝑧)

′′ +
𝛾𝑢𝑤

2(𝑤2𝛾𝑤 − 𝑛
2𝐾𝑠1)𝐻

6

𝐾𝑏1𝐾𝑏2
∅(𝑧) = 0 

( 931 ) 

The equation can be rewritten as: 

∅(𝑧)
′′′′′′ − [𝛼2𝜅2 − 𝜇2𝛿2]∅(𝑧)

′′′′ − 𝛿2[1 + (𝑚 + 1)2𝜇2𝛼2]∅(𝑧)
′′ + 𝛿2{𝛼2[𝜅2 − (𝑚 + 1)2] − 𝜇2𝛿2}∅(𝑧) = 0 

 ( 932 ) 

Where: 

{𝛼 = 𝐻√
𝐾𝑠1
𝐾𝑏2

, 𝜅 = √(𝑚 + 1)2 + 𝑛2
𝐾𝑏2
𝐾𝑏1

, 𝜇 =
1

𝐻
√
𝐾𝑏2
𝐾𝑏1

𝛾𝑤
𝛾𝑢
=, 𝛿 = √

𝛾𝑢𝐻4

𝐾𝑏2
𝑤4} 

( 933 ) 

The differential equation obtained can be easily solved with the procedures presented in the 

previous subchapters. 

4.2.12.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 
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{
 
 
 
 
 
 

 
 
 
 
 
 

{
  
 

  
 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝑤𝑖+1(0)

𝑀li+1(0)

𝑀ri+1(0)

𝑉𝑖+1(0) }
  
 

  
 

=

{
 
 

 
 

𝑇𝑖(0) +

[
 
 
 
 
 
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

𝑚𝑖𝑤
2 0 0 0 0 0]

 
 
 
 
 

}
 
 

 
 

{
  
 

  
 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑤𝑖(0)

𝑀li(0)

𝑀ri(0)

𝑉𝑖(0) }
  
 

  
 

{
  
 

  
 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝑤𝑖+1(0)

𝑀li+1(0)

𝑀ri+1(0)

𝑉𝑖+1(0) }
  
 

  
 

=

[
 
 
 
 
 
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

𝑚𝑖𝑤
2 0 0 0 0 1]

 
 
 
 
 

𝑇𝑖(0)

{
  
 

  
 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑤𝑖(0)

𝑀li(0)

𝑀ri(0)

𝑉𝑖(0) }
  
 

  
 

}
 
 
 
 
 
 

 
 
 
 
 
 

 

( 934 ) 

Rewriting: 

{
  
 

  
 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝑤𝑖+1(0)

𝑀li+1(0)

𝑀ri+1(0)

𝑉𝑖+1(0) }
  
 

  
 

= 𝑇𝑤𝑖(0)

{
  
 

  
 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑤𝑖(0)

𝑀li(0)

𝑀ri(0)

𝑉𝑖(0) }
  
 

  
 

 

( 935 ) 

Where: 

𝑇𝑤𝑖(0) =

[
 
 
 
 
 
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

𝑚𝑖𝑤
2 0 0 0 0 1]

 
 
 
 
 

𝑇𝑖(0) 

( 936 ) 

Expressing the equation for the nth floor between product symbols: 

{
  
 

  
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)

𝑀ln(0)

𝑀rn(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑤𝑘(0)

{
  
 

  
 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

𝑛

𝑘=1

= t

{
  
 

  
 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

 

( 937 ) 

Where: 



 

 

298 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 938 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝜃(1) = 0

𝜃(0)
′ = 0

𝑢(0)
′′ = 0

−𝐾𝑏2𝑢(0)
′′′ + (𝑚 + 1)2𝐾𝑠1𝑢(0)

′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑤(0) = 0}
 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝜃1(ℎ1) = 0

𝑀𝑙𝑛(0) = 0

𝑀𝑟𝑛(0) = 0

𝑉𝑛(0) = 0 }
  
 

  
 

 

( 939 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

 

( 940 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

]{

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1)
} 

( 941 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.2.13 Generalized Parallel Coupling of Two Beams of a Field (GCTB) 

4.2.13.1 Case 1 

The potential energy and kinetic energy of the three-field GSB model are: 

𝑉 =
1

2
∫ {𝐾𝑏𝑢(𝑥)

′′ 2
+ (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′ 2
}

𝐻

0

𝑑𝑥, 𝑇 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2]
𝐻

0

𝑑𝑥 
( 942 ) 

Where: 

{𝛾𝑢 = 𝜌(𝐴1 + 𝐴2)} ( 943 ) 

Consequently, the total potential energy of the three-field beam GSB is expressed as: 

𝒰 =
1

2
∫ [𝛾𝑢�̇�(𝑥,𝑡)

2]
𝐻

0

𝑑𝑥 −
1

2
∫ {𝐾𝑏𝑢(𝑥)

′′ 2
+ (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′ 2
}

𝐻

0

𝑑𝑥 
( 944 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝛾𝑢�̇�(𝑥,𝑡)𝛿�̇�(𝑥,𝑡) −𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′′ − (𝑚 + 1)2𝐾𝑠𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ }𝑑𝑥
𝐻

0

 
( 945 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝛾𝑢�̇�(𝑥,𝑡) +𝐾𝑏𝑢(𝑥)
′′′ − (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′ ]𝛿𝑢(𝑥)0
𝐻
−𝐾𝑏𝑢(𝑥)

′′ 𝛿𝑢(𝑥)
′

0

𝐻

−∫ [𝛾𝑢�̈�(𝑥,𝑡) +𝐾𝑏𝑢(𝑥)
′′′′ − (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′′ ]𝛿𝑢(𝑥)𝑑𝑥
𝐻

0

 
( 946 ) 

Setting the terms equal to zero, the following equations result: 

𝛿𝑢(𝑥,𝑡): 𝛾𝑢�̈�(𝑥,𝑡) + 𝐾𝑏𝑢(𝑥)
′′′′ − (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′′ = 0 ( 947 ) 

And boundary conditions: 

{
𝛿𝑢(𝑥,𝑡):   𝐾𝑏𝑢(𝐻)

′′′ − (𝑚 + 1)2𝐾𝑠𝑢(𝐻)
′ = 0

𝛿𝑢(𝑥,𝑡)
′ :   𝑢(𝐻)

′′ = 0
} 

( 948 ) 
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The partial differential equation can be solved by separating variables, applying a solution of the 

following type: 

𝑢(𝑥,𝑡) = ∅(𝑥)𝑞(𝑡) ( 949 ) 

Where ∅(𝑥) defines the variation of the displacement along the length of the beam, while 𝑞(𝑡) does 

so with time. Replacing and collecting like terms, we get the following: 

�̈�(𝑡)

𝑞(𝑡)
+ [

𝐾𝑏∅(𝑥)
′′′′ − (𝑚 + 1)2𝐾𝑠∅(𝑥)

′′

𝛾𝑢∅(𝑥)
] = 0 

( 950 ) 

Because the time and height coordinates are independent variables, each of the terms must equal 

a constant with opposite signs, to ensure that the net result is zero. Consequently, it can be divided 

into two ordinary differential equations: 

{
�̈�(𝑡) +𝑤

2𝑞(𝑡) = 0

𝐾𝑏∅(𝑥)
′′′′ − (𝑚 + 1)2𝐾𝑠∅(𝑥)

′′ −𝑤2𝛾𝑢∅(𝑥) = 0
} 

( 951 ) 

The first equation is the same one that governs the behavior of an SDOF system with vibration 

frequency w. 

Using the method of differential operators for the solution of the system of equations: 

[
−𝐾𝑏2𝐷

4 + (𝑚+1)2𝐾𝑠1𝐷
2 +𝑤2𝛾𝑢 −𝑛(𝑚+1)𝐾𝑠1𝐷

𝑛(𝑚+1)𝐾𝑠1𝐷 𝐾𝑏1𝐷
2 + [𝑤2𝛾𝑤 −𝑛

2𝐾𝑠1]
] {
∅(𝑥)
𝜆(𝑥)

} = {
0
0
} 

( 952 ) 

i.e., 

∅(𝑥)
′′′′ − [

(𝑚 + 1)2𝐾𝑠
𝐾𝑏

] ∅(𝑥)
′′ −

𝛾𝑢𝑤
2

𝐾𝑏
∅(𝑥) = 0 

( 953 ) 

A sixth order differential equation is obtained. Normalizing the differential equation by the 

variable z=x/H: 

∅(𝑧)
′′′′ −

(𝑚 + 1)2𝐾𝑠𝐻
2

𝐾𝑏
∅(𝑧)
′′ −

𝛾𝑢𝑤
2𝐻4

𝐾𝑏
∅(𝑧) = 0 

( 954 ) 

The equation can be rewritten as: 
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∅(𝑧)
′′′′ − 𝛼2∅(𝑧)

′′ − 𝛿2∅(𝑧) = 0 ( 955 ) 

Where: 

{𝛼 = 𝐻√
𝐾𝑠
𝐾𝑏
, 𝛿 = √

𝛾𝑢𝐻
4

𝐾𝑏2
𝑤2} 

( 956 ) 

The differential equation obtained can be easily solved with the procedures presented in the 

previous subchapters. 

4.2.13.2 Case 2 

The relationship between forces and displacements between two consecutive floors is obtained by 

taking into account the transfer matrix and the vector of external point forces. For the j-th floor: 

{
 

 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝑀𝑖+1(0)
𝑉𝑖+1(0)}

 

 
= {𝑇𝑖(0) + [

0 0 0 0

0 0 0 0

0 0 0 0

𝑚𝑖𝑤
2 0 0 0

]}

{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)
𝑉𝑖(0)}

 

 
= [

1 0 0 0

0 1 0 0

0 0 1 0

𝑚𝑖𝑤
2 0 0 1

] 𝑇𝑖(0)

{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)
𝑉𝑖(0)}

 

 
 

( 957 ) 

Rewriting: 

{
 

 
𝑢𝑖+1(0)

𝑢𝑖+1
′ (0)

𝑀𝑖+1(0)
𝑉𝑖+1(0)}

 

 
= 𝑇𝑤𝑖(0)

{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)
𝑉𝑖(0)}

 

 
 

( 958 ) 

Where: 

𝑇𝑤𝑖(0) = [

1 0 0 0

0 1 0 0

0 0 1 0

𝑚𝑖𝑤
2 0 0 1

] 𝑇𝑖(0) 

( 959 ) 

Expressing the equation for the nth floor between product symbols: 
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{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑤𝑘(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 𝑛

𝑘=1

= t

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 960 ) 

Where: 

t =∏𝑇𝑤𝑘(0)

𝑛

𝑘=1

 

( 961 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝐾𝑏𝑢(0)
′′′ −𝐾𝑠𝑢(0)

′ = 0}
 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 962 ) 

Replacing: 

{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} → {
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 963 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the determinant finds the angular frequencies of the beam. 
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4.3 STABILITY ANALYSIS OF INDIVIDUAL STRUCTURAL SYSTEMS 

The objective of this section is to develop a methodology for calculating the critical load of 

replacement beams. 

Stability analysis of tall buildings by conventional methods results in a very cumbersome and 

complicated procedure. As mentioned by Zalka (2020), stability analysis presents a greater 

mathematical challenge than dynamic analysis and even greater than static analysis. It is due to 

these complications that investigations in the field of stability of tall buildings are very limited and 

special cases are usually analyzed ignoring certain characteristics that do not have an important 

influence on the analysis. To overcome this problem, two cases of analysis are considered with the 

aim of covering as many buildings as possible. 

 Case 1: A continuous analysis is considered because the method used is based solely on 

the continuous method and a uniformly distributed vertical load is assumed over the height 

of the element. 

To take into account that the vertical load is applied at the level of the floors and that it is 

not distributed over the height of the building, Zalka (2020), using the Dunkerley sum 

theorem, proposes considering a correction factor in the stability analysis. 

𝑟𝑠 =
𝑛

𝑛 + 1.588
 

( 964 ) 

Where n is the number of floors of the building. It is true that this effect is negligible in tall 

buildings, but for medium and low buildings, not considering this correction coefficient is 

not conservative because the centroid of the total vertical load shifts downwards, resulting 

in critical load values greater than the actual load. 

The main disadvantage is that it is only applicable to structures where the cross section is 

uniform in height and the lateral load is continuous. The main advantage is that continuous 

closed-form solutions are obtained that allow parametric analysis. 

 Case 2: A discrete analysis is considered because the methods used are the continuous 

method and the transfer matrix method, and an arbitrary point vertical load applied at floor 

level is assumed. 
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The main disadvantage is that closed continuous solutions that allow parametric analysis 

are not obtained. The main advantage is that it allows the analysis of structures whose cross 

section is not continuous in height and/or for structures where the loads are applied at the 

level of the floors, whether their cross section is uniform or not; that is, it is considered a 

case of general analysis because it even serves as a verification of case 1. 

The following assumptions will be used: 

a) The material is elastic and linear. 

b) The floors are considered as rigid diaphragms and their rigidity perpendicular to their plane 

is neglected. 

c) Vertical loads are applied statically and do not change their direction during buckling. 

d) The deformations are considered small. 

e) Structures have a minimum of four stories. 

Mikhlin (1964) proposes that the approximate solution of the eigenvalue problem generally 

reduces to the integration of a differential equation of the form: 

𝐿𝑤 − 𝜆𝑀𝑤 = 0 ( 965 ) 

Where w is the displacement that satisfies the differential equation and the boundary conditions, 

L and M are differential operators, and λ is the unknown numerical parameter to calculate. 

In most practical cases, it is not possible to assume a function that gives a close enough 

approximation to the exact deflection. So the approximation of the upper limit obtained from the 

Rayleigh ratio is not very close. Substantial improvement in accuracy is possible if we consider a 

linear combination of several superimposed functions and then apply the Rayleigh-Ritz method by 

minimizing the Rayleigh quotient with respect to the unknown coefficients of this linear 

combination. 

By Ritz's theorem, the limit of the approximation 𝑢𝑁(𝑧) = ∑ 𝑞𝑘𝜙𝑘(𝑧)
𝑁
𝑘=1  for N→∞ is the exact 

solution 𝑢(𝑧) if the system of the chosen functions 𝜙𝑘(𝑧) satisfies the following conditions: 

a) The functions 𝜙𝑘(𝑧) are linearly independent. 

b) The functions 𝜙𝑘(𝑧) form a complete system of functions. 
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c) The functions 𝜙𝑘(𝑧) satisfy the boundary conditions. 

As an approximate displacement function, a power series will be used, whose center is equal to 

zero: 

𝜙(𝑧) = ∑𝐶𝑘𝑧
𝑘

𝑁

𝑘=0

 

( 966 ) 

Where 𝐶𝑘 are constant coefficients, which represent the parameters of the approximate function. 

𝜙(𝑧) = ∑𝐶𝑘𝑧
𝑘

𝑁

𝑘=0

= 𝐶0 + 𝐶1𝑧 + 𝐶2𝑧
2 + 𝐶3𝑧

3 + 𝐶4𝑧
4 + 𝐶5𝑧

5 +⋯ 

( 967 ) 
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4.3.1 Bending Beam of a Field (EBB) 

4.3.1.1 Case 1 

The potential energy of the EBB model of a field is: 

𝑉 =
1

2
∫ 𝐾𝑏𝑢(𝑥)

′′ 2
𝐻

0

𝑑𝑥 
( 968 ) 

The work done by the external force is: 

𝑊 = −∫ 𝑓(𝑥)𝑑𝑙
𝐻

0

 
( 969 ) 

Where  𝑓(𝑥) is the generalized axial load distributed along the height and 𝑑𝑙 is the axial shortening 

of the beam. 

Taking into account that the displacements are small, the axial shortening is: 

𝑑𝑙 = 𝑑𝑠 − 𝑑𝑥 = (√𝑑𝑥2 + 𝑑𝑢2) − 𝑑𝑥 = (√1+ (
𝑑𝑢

𝑑𝑥
)
2

− 1)𝑑𝑥 

( 970 ) 

Replacing: 

𝑊 = −∫ 𝑓(𝑥)𝑑𝑙
𝐻

0

= −∫ 𝑓(𝑥)(√1 + (
𝑑𝑢

𝑑𝑥
)
2

− 1)
𝐻

0

𝑑𝑥 

( 971 ) 

Expanding this function by the Maclaurin series: 

√1 + (
𝑑𝑢

𝑑𝑥
)
2

= 1+
1

2
(
𝑑𝑢

𝑑𝑥
)
2

+⋯ ≈ 1 +
1

2
(
𝑑𝑢

𝑑𝑥
)
2

→ √1+ (
𝑑𝑢

𝑑𝑥
)
2

− 1 =
1

2
(
𝑑𝑢

𝑑𝑥
)
2

 
( 972 ) 

Finally the work results: 

𝑊 = −
1

2
∫ 𝑓(𝑥) (

𝑑𝑢

𝑑𝑥
)
2𝐻

0

𝑑𝑥 = −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 973 ) 
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Consequently, the total potential energy of the model is expressed as: 

𝒰 =
1

2
∫ 𝐾𝑏𝑢(𝑥)

′′ 2
𝐻

0

𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 974 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ [𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′′ − 𝑓(𝑥)𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ ]𝑑𝑥
𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 975 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′ ]
0

𝐻
− {[𝐾𝑏2𝑢(𝑥)

′′′ + 𝑓(𝑥)𝑢(𝑥)
′ ]𝛿𝑢(𝑥)}0

𝐻

+∫ [𝐾𝑏𝑢(𝑥)
′′′′ + 𝑓(𝑥)𝑢(𝑥)

′′ + 𝑓(𝑥)
′ 𝑢(𝑥)

′ ]𝛿𝑢(𝑥)𝑑𝑥
𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 976 ) 

Setting the terms equal to zero, the following equations result: 

𝐾𝑏𝑢(𝑥)
′′′′ + 𝑓(𝑥)𝑢(𝑥)

′′ + 𝑓(𝑥)
′ 𝑢(𝑥)

′ = 0 ( 977 ) 

And boundary conditions: 

{
𝑢(0)
′′ = 0

𝐾𝑏𝑢(0)
′′′ + 𝑓(0)𝑢(0)

′ = 0
} 

( 978 ) 

Integrating the equation once and evaluating at x=0: 

𝐾𝑏𝑢(𝑥)
′′′ + 𝑓(𝑥)𝑢(𝑥)

′ = 0 ( 979 ) 

A third order differential equation is obtained, where the critical load results from the smallest 

eigenvalue. Normalizing the differential equation by the variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′ + 𝑓(𝑧) [

𝐻3

𝐾𝑏
𝑢(𝑧)
′ ] = 0 

( 980 ) 

The equation can be rewritten as: 
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𝑢(𝑧)
′′′ + 𝜆𝛼(𝑧)𝑢(𝑧)

′ = 0 ( 981 ) 

Where: 

𝜆 =
𝑞𝐻3

𝐾𝑏
, 𝑓(𝑧) = 𝑞𝛼(𝑧) 

( 982 ) 

Expressing the boundary conditions: 

{

𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

} 

( 983 ) 

 Uniformly Distributed Load 

For beam stability, the governing differential equation is of the form: 

[
𝑑4

𝑑𝑧4
− (𝛼𝜅)2

𝑑2

𝑑𝑧2
] 𝜃(𝑧) − 𝜆 {−𝛼(𝑧) [

𝑑2

𝑑𝑧2
− 𝛼2(𝜅2 − 1)]}𝜃(𝑧) = 0 

( 984 ) 

Where: 

𝐿 =
𝑑3

𝑑𝑧3
, 𝑀 = −𝛼(𝑧) (

𝑑

𝑑𝑧
) 

( 985 ) 

Multiplying the equation by 𝑢(𝑧)
′  and integrating from 0 to 1: 

∫ 𝑢(𝑧)
′ 𝑢(𝑧)

′′′ 𝑑𝑧
1

0

+ 𝜆∫ 𝛼(𝑧)𝑢
′
(𝑧)
2
𝑑𝑧

1

0

= 0 
( 986 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

∫ 𝑢′′(𝑧)
2
𝑑𝑧

1

0

− 𝜆∫ 𝛼(𝑧)𝑢
′
(𝑧)
2
𝑑𝑧

1

0

= 0 
( 987 ) 

Solving the parameter 𝛾: 
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𝜆 =
∫ 𝑢′′(𝑧)

2
𝑑𝑧

1

0

∫ 𝛼(𝑧)𝑢
′
(𝑧)
2 𝑑𝑧

1

0

 

( 988 ) 

This Rayleigh ratio represents an approximation of the upper limit of the critical load, and it is 

exact if and only if the exact equilibrium curve 𝑢(𝑧) is used to calculate λ. 

For the case of a uniformly distributed load, the function 𝛼(𝑧): 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 989 ) 

The Rayleigh quotient becomes: 

𝜆 =
∫ 𝑢′′(𝑧)

2
𝑑𝑧

1

0

∫ 𝑧𝑢′(𝑧)
2 𝑑𝑧

1

0

 

( 990 ) 

 1st Iteration: 

Taking into account the boundary conditions. We consider two simple polynomials of different 

degrees that satisfy the boundary condition: 

𝜙1
1 = 1−

4

3
𝑧 +

1

3
𝑧4   𝑦   𝜙2

1 = 1 −
5

4
𝑧 +

1

4
𝑧5 

( 991 ) 

Taking a linear combination of both terms: 

𝑢(𝑧) = 𝐴𝜙1
1 +𝐵𝜙2

1 = 𝐴(1 −
4

3
𝑧 +

1

3
𝑧4) + 𝐵 (1 −

5

4
𝑧 +

1

4
𝑧5) 

( 992 ) 

We expand the integrals and substitute into the Rayleigh quotient: 

𝒰 = ∫ 𝑢′′(𝑧)
2

1

0

𝑑𝑧 − 𝜆∫ 𝑧𝑢′(𝑧)
2
𝑑𝑧

1

0

 
( 993 ) 

Expanding the integrals and grouping common terms: 

𝒰 = (3.2𝐴2 + 3.5714𝐵2 + 6.6667𝐴𝐵) − 𝜆(0.4𝐴2 + 0.4167𝐵2 + 0.8148𝐴𝐵)

𝒰 = (3.2 − 0.4𝜆)𝐴2 + (3.5714 − 0.4167𝜆)𝐵2 + (3.3333 − 0.4074𝜆)𝐴𝐵
 

( 994 ) 

The condition for the critical load to be the minimum is expressed as: 
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{

𝜕𝒰

𝜕𝐴
= 0 → (6.4 − 0.8𝜆)𝐴 + (6.6667 − 0.8148𝜆)𝐵 = 0

𝜕𝒰

𝜕𝐵
= 0 → (6.6667 − 0.8148𝜆)𝐴 + (7.1429 − 0.8333𝜆)𝐵 = 0

} 

( 995 ) 

Expressing in matrix form: 

[
6.4 − 0.8𝜆 6.6667 − 0.8148𝜆

6.6667 − 0.8148𝜆 7.1429 − 0.8333𝜆
] {
𝐴
𝐵
} = {

0
0
} 

( 996 ) 

For a nontrivial solution (a and b cannot be equal to zero simultaneously), the determinant of the 

coefficient matrix for a and b must be equal to zero. Operating the determinant: 

0.00274348𝜆2 + −0.18342152𝜆 + 1.26984127 = 0 ( 997 ) 

The minimum eigenvalue is obtained from the minimum root of the quadratic equation. 

{ 𝜆 = 7.843180189
𝜆 = 59.013962668

→ 𝜆1 = 7.843180189 → 𝑞𝑐𝑟𝐻 = 𝜆1
𝐾𝑏
𝐻2

→ 𝑞𝑐𝑟𝐻 = 7.843180189
𝐾𝑏
𝐻2
} 

( 998 ) 

Which is the first approximation to the value of the critical load of the beam. For most practical 

cases the resulting critical load is accurate enough; In order to obtain a better approximation to the 

exact critical load, it is necessary to repeat the previous procedure with two new higher degree 

polynomials. 

 2nd Iteration: 

The first polynomial to be considered will be the one with the highest degree of the previous 

iteration: 

𝜙1
2 = 1−

5

4
𝑧 +

1

4
𝑧5 

( 999 ) 

To obtain a new polynomial of higher degree and that takes into account the eigenvalue calculated 

in the previous iteration, we will integrate the differential equation resulting from the beam model 

four times: 

𝑢(𝑧) = −𝜆∭ 𝛼(𝑧)𝑢(𝑧)
′ 𝑑𝑧

𝑧

0

+ 𝐶2𝑧
2 + 𝐶1𝑧 + 𝐶0 

( 1000 ) 
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For the case of a uniform load: 

𝑢(𝑧) = −𝜆 (
1

24
𝑧4 −

1

48
𝑧5 +

1

2016
𝑧9) + 𝐶2𝑧

2 + 𝐶1𝑧 + 𝐶0 
( 1001 ) 

When evaluating the boundary conditions, the constants 𝐶0, 𝐶1, 𝐶2 and 𝐶3 are determined and the 

new polynomial to be used in the second iteration is determined. 

𝜙2
2 = 1.0212 − 1.4006𝑧 + 0.4085𝑧4 − 0.0292𝑧8 ( 1002 ) 

Taking a linear combination of both terms: 

𝑢(𝑧) = 𝐴𝜙1
2 + 𝐵𝜙2

2 ( 1003 ) 

Solving similarly to iteration 1: 

𝜆2 == 7.838442004 → 𝑞𝑐𝑟𝐻 = 𝜆2
𝐾𝑏
𝐻2

→ 𝑞𝑐𝑟𝐻 = 7.838442004
𝐾𝑏
𝐻2

 
( 1004 ) 

 3rd Iteration: 

𝜙1
3 = 1.0212 − 1.4006𝑧 + 0.4085𝑧4 − 0.0292𝑧8

𝜙2
3 = 1.0248 − 1.4231𝑧 + 0.4574𝑧4 − 0.0610𝑧7 + 0.0018𝑧11

𝑢(𝑧) = 𝐴𝜙1
3 + 𝐵𝜙2

3

𝜆3 = 7.837349280 → 𝑞𝑐𝑟H = 𝜆3
𝐾𝑏
𝐻2

→ 𝑞𝑐𝑟H = 7.837349280
𝐾𝑏
𝐻2

 

( 1005 ) 

 4th Iteration: 

𝜙1
4 = 1.0248 − 1.4231𝑧 + 0.4574𝑧4 − 0.0610𝑧7 + 0.0018𝑧11

𝜙2
4 = 1.0253 − 1.4263𝑧 + 0.4647𝑧4 − 0.0683𝑧7 + 0.0046𝑧10 − 0.0001𝑧14

𝑢(𝑧) = 𝐴𝜙1
4 + 𝐵𝜙2

4

𝜆4 = 7.837347443 → 𝑞𝑐𝑟H = 𝜆4
𝐾𝑏
𝐻2

→ 𝑞𝑐𝑟H = 7.837347443
𝐾𝑏
𝐻2

 

( 1006 ) 

 5th Iteration: 
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𝜙1
5 = 1.0253 − 1.4263𝑧 + 0.4647𝑧4 − 0.0683𝑧7 + 0.0046𝑧10 − 0.0001𝑧14

𝜙2
5 = 1.0254 − 1.4268𝑧 + 0.4658𝑧4 − 0.0694𝑧7 + 0.0052𝑧10 − 0.0002𝑧13 + 0.000002𝑧17

𝑢(𝑧) = 𝐴𝜙1
5 + 𝐵𝜙2

5

𝜆5 = 7.837347435 → 𝑞𝑐𝑟H = 𝜆5
𝐾𝑏
𝐻2

→ 𝑞𝑐𝑟H = 7.837347435
𝐾𝑏
𝐻2

 

( 1007 ) 

Numerically it is observed that with a third iteration the approximation can be considered exact. 

𝜆 = 7.837 → 𝑞𝑐𝑟𝐻 = 𝜆
𝐾𝑏
𝐻2

→ 𝑞𝑐𝑟𝐻 = 7.837
𝐾𝑏
𝐻2

 
( 1008 ) 

This found value is identical to the exact value given by Timoshenko and Gere using Bessel 

functions; therefore, it can be considered practical for engineering purposes. 

 Point Load at x=0 (z=0) 

For the case of a point load applied at x=0 (z=0), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1009 ) 

Substituting into the differential equation: 

𝑢(𝑧)
′′′ +

𝜆

𝐻
𝑢(𝑧)
′ = 0 

( 1010 ) 

The expression for 𝑢(𝑧) can be derived as: 

𝑢(𝑧) = 𝐶0 + 𝐶1 cos (√𝜆 𝐻⁄ 𝑧) + 𝐶2 sin (√𝜆 𝐻⁄ 𝑧) 
( 1011 ) 

The linear algebraic system resulting from the boundary conditions, written in matrix form, is: 

[
 
 
 
 1 cos (√𝜆 𝐻⁄ ) sin (√𝜆 𝐻⁄ )

0 − sin (√𝜆 𝐻⁄ ) cos (√𝜆 𝐻⁄ )

0 cos (√𝜆 𝐻⁄ ) 0 ]
 
 
 
 

{
𝐶0
𝐶1
𝐶2

} = 0 

( 1012 ) 

Which has a different solution than the trivial one (𝐶0 = 𝐶1 = 𝐶2 = 0) if the determinant is equal 

to zero (the matrix of coefficients is singular), that is: 
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𝐶𝑜𝑠 (√𝜆 𝐻⁄ ) = 0 → √𝜆 𝐻⁄ = (2𝑛 − 1)
𝜋

2
 / 𝑛 = 1, 2, 3… 

( 1013 ) 

Solving it is found that the critical load: 

𝑞𝑐𝑟 = (2𝑛 − 1)
2
𝜋2𝐾𝑏
4𝐻2

 
( 1014 ) 

For the case when n=1, we have: 

𝑞𝑐𝑟 =
𝜋2

4

𝐾𝑏
𝐻2

 
( 1015 ) 

4.3.1.2 Case 2 

 Calculation of the Transfer Matrix 

According to the fourth order differential equation: 

𝐾𝑏𝑢(𝑥)
′′′′ + 𝑓(𝑥)𝑢(𝑥)

′′ = 0 ( 1016 ) 

Using the method of coefficients: 

𝐷2(𝐷2 + 𝑟2) = 0 ( 1017 ) 

Where: 

𝜉 =
𝑞

𝐾𝑏
 

( 1018 ) 

The expression for 𝑢(𝑧) and 𝑢(𝑧)
′  is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cos(√𝜉𝑧) + 𝐶3 sin(√𝜉𝑧)

𝑢(𝑧)
′ = 𝐶1 − 𝐶2√𝜉 sin(√𝜉𝑧) + 𝐶3√𝜉 cos(√𝜉𝑧)

} 
( 1019 ) 

Internal forces such as bending moment and shear force result: 
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{
𝑀(𝑧) = 𝐾𝑏𝑢(𝑧)

′′ = −[𝜉𝐾𝑏 cos(√𝜉𝑧)]𝐶2 − [𝜉𝐾𝑏 sin(√𝜉𝑧)]𝐶3

𝑉(𝑧) = 𝐾𝑏𝑢(𝑧)
′′′ + 𝑞𝑢(𝑧)

′ = (𝑞)𝐶1 + [(𝜉𝐾𝑏 − 𝑞)√𝜉 sin(√𝜉𝑧)]𝐶2 − [(𝜉𝐾𝑏 − 𝑞)√𝜉 cos(√𝜉𝑧)]𝐶2
} 

( 1020 ) 

Writing the equations in matrix form: 

{
 

 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑀𝑖(𝑧𝑖)
𝑉𝑖(𝑧𝑖)}

 

 
= 𝐾𝑖(𝑧𝑖) {

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 1021 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 1 𝑧𝑖 cos(√𝜉𝑧) sin(√𝜉𝑧)

0 1 −√𝜉 sin(√𝜉𝑧) √𝜉 cos(√𝜉𝑧)

0 0 −𝜉𝐾𝑏 cos(√𝜉𝑧) −𝜉𝐾𝑏 sin(√𝜉𝑧)

0 𝑞 (𝜉𝐾𝑏 − 𝑞)√𝜉 sin(√𝜉𝑧) −[(𝜉𝐾𝑏 − 𝑞)√𝜉 cos(√𝜉𝑧)]]
 
 
 
 
 

𝑖

 

( 1022 ) 

Evaluating at the base of the i-th floor; that is, for 𝑧𝑖 = ℎ𝑖: 

{
 

 
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

𝑀𝑖(ℎ𝑖)
𝑉𝑖(ℎ𝑖)}

 

 
= 𝐾𝑖(ℎ𝑖){

𝐶0
𝐶1
𝐶2
𝐶3

} → {

𝐶0
𝐶1
𝐶2
𝐶3

} = 𝐾𝑖
−1(ℎ𝑖)

{
 

 
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

𝑀𝑖(ℎ𝑖)

𝑉𝑖(ℎ𝑖)}
 

 

 

( 1023 ) 

Replacing the vector of coefficients: 

{
 

 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑀𝑖(𝑧𝑖)

𝑉𝑖(𝑧𝑖)}
 

 

= 𝐾𝑖(𝑧𝑖)𝐾𝑖
−1(ℎ𝑖)

{
 

 
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

𝑀𝑖(ℎ𝑖)
𝑉𝑖(ℎ𝑖)}

 

 
= 𝑇𝑖(𝑧𝑖)

{
 

 
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

𝑀𝑖(ℎ𝑖)
𝑉𝑖(ℎ𝑖)}

 

 
 

( 1024 ) 

Where: 

𝑇𝑖(z) = 𝐾𝑖(𝑧𝑖)𝐾𝑖
−1(ℎ𝑖) ( 1025 ) 

If we evaluate the forces and displacements at the top of the i-th floor, we have: 
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{
 

 
𝑢𝑖(0)

𝑢𝑖
′(0)

𝑀𝑖(0)

𝑉𝑖(0)}
 

 

= 𝑇𝑖(0)

{
 

 
𝑢𝑖(ℎ𝑖)

𝑢𝑖
′(ℎ𝑖)

𝑀𝑖(ℎ𝑖)
𝑉𝑖(ℎ𝑖)}

 

 
 

( 1026 ) 

This equation shows the relationship of forces and displacements between the top and bottom of 

the ith floor.  

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the bottom to the top of the beam: 

For the first floor: 

{
 

 
𝑢1(0)

𝑢1
′ (0)

𝑀1(0)

𝑉1(0)}
 

 
= 𝑇1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 1027 ) 

For the second floor: 

{
 

 
𝑢2(0)

𝑢2
′ (0)

𝑀2(0)

𝑉2(0)}
 

 
= 𝑇2(0)𝑇1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 1028 ) 

For the third floor: 

{
 

 
𝑢3(0)

𝑢3
′ (0)

𝑀3(0)

𝑉3(0)}
 

 

= 𝑇3(0)𝑇2(0)𝑇1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 1029 ) 

For the nth floor (top of the beam): 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
= 𝑇𝑛(0)…𝑇2(0)𝑇1(0)

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 1030 ) 

Expressing the equation between product symbol: 
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{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
= t

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 1031 ) 

Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1032 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝐾𝑏𝑢(0)
′′ = 0

𝐾𝑏𝑢(0)
′′′ + 𝑓(0)𝑢(0)

′ = 0}
 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 1033 ) 

Replacing: 

{

𝑢𝑛(0)

𝑢𝑛
′ (0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 1034 ) 

Solving for the bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 1035 ) 

Which has a different solution than the trivial if the determinant is equal to zero (the coefficient matrix 

is singular). Solving the critical loads of the beam. 
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4.3.2 Shear Beam of a Field (SB) 

4.3.2.1 Case 1 

The potential energy of the SB model of a field is: 

𝑉 =
1

2
∫ 𝐾𝑠𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1036 ) 

Where: 

{𝐾𝑠 = (𝐾𝑏
−1 + 𝐾𝑐

−1)
−1
, 𝐾𝑏 =

12𝐸𝐼𝑣
𝑙ℎ

, 𝐾𝑐 =
𝜋2𝐸𝐼𝑐
ℎ2

} 
( 1037 ) 

The work done by the external force is: 

𝑊 = −∫ 𝑓(𝑥)𝑑𝑙
𝐻

0

= −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1038 ) 

Consequently, the total potential energy of the model is expressed as: 

𝒰 =
1

2
𝐾𝑠𝑢(𝑥)

′ 2
𝑑𝑥 −

1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1039 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ [𝐾𝑠𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ − 𝑓(𝑥)𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ ]𝑑𝑥
𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1040 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑠𝑢(𝑥)
′ 𝛿𝑢(𝑥)]

0

𝐻
− [𝑓(𝑥)𝑢(𝑥)

′ 𝛿𝑢(𝑥)]0
𝐻
−∫ [𝐾𝑠𝑢(𝑥)

′′ − 𝑓(𝑥)𝑢(𝑥)
′′ − 𝑓(𝑥)

′ 𝑢(𝑥)
′ ]𝛿𝑢(𝑥)𝑑𝑥

𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1041 ) 

Setting the terms equal to zero, the following equation results: 
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𝐾𝑠𝑢(𝑥)
′′ − 𝑓(𝑥)𝑢(𝑥)

′′ − 𝑓(𝑥)
′ 𝑢(𝑥)

′ = 0 ( 1042 ) 

And boundary conditions: 

{
𝑢(1) = 0

𝑢(0)
′ = 0

} 
( 1043 ) 

Integrating the equation once and evaluating at x=0: 

[𝐾𝑠 − 𝑓(𝑥)]𝑢(𝑥)
′ = 0 ( 1044 ) 

Equaling zero: 

𝐾𝑠 − 𝑓(𝑥) = 0 ( 1045 ) 

Normalizing the differential equation by the variable 𝑧 = 𝑥/𝐻: 

𝐾𝑠 −𝐻𝑓(𝑧) = 0 ( 1046 ) 

 Uniformly Distributed Load 

For the case of a uniformly distributed load, the function 𝛼(𝑧): 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 1047 ) 

Solving in z=1, we obtain: 

𝐾𝑠 − 𝑞𝐻 = 0 → 𝑞𝑐𝑟ì𝑡𝑖𝑐𝑜𝐻 = 𝐾𝑠 ( 1048 ) 

 Point Load at x=0 (z=0) 

For the case of a point load applied at x=0 (z=0), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1049 ) 

Solving it is found that the critical load: 

𝐾𝑠 − 𝑞 = 0 → 𝑞𝑐𝑟𝑖𝑡𝑖𝑐𝑜 = 𝐾𝑠 ( 1050 ) 
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4.3.2.2 Case 2 

According to the second order differential equation: 

𝐾𝑠𝑢(𝑥)
′′ − 𝑓(𝑥)𝑢(𝑥)

′′ = 0 ( 1051 ) 

Using the method of coefficients: 

𝐷2[𝐾𝑠 − 𝑓(𝑥)] = 0 → 𝑞𝑐𝑟ì𝑡𝑖𝑐𝑜 = 𝐾𝑠 ( 1052 ) 
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4.3.3 Timoshenko Beam of Two Field (TB) 

4.3.3.1 Case 1 

The potential energy of the two-field TB model is: 

𝑉 =
1

2
∫ {𝐾𝑏𝜃(𝑥)

′ 2
+ 𝐾𝑠[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝐻

0

𝑑𝑥 
( 1053 ) 

The work done by the external force is expressed as: 

𝑊 = −𝑓(𝑥)𝑑𝑙 = −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1054 ) 

Consequently, the total potential energy of the model is expressed as: 

𝒰 =
1

2
∫ {𝐾𝑏𝜃(𝑥)

′ 2
+𝐾𝑠[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝐻

0

𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1055 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ [𝐾𝑏𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ + 𝐾𝑠(𝜃(𝑥) − 𝑢(𝑥)
′ )(𝛿𝜃(𝑥) − 𝛿𝑢(𝑥)

′ ) − 𝑓(𝑥)𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ ]𝑑𝑥
𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1056 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏𝜃(𝑥)
′ 𝛿𝜃(𝑥)]0

𝐻
− {{𝐾𝑠[𝜃(𝑥) − 𝑢(𝑥)

′ ] + 𝑓(𝑥)𝑢(𝑥)
′ }𝛿𝑢(𝑥)}

0

𝐻

−∫ {𝐾𝑏𝜃(𝑥)
′′ − 𝐾𝑠[𝜃(𝑥) − 𝑢(𝑥)

′ ]}𝛿𝜃(𝑥)𝑑𝑥
𝐻

0

+∫ {𝐾𝑠[𝜃(𝑥)
′ − 𝑢(𝑥)

′′ ] + 𝑓(𝑥)𝑢(𝑥)
′′ + 𝑓(𝑥)

′ 𝑢(𝑥)
′ }𝛿𝑢(𝑥)𝑑𝑥

𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1057 ) 

Setting the terms equal to zero, the following equations result: 
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{
𝐾𝑏𝜃(𝑥)

′′ − 𝐾𝑠[𝜃(𝑥) − 𝑢(𝑥)
′ ] = 0

𝐾𝑠[𝜃(𝑥)
′ − 𝑢(𝑥)

′′ ]+ 𝑓(𝑥)𝑢(𝑥)
′′ + 𝑓

(𝑥)
′ 𝑢(𝑥)

′ = 0
} 

( 1058 ) 

And boundary conditions: 

{
𝜃(0)
′ = 0

𝐾𝑠[𝜃(0) − 𝑢(0)
′ ] + 𝑓(0)𝑢(0)

′ = 0
} 

( 1059 ) 

Integrating the equation once and evaluating at x=0: 

𝐾𝑠[𝜃(𝑥) − 𝑢(𝑥)
′ ] + 𝑓(𝑥)𝑢(𝑥)

′ = 0 ( 1060 ) 

We have a new system of coupled differential equations: 

{
𝐾𝑏𝜃(𝑥)

′′ − 𝐾𝑠[𝜃(𝑥) − 𝑢(𝑥)
′ ] = 0

𝐾𝑠[𝜃(𝑥) − 𝑢(𝑥)
′ ]+ 𝑓(𝑥)𝑢(𝑥)

′ = 0
} 

( 1061 ) 

From the equation we isolate the value of 𝑢(𝑥)
′ : 

𝑢(𝑥)
′ =

𝐾𝑠𝜃(𝑥) − 𝐾𝑏𝜃(𝑥)
′′

𝐾𝑠
 

( 1062 ) 

Substituting the equations into the equation: 

𝐾𝑏𝜃(𝑥)
′′ − 𝑓(𝑥) [

𝐾𝑏
𝐾𝑠
𝜃(𝑥)
′′ − 𝜃(𝑥)] = 0 

( 1063 ) 

Reordering: 

𝜃(𝑥)
′′ − 𝑓(𝑥) [

1

𝐾𝑠
𝜃(𝑥)
′′ −

1

𝐾𝑏
𝜃(𝑥)] = 0 

( 1064 ) 

A fourth order differential equation is obtained, where the critical load results from the smallest 

eigenvalue. Normalizing the differential equation by the variable 𝑧 = 𝑥/𝐻: 

𝜃(𝑧)
′′ − 𝑓(𝑧) [

1

𝐾𝑠
𝜃(𝑧)
′′ −

𝐻2

𝐾𝑏
𝜃(𝑧)] = 0 

( 1065 ) 
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We define two additional parameters: 

{𝛼 = 𝐻√
𝐾𝑠
𝐾𝑏
, 𝜆 =

𝑞𝐻3

𝐾𝑏
} 

( 1066 ) 

The equation can be rewritten as: 

𝜃(𝑧)
′′ − 𝜆𝛼(𝑧) [

1

𝛼2
𝜃(𝑧)
′′ − 𝜃(𝑧)] = 0 

( 1067 ) 

Where: 

𝑓(𝑧) = 𝑞𝛼(𝑧) ( 1068 ) 

Expressing the boundary conditions as a function of 𝜃(𝑧): 

{

𝜃(1) = 0

𝜃(0)
′ = 0

𝜃(0)
′′ = 0

} 

( 1069 ) 

 Uniformly Distributed Load 

The stability of the Tymoshenko beam (TB), the governing differential equation is of the form: 

[
𝑑2

𝑑𝑧2
]𝜃(𝑧) − 𝜆 {𝛼(𝑧) [

1

𝛼2
𝑑2

𝑑𝑧2
− 1]}𝜃(𝑧) = 0 

( 1070 ) 

Multiplying the equation by [
1

𝛼2
𝜃(𝑧)
′′ − 𝜃(𝑧)] and integrating from 0 to 1: 

∫ [
1

𝛼2
𝜃′′(𝑧)

2 − 𝜃(𝑧)𝜃(𝑧)
′′ ] 𝑑𝑧

1

0

− 𝜆∫ 𝛼(𝑧) [
1

𝛼2
𝜃(𝑧)
′′ − 𝜃(𝑧)]

2

𝑑𝑧
1

0

= 0 
( 1071 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

∫ [
1

𝛼2
𝜃′′(𝑧)

2 + 𝜃′(𝑧)
2 ]

1

0

𝑑𝑧 − 𝜆∫ 𝛼(𝑧) [
1

𝛼2
𝜃(𝑧)
′′ − 𝜃(𝑧)]

2

𝑑𝑧
1

0

= 0 
( 1072 ) 

Solving the parameter γ: 
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𝜆 =
∫ [

1
𝛼2
𝜃′′(𝑧)

2 + 𝜃′(𝑧)
2
] 𝑑𝑧

1

0

∫ 𝛼(𝑧) [
1
𝛼2
𝜃(𝑧)
′′ − 𝜃(𝑧)]

2

𝑑𝑧
1

0

 

( 1073 ) 

This Rayleigh ratio represents an approximation of the upper limit of the critical load, and it is 

exact if and only if the exact equilibrium curve 𝜃(𝑧) is used to calculate λ. 

For the case of a uniformly distributed load, the function 𝛼(𝑧) results in: 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 1074 ) 

The Rayleigh quotient becomes: 

𝜆 =
∫ [

1
𝛼2
𝜃′′(𝑧)

2 + 𝜃′(𝑧)
2
] 𝑑𝑧

1

0

∫ 𝑧 [
1
𝛼2
𝜃(𝑧)
′′ − 𝜃(𝑧)]

2

𝑑𝑧
1

0

 

( 1075 ) 

Taking into account the boundary conditions. We consider two simple polynomials of different 

degrees that satisfy the boundary condition: 

𝜙1
1 = 1− 𝑧4, 𝜙2

1 = 1− 𝑧5 ( 1076 ) 

Taking a linear combination of both terms: 

𝜃(𝑧) = 𝐴𝜙1
1 +𝐵𝜙2

1 = 𝐴(1 − 𝑧4) + 𝐵(1 − 𝑧5) ( 1077 ) 

We expand the integrals and substitute into the Rayleigh quotient: 

𝒰 = ∫ [
1

𝛼2
𝜃′′(𝑧)

2 + 𝜃′(𝑧)
2 ] 𝑑𝑧

1

0

− 𝜆∫ 𝑧 [
1

𝛼2
𝜃(𝑧)
′′ − 𝜃(𝑧)]

2

𝑑𝑧
1

0

 

Expanding the integrals and joining common terms: 

𝒰 = 𝐴2(𝑎1 − 𝜆𝑎2) + 𝐵
2(𝑏1 − 𝜆𝑏2) + 𝐴𝐵[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] ( 1078 ) 

Where: 
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{
 
 

 
 𝑎1 = 2.2857 + 28.8

1

𝛼2
, 𝑎2 = 0.2667 + 3

1

𝛼2
+ 24

1

𝛼4

𝑏1 = 2.7778 + 57.1429
1

𝛼2
, 𝑏2 = 0.2976 + 4

1

𝛼2
+ 50

1

𝛼4

(𝑎𝑏)1 = 5 + 80
1

𝛼2
, (𝑎𝑏)2 = 0.5628 + 6.8889

1

𝛼2
+ 68.5714

1

𝛼4}
 
 

 
 

 

( 1079 ) 

The condition for the critical load to be the minimum is expressed as: 

{

𝜕𝒰

𝜕𝐴
= 0 → 2(𝑎1 − 𝜆𝑎2)𝐴 + [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]𝐵 = 0

𝜕𝒰

𝜕𝐵
= 0 → [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]𝐴 + 2(𝑏1 − 𝜆𝑏2)𝐵 = 0

} 

( 1080 ) 

Expressing in matrix form: 

[
2(𝑎1 − 𝜆𝑎2) [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]

[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] 2(𝑏1 − 𝜆𝑏2)
] {
𝐴
𝐵
} = {

0
0
} 

( 1081 ) 

For a nontrivial solution (a and b cannot be equal to zero simultaneously), the determinant of the 

coefficient matrix for a and b must be equal to zero. Operating the determinant: 

[4𝑎2𝑏2 − (𝑎𝑏)2
2]𝜆2 + [2(𝑎𝑏)1(𝑎𝑏)2 − 4(𝑎1𝑏2 + 𝑎2𝑏1)]𝜆 + [4𝑎1𝑏1 − (𝑎𝑏)1

2] = 0 ( 1082 ) 

The minimum eigenvalue is obtained from the minimum root of the quadratic equation. 

{𝜆 =
𝑞𝐻3

𝐾𝑏2
→ 𝑞𝑐𝑟𝐻 = 𝜆

𝐾𝑏2
𝐻2
} 

( 1083 ) 

Which is the first approximation to the value of the critical load of the beam TB. For most practical 

cases the resulting critical load is accurate enough; In order to obtain a better approximation to the 

exact critical load, it is necessary to repeat the previous procedure with two new higher degree 

polynomials. 

The first polynomial to be considered will be the one with the highest degree of the previous 

iteration: 

𝜙1
2 = 1− 𝑧5 ( 1084 ) 
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To obtain a new polynomial of higher degree and that takes into account the eigenvalue calculated 

in the previous iteration, we will integrate the resulting differential equation of the TB beam model 

four times: 

𝜃(𝑧) =
1

𝛼2
𝜆∬ 𝛼(𝑧)𝜃(𝑧)

′′ 𝑑𝑧
𝑧

0

− 𝜆∬ 𝛼(𝑧)𝜃(𝑧)𝑑𝑧
𝑧

0

+ 𝐶1𝑧 + 𝐶0 
( 1085 ) 

For the case of a uniform load: 

𝜃(𝑧) =
1

𝛼2
𝜆∬ 𝑧𝜃(𝑧)

′′ 𝑑𝑧
𝑧

0

− 𝜆∬ 𝑧𝜃(𝑧)𝑑𝑧
𝑧

0

+ 𝐶1𝑧 + 𝐶0  
( 1086 ) 

When evaluating the boundary conditions, the constants 𝐶0, 𝐶1, 𝐶2 and 𝐶3 are determined and the 

new polynomial to be used in the second iteration is determined. 

𝜙2
2 =

1

𝛼2
𝜆∬ 𝑧𝜃(𝑧)

′′ 𝑑𝑧
𝑧

0

− 𝜆∬ 𝑧𝜃(𝑧)𝑑𝑧
𝑧

0

+ 𝐶1𝑧 + 𝐶0 
( 1087 ) 

Taking a linear combination of both terms: 

𝜃(𝑧) = 𝐴𝜙1
2 +𝐵𝜙2

2 = 𝐴𝜙2
1 +𝐵𝜙2

2 ( 1088 ) 

A closer approximation to the exact value can be achieved by repeating the two iteration steps, 

resulting in polynomials of higher and higher degree. Numerically it can be seen that with a fourth 

iteration the approximation can be considered exact. 
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Figure 93. Eigenvalue as a function of the parameter α≤10 for the case of a uniformly distributed axial load. 

 

Figure 94. Eigenvalue as a function of the parameter α≤100 for the case of a uniformly distributed axial load. 
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Tabla.4 Eigenvalue as a function of the parameter α≤100 for the case of a uniformly distributed axial load 

𝛼 𝛿 𝛼 𝛿 𝛼 𝛿 𝛼 𝛿 
0.00 0.00000 1.95 3.5845 4.90 6.7587 8.80 7.4754 

0.05 0.00254 2.00 3.7024 5.00 6.7968 8.90 7.4832 

0.10 0.01017 2.05 3.8166 5.10 6.8331 9.00 7.4907 

0.15 0.02289 2.10 3.9274 5.20 6.8675 9.10 7.4925 

0.20 0.04069 2.15 4.0352 5.30 6.9003 9.20 7.5051 

0.25 0.06357 2.20 4.1390 5.40 6.9315 9.30 7.5120 

0.30 0.09155 2.25 4.2395 5.50 6.9612 9.40 7.5187 

0.35 0.12461 2.30 4.3369 5.60 6.9895 9.50 7.5251 

0.40 0.16276 2.35 4.4312 5.70 7.0165 9.60 7.5314 

0.45 0.20600 2.40 4.5225 5.80 7.0423 9.70 7.5375 

0.50 0.25433 2.45 4.6108 5.90 7.0669 9.80 7.5434 

0.55 0.30775 2.50 4.6963 6.00 7.0904 9.90 7.5491 

0.60 0.36626 2.55 4.7790 6.10 7.1129 10.00 7.5547 

0.65 0.42986 2.60 4.8589 6.20 7.1344 12.50 7.6546 

0.70 0.49857 2.65 4.9363 6.30 7.1549 15.00 7.7097 

0.75 0.57236 2.70 5.0112 6.40 7.1747 17.50 7.7432 

0.80 0.65126 2.75 5.0836 6.50 7.1937 20.00 7.7651 

0.85 0.73525 2.80 5.1537 6.60 7.2118 22.50 7.7802 

0.90 0.82435 2.85 5.2214 6.70 7.2291 25.00 7.7910 

0.95 0.91855 2.90 5.2870 6.80 7.2458 27.50 7.7990 

1.00 1.01784 3.00 5.4118 6.90 7.2619 30.00 7.8051 

1.05 1.12224 3.10 5.5286 7.00 7.2773 32.50 7.8099 

1.10 1.23173 3.20 5.6381 7.10 7.2917 35.00 7.8136 

1.15 1.34630 3.30 5.7408 7.20 7.3063 37.50 7.8167 

1.20 1.46595 3.40 5.8370 7.30 7.3199 40.00 7.8192 

1.25 1.59065 3.50 5.9273 7.40 7.3331 42.50 7.8213 

1.30 1.72038 3.60 6.0122 7.50 7.3458 45.00 7.8230 

1.35 1.85507 3.70 6.0919 7.60 7.3580 47.50 7.8245 

1.40 1.99467 3.80 6.1669 7.70 7.3698 50.00 7.8257 

1.45 2.1390 3.90 6.2374 7.80 7.3812 52.50 7.8268 

1.50 2.28800 4.00 6.3039 7.90 7.3921 55.00 7.8277 

1.55 2.44121 4.10 6.3666 8.00 7.4027 57.50 7.8286 

1.60 2.59809 4.20 6.4257 8.10 7.4129 60.00 7.8293 

1.65 2.75783 4.30 6.4816 8.20 7.4228 65.00 7.8305 

1.70 2.92053 4.40 6.5343 8.30 7.4323 70.00 7.8314 

1.75 3.06883 4.50 6.5842 8.40 7.4415 80.00 7.8328 

1.80 3.20672 4.60 6.6314 8.50 7.4504 90.00 7.8338 

1.85 3.33738 4.70 6.6761 8.60 7.4590 100.00 7.8344 

1.90 3.46299 4.80 6.7185 8.70 7.4673 ∞ 7.8373 
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 Point Load at x=0 (z=0) 

For the case of a point load applied at x=0 (z=0), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1089 ) 

Substituting into the differential equation: 

𝜃(𝑧)
′′ +(

𝜆
𝐻

1 −
1
𝛼2

𝜆
𝐻

)𝜃(𝑧) = 0 

( 1090 ) 

The expression for 𝜃(𝑧) can be derived as: 

𝜃(𝑧) = 𝐶1 cos(√𝛽𝑧) + 𝐶2 sin(√𝛽𝑧) ( 1091 ) 

Where: 

𝛽 =

𝜆
𝐻

1 −
1
𝛼2

𝜆
𝐻

 

( 1092 ) 

The linear algebraic system resulting from the boundary conditions, written in matrix form, is: 

[
0 √𝛽

cos√𝛽 sin√𝛽
] {
𝐶1
𝐶2
} = {

0
0
} 

( 1093 ) 

Which has a solution different from the trivial one if the determinant is equal to zero (the matrix 

of coefficients is singular), that is, for: 

𝐶𝑜𝑠√𝛽 = 0 → √𝛽 = (2𝑛 − 1)
𝜋

2
 / 𝑛 = 1, 2, 3… 

( 1094 ) 

i.e., 

𝜆
𝐻

1 −
1
𝛼2
𝜆
𝐻

= (2𝑛 − 1)2
𝜋2

4
 

( 1095 ) 

After some simple manipulations: 
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𝜆

𝐻
=

1

4
(2𝑛 − 1)2𝜋2

+
1
𝛼2

 

( 1096 ) 

Replacing by its characteristic rigidities: 

𝑞𝑐𝑟 =
1

4𝐻2

(2𝑛 − 1)2𝜋2𝐾𝑏
+
1
𝐾𝑠

 

( 1097 ) 

Sorting out: 

𝑞𝑐𝑟 = {[(2𝑛 − 1)
2
𝜋2𝐾𝑏
4𝐻2

]

−1

+𝐾𝑠
−1}

−1

 

( 1098 ) 

For the case when n=1, we have: 

𝑞𝑐𝑟 = [(
𝜋2𝐾𝑏
4𝐻2

)

−1

+ 𝐾𝑠1
−1]

−1

= [𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ó𝑛 𝑔𝑙𝑜𝑏𝑎𝑙
−1 + 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒

−1]
−1

 

( 1099 ) 

Since the resulting critical load is independent of some approximation function, it can be 

considered exact and identical to the one that would be obtained by applying Föppl's theorem. 

4.3.3.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations: 

{
𝐾𝑏𝜃(𝑥)

′′ + 𝐾𝑠[𝑢(𝑥)
′ − 𝜃(𝑥)] = 0

𝐾𝑠[𝑢(𝑥)
′′ − 𝜃(𝑥)

′ ]− 𝑓(𝑥)𝑢(𝑥)
′′ = 0

} 

( 1100 ) 

Using the method of coefficients: 

[
𝐾𝑠𝐷 𝐾𝑏𝐷

2 −𝐾𝑠
(𝐾𝑠 − 𝑞)𝐷

2 −𝐾𝑠𝐷
] {
𝑢(𝑥)
𝜃(𝑥)

} = {
0
0
} 

( 1101 ) 

The expression for 𝑢(𝑧) and 𝜃(𝑧) is proposed: 
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{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cos(√𝜉𝑧) + 𝐶3 sin(√𝜉𝑧)

𝜃(𝑧) = 𝐶4 + 𝐶5 cos(√𝜉𝑧) + 𝐶6 sin(√𝜉𝑧)
} 

( 1102 ) 

Where: 

{𝜉 =
𝑞𝐾𝑠

(𝐾𝑠 − 𝑞)𝐾𝑏
, 𝛼∗ = √

𝐾𝑠
𝐾𝑏
} 

( 1103 ) 

Expressing the coefficients of the function 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

𝜃(𝑧) = 𝐶1 − [
𝐾𝑠√𝜉 sin(√𝜉𝑧)

𝜉
𝛼∗2

+ 1
]𝐶2 + [

√𝜉 cos(√𝜉𝑧)

𝜉
𝛼∗2

+ 1
]𝐶3 

( 1104 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 

{
  
 

  
 

𝑀(𝑧) = 𝐾𝑏𝜃(𝑧)
′ = −[

𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
cos(√𝜉𝑧)]𝐶2 − [

𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
sin(√𝜉𝑧)]𝐶3

𝑉(𝑧) = (𝑞 − 𝐾𝑠)𝑢(𝑥)
′ +𝐾𝑠𝜃(𝑥) = (𝑞)𝐶1 + [(

𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
− 𝑞) 𝑟 sin(√𝜉𝑧)]𝐶2 − [(

𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
− 𝑞)√𝜉 cos(√𝜉𝑧)]𝐶3

}
  
 

  
 

 

 ( 1105 ) 

Writing the equations in matrix form: 

{

𝑢𝑖(𝑧𝑖)
𝜃𝑖(𝑧𝑖)

𝑀𝑖(𝑧𝑖)
𝑉𝑖(𝑧𝑖)

} = 𝐾𝑖(𝑧𝑖){

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 1106 ) 

Where: 
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𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
 
 
 
 
 1 𝑧𝑖 cos(√𝜉𝑧) sin(√𝜉𝑧)

0 1 −
𝐾𝑠√𝜉 sin(√𝜉𝑧)

𝜉
𝛼∗2

+ 1
−

𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
sin(√𝜉𝑧)

0 0 −
𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
cos(√𝜉𝑧) −

𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
sin(√𝜉𝑧)

0 𝑞 (
𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
− 𝑞)√𝜉 sin(√𝜉𝑧) −(

𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
− 𝑞)√𝜉 cos(√𝜉𝑧)

]
 
 
 
 
 
 
 
 
 
 

𝑖

 

( 1107 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the base to the top of the beam and expressing the equation between 

the product symbol: 

{
 

 
𝑢𝑛(0)

𝜃𝑛(0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
= t

{
 

 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 1108 ) 

Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1109 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝜃(1) = 0

𝐾𝑏𝜃(0)
′ = 0

(𝑞 − 𝐾𝑠)𝑢(0)
′ +𝐾𝑠𝜃(0) = 0}

 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝜃1(ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 1110 ) 

Replacing: 
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{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 1111 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 1112 ) 

Which has a different solution than the trivial if the determinant is equal to zero (the coefficient matrix 

is singular). Solving the critical loads of the beam. 
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4.3.4 Parallel Coupling of Bending Beam and Shear Beam of a Field (CTB) - 
Translational Behavior 

4.3.4.1 Case 1 

The potential energy of the CTB model of a field is: 

𝑉 =
1

2
∫ [𝐾𝑏2𝑢(𝑥)

′′ 2
+ 𝐾𝑠1𝑢(𝑥)

′ 2
]

𝐻

0

𝑑𝑥 
( 1113 ) 

Where:  

{𝐾𝑏 =∑𝑟𝐸𝐼𝑖

𝑛

𝑖=1

 , 𝐾𝑠 = (𝐾𝑏
−1 + 𝐾𝑐

−1)
−1
, 𝐾𝑐 =∑

𝜋2𝐸𝐼𝑖
ℎ2

𝑛

𝑖=1

 , 𝐾𝑏 = ∑
12𝐸𝐼𝑏
𝑙ℎ

𝑛−1

𝑖=1

 , 𝑟 =
𝐾𝑐

𝐾𝑐 +𝐾𝑏
} 

( 1114 ) 

The work done by the external force is expressed as: 

𝑊 = −𝑓(𝑥)𝑑𝑙 = −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1115 ) 

Consequently, the total potential energy of the model is expressed as: 

𝒰 =
1

2
∫ [𝐾𝑏2𝑢(𝑥)

′′ 2
+𝐾𝑠1𝑢(𝑥)

′ 2
]

𝐻

0

𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1116 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ [𝐾𝑏2𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′′ +𝐾𝑠1𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ − 𝑓(𝑥)𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ ]𝑑𝑥
𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1117 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏2𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′ ]
0

𝐻
+ {[𝐾𝑠1𝑢(𝑥)

′ −𝐾𝑏2𝑢(𝑥)
′′′ − 𝑓(𝑥)𝑢(𝑥)

′ ]𝛿𝑢(𝑥)}0
𝐻

+∫ [𝐾𝑏2𝑢(𝑥)
′′′′ − 𝐾𝑠1𝑢(𝑥)

′′ + 𝑓(𝑥)
′ 𝑢(𝑥)

′ + 𝑓(𝑥)𝑢(𝑥)
′′ ]𝛿𝑢(𝑥)𝑑𝑥

𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1118 ) 
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Setting the terms equal to zero, the following equation results: 

𝐾𝑏2𝑢(𝑥)
′′′′ −𝐾𝑠1𝑢(𝑥)

′′ + 𝑓(𝑥)
′ 𝑢(𝑥)

′ + 𝑓(𝑥)𝑢(𝑥)
′′ = 0 ( 1119 ) 

And boundary conditions: 

{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

[𝑓(0) − 𝐾𝑠1] 𝑢(0)
′ + 𝐾𝑏2𝑢(0)

′′′ = 0}
 
 

 
 

 

( 1120 ) 

Integrating the equation once and evaluating at x=0: 

𝑢(𝑥)
′′′ −

𝐾𝑠1
𝐾𝑏2

𝑢(𝑥)
′ +

𝑓(𝑥)

𝐾𝑏2
𝑢(𝑥)
′ = 0 

( 1121 ) 

A third order differential equation is obtained, where the critical load results from the smallest 

eigenvalue. Normalizing the differential equation by the variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′ −

𝐾𝑠1
𝐾𝑏2

𝐻2𝑢(𝑧)
′ +

𝑓(𝑧)

𝐾𝑏2
𝐻3𝑢(𝑧)

′ = 0 
( 1122 ) 

The equation can be rewritten as: 

𝑢(𝑧)
′′′ − 𝛼2𝑢(𝑧)

′ + 𝜆𝛼(𝑧)𝑢(𝑧)
′ = 0 ( 1123 ) 

Where: 

{𝛼 = 𝐻√
𝐾𝑠1
𝐾𝑏2

, 𝜆 =
𝑞𝐻3

𝐾𝑏2
} 

( 1124 ) 

 Uniformly Distributed Load 

The stability of the sandwich beam (CTB), the governing differential equation is of the form: 

(
𝑑3

𝑑𝑧3
− 𝛼2

𝑑

𝑑𝑧
)𝑢(𝑧) − 𝜆 [−𝛼(𝑧)

𝑑

𝑑𝑧
]𝑢(𝑧) = 0 

( 1125 ) 
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Multiplying the equation by [𝑢(𝑧)
′ ] and integrating from 0 to 1: 

∫ [𝑢(𝑧)
′ 𝑢(𝑧)

′′′ − 𝛼2𝑢′(𝑧)
2 ]𝑑𝑧

1

0

+ 𝜆∫ 𝛼(𝑧)[𝑢(𝑧)
′ ]

2
𝑑𝑧

1

0

= 0 
( 1126 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

∫ [−𝑢′′(𝑧)
2
− 𝛼2𝑢′(𝑧)

2 ]𝑑𝑧
1

0

+ 𝜆∫ 𝛼(𝑧)[𝑢(𝑧)
′ ]

2
𝑑𝑧

1

0

= 0 
( 1127 ) 

Clearing the parameter λ: 

𝜆 =
∫ [𝑢′′(𝑧)

2
+ 𝛼2𝑢′(𝑧)

2 ]𝑑𝑧
1

0

∫ 𝛼(𝑧)𝑢′(𝑧)
2 𝑑𝑧

1

0

 

( 1128 ) 

Where λ is the Rayleigh quotient. 

For the case of a uniformly distributed load, the function 𝛼(𝑧) results in: 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 1129 ) 

The Rayleigh quotient becomes: 

𝜆 =
∫ [𝑢′′(𝑧)

2
+ 𝛼2𝑢′(𝑧)

2 ]𝑑𝑧
1

0

∫ 𝑧𝑢′(𝑧)
2 𝑑𝑧

1

0

 

( 1130 ) 

Taking into account the boundary conditions. We consider two simple polynomials of different 

degrees that satisfy the boundary condition: 

𝜙1
1 = 1−

4

3
𝑧 +

1

3
𝑧4 , 𝜙2

1 = 1 −
5

4
𝑧 +

1

4
𝑧5 

( 1131 ) 

Taking a linear combination of both terms: 

𝑢(𝑧) = 𝐴𝜙1
1 +𝐵𝜙2

1 = 𝐴(1 −
4

3
𝑧 +

1

3
𝑧4) + 𝐵 (1 −

5

4
𝑧 +

1

4
𝑧5) 

( 1132 ) 

We expand the integrals and substitute into the Rayleigh quotient: 
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𝒰 = ∫ [𝑢′′(𝑧)
2
+ 𝛼2𝑢′(𝑧)

2 ]𝑑𝑧
1

0

− 𝜆∫ 𝑧[𝑢(𝑧)
′ ]

2
𝑑𝑧

1

0

 
( 1133 ) 

Expanding the integrals and grouping common terms: 

𝒰 = 𝐴2[(3.2 + 1.1429𝛼2) − 0.4𝜆] + 𝐵2[(3.5714 + 1.1111𝛼2) − 0.4167𝜆]

+ 𝐴𝐵[(6.6667 + 2.25𝛼2) − 0.8148𝜆] ( 1134 ) 

The condition for the critical load to be the minimum is expressed as: 

{

𝜕𝒰

𝜕𝐴
= 0 → [(6.4 + 2.2858𝛼2) − 0.8𝜆]𝐴 + [(6.6667 + 2.25𝛼2) − 0.8148𝜆]𝐵 = 0

𝜕𝒰

𝜕𝐵
= 0 → [(6.6667 + 2.25𝛼2) − 0.8148𝜆]𝐴 + [(7.1428 + 2.2222𝛼2) − 0.8334𝜆]𝐵 = 0

} 

( 1135 ) 

Expressing in matrix form: 

[
(6.4 + 2.2858𝛼2) − 0.8𝜆 (6.6667 + 2.25𝛼2) − 0.8148𝜆

(6.6667 + 2.25𝛼2) − 0.8148𝜆 (7.1428 + 2.2222𝛼2) − 0.8334𝜆
] {
𝐴
𝐵
} = {

0
0
} 

( 1136 ) 

For a nontrivial solution (a and b cannot be equal to zero simultaneously), the determinant of the 

coefficient matrix for a and b must be equal to zero. Operating the determinant: 

𝜆2 − (66.8571 + 5.7857𝛼2)𝜆 + (6.1473𝛼4 + 200.0205𝛼2 + 462.4561) = 0 ( 1137 ) 

The minimum eigenvalue is obtained from the minimum root of the quadratic equation. 

{
𝜆1 = (33.4286 + 2.8929𝛼

2) − √2.2213𝛼4 − 6.6123𝛼2 + 655.0133

𝑞𝑐𝑟𝐻 = 𝜆1
𝐾𝑏
𝐻2

→ 𝑞𝑐𝑟𝐻 = 𝜆1
𝐾𝑏
𝐻2

} 

( 1138 ) 

Which is the first approximation to the value of the critical load of the beam. 

 2nd Iteration: 

The first polynomial to be considered will be the one with the highest degree of the previous 

iteration: 

𝜙1
2 = 1−

5

4
𝑧 +

1

4
𝑧5 

( 1139 ) 
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To obtain a new polynomial of higher degree and that takes into account the eigenvalue calculated 

in the previous iteration, we will integrate the differential equation resulting from the beam model 

three times: 

𝑢(𝑧) =∬ 𝛼2𝑢(𝑧)𝑑𝑧
𝑧

0

− 𝜆∭ 𝛼(𝑧)𝑢(𝑧)
′ 𝑑𝑧𝑑𝑧

𝑧

0

+ 𝐶2𝑧
2 + 𝐶1𝑧 + 𝐶0 

( 1140 ) 

For the case of a uniform load: 

𝑢(𝑧) =∬ 𝛼2𝑢(𝑧)𝑑𝑧
𝑧

0

− 𝜆∭ 𝑧𝑢(𝑧)
′ 𝑑𝑧𝑑𝑧

𝑧

0

+ 𝐶2𝑧
2 + 𝐶1𝑧 + 𝐶0 

( 1141 ) 

When evaluating the boundary conditions, the constants 𝐶0, 𝐶1, 𝐶2 and 𝐶3 are determined and the 

new polynomial 𝜙2
2 to be used in the second iteration is determined. 

Taking a linear combination of both terms: 

𝑢(𝑧) = 𝐴𝜙1
2 + 𝐵𝜙2

2 ( 1142 ) 

Solving similarly to iteration 1, the new eigenvalue 𝜆2 is obtained. A closer approximation to the 

exact value can be achieved by repeating the two iteration steps, resulting in polynomials of higher 

and higher degree. Numerically it is observed that with a third iteration the approximation can be 

considered exact. 
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Figure 95. Eigenvalue as a function of the parameter α≤50 for the case of a uniformly distributed axial load. 

 

Figure 96. Eigenvalue as a function of the parameter α≤300 for the case of a uniformly distributed axial load. 
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Tabla.5 Eigenvalue as a function of the parameter α≤15.5 for the case of a uniformly distributed axial load 

𝛼 𝛿 𝛼 𝛿 𝛼 𝛿 𝛼 𝛿 

0.00 7.837 3.90 43.195 7.80 117.373 11.70 226.025 

0.10 7.867 4.00 44.695 7.90 119.664 11.80 229.348 

0.20 7.957 4.10 46.214 8.00 121.980 11.90 232.699 

0.30 8.107 4.20 47.753 8.10 124.321 12.00 236.076 

0.40 8.316 4.30 49.310 8.20 126.687 12.10 239.481 

0.50 8.583 4.40 50.887 8.30 129.079 12.20 242.914 

0.60 8.909 4.50 52.483 8.40 131.207 12.30 246.374 

0.70 9.291 4.60 54.099 8.50 133.938 12.40 249.861 

0.80 9.730 4.70 55.733 8.60 136.406 12.50 253.376 

0.90 10.224 4.80 57.387 8.70 138.899 12.60 256.919 

1.00 10.772 4.90 59.061 8.80 141.419 12.70 260.489 

1.10 11.372 5.00 60.755 8.90 143.964 12.80 264.086 

1.20 12.023 5.10 62.468 9.00 146.535 12.90 267.711 

1.30 12.724 5.20 64.202 9.10 149.133 13.00 271.364 

1.40 13.472 5.30 65.955 9.20 151.757 13.10 275.044 

1.50 14.267 5.40 67.729 9.30 154.406 13.20 278.752 

1.60 15.106 5.50 69.523 9.40 157.083 13.30 282.487 

1.70 15.988 5.60 71.337 9.50 159.785 13.40 286.250 

1.80 16.911 5.70 73.173 9.60 162.514 13.50 290.041 

1.90 17.873 5.80 75.032 9.70 165.270 13.60 293.859 

2.00 18.873 5.90 76.918 9.80 168.052 13.70 297.705 

2.10 19.908 6.00 78.815 9.90 170.861 13.80 301.579 

2.20 20.978 6.10 80.734 10.00 173.696 13.90 305.480 

2.30 22.080 6.20 82.675 10.10 176.558 14.00 309.409 

2.40 23.214 6.30 84.638 10.20 179.447 14.10 313.366 

2.50 24.377 6.40 86.624 10.30 182.363 14.20 317.351 

2.60 25.568 6.50 88.633 10.40 185.306 14.30 321.363 

2.70 26.786 6.60 90.667 10.50 188.276 14.40 325.403 

2.80 28.030 6.70 92.725 10.60 191.272 14.50 329.471 

2.90 29.300 6.80 94.810 10.70 194.296 14.60 333.566 

3.00 30.593 6.90 96.922 10.80 197.347 14.70 337.689 

3.10 31.909 7.00 99.063 10.90 200.424 14.80 341.840 

3.20 33.247 7.10 101.233 11.00 203.529 14.90 346.019 

3.30 34.607 7.20 103.435 11.10 206.661 15.00 350.225 

3.40 35.988 7.30 105.672 11.20 209.821 15.10 354.460 

3.50 37.389 7.40 107.945 11.30 213.007 15.20 358.722 

3.60 38.811 7.50 110.257 11.40 216.221 15.30 363.012 

3.70 40.253 7.60 112.612 11.50 219.462 15.40 367.329 

3.80 41.714 7.70 115.014 11.60 222.730 15.50 371.675 
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Tabla.6 Eigenvalue as a function of the parameter α≤300 for the case of a uniformly distributed axial load. 

𝛼 𝛿 𝛼 𝛿 𝛼 𝛿 𝛼 𝛿 

15.6 376.048 19.50 568.355 28.50 1174.521 46.5 3068.003 

15.7 380.449 19.60 573.844 28.75 1194.599 47.0 3133.569 

15.8 384.878 19.70 579.362 29.00 1214.851 47.5 3199.837 

15.9 389.335 19.80 584.907 29.25 1235.279 48.0 3266.807 

16.0 393.820 19.90 590.481 29.5 1255.882 48.5 3334.477 

16.1 398.332 20.00 596.082 29.75 1276.660 49.0 3402.848 

16.2 402.873 20.25 610.207 30.0 1297.613 49.5 3471.921 

16.3 407.441 20.50 624.508 30.5 1340.045 50.0 3541.695 

16.4 412.037 20.75 638.983 31.0 1383.178 55.0 4277.999 

16.5 416.661 21.00 653.633 31.5 1427.012 60.0 5084.421 

16.6 421.313 21.25 668.458 32.0 1471.547 65.0 5960.964 

16.7 425.992 21.50 683.458 32.5 1516.782 70.0 6907.628 

16.8 430.700 21.75 698.633 33.0 1562.719 75.0 7924.413 

16.9 435.435 22.00 713.983 33.5 1609.357 80.0 9011.319 

17.0 440.199 22.25 729.508 34.0 1656.695 85.0 10168.348 

17.1 444.990 22.50 745.208 34.5 1704.735 90.0 11395.499 

17.2 449.809 22.75 761.082 35.0 1753.475 95.0 12692.772 

17.3 454.656 23.00 777.132 35.5 1802.917 100 14060.167 

17.4 459.531 23.25 793.357 36.0 1853.059 105 15497.684 

17.5 464.434 23.50 809.757 36.5 1903.903 110 17005.324 

17.6 469.365 23.75 826.331 37.0 1955.447 120 20230.972 

17.7 474.323 24.00 843.081 37.5 2007.693 130 23737.109 

17.8 479.310 24.25 860.006 38.0 2060.640 140 27523.737 

17.9 484.324 24.50 877.106 38.5 2114.287 150 31590.856 

18.0 489.367 24.75 894.381 39.0 2168.636 160 35938.465 

18.1 494.437 25.00 911.831 39.5 2223.686 170 40566.565 

18.2 499.535 25.25 929.456 40.0 2279.437 180 45475.155 

18.3 504.661 25.50 947.257 40.5 2335.889 190 50664.236 

18.4 509.816 25.75 965.232 41.0 2393.043 200 56133.808 

18.5 514.998 26.00 983.383 41.5 2450.897 210 61883.871 

18.6 520.208 26.25 1001.708 42.0 2509.452 220 67914.424 

18.7 525.445 26.50 1020.209 42.5 2568.709 230 74225.468 

18.8 530.711 26.75 1038.885 43.0 2628.667 240 80817.003 

18.9 536.005 27.00 1057.736 43.5 2689.325 250 87689.029 

19.0 541.327 27.25 1076.763 44.0 2750.685 260 94841.546 

19.1 546.677 27.50 1095.964 44.5 2812.747 270 102274.553 

19.2 552.054 27.75 1115.341 45.0 2875.509 280 109988.051 

19.3 557.460 28.00 1134.892 45.5 2938.972 290 117982.040 

19.4 562.893 28.25 1154.619 46.0 3003.137 300 126256.520 
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 Point Load at x=0 (z=0) 

For the case of a point load applied at x=0 (z=0), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1143 ) 

Substituting into the differential equation: 

𝑢(𝑧)
′′′ + (𝜆 𝐻⁄ − 𝛼2)𝑢(𝑧)

′ = 0 ( 1144 ) 

The expression for 𝑢(𝑧) can be derived as: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝐶𝑜𝑠 (√𝜆 𝐻⁄ − 𝛼2𝑧) + 𝐶2𝑆𝑒𝑛 (√𝜆 𝐻⁄ − 𝛼2𝑧) 
( 1145 ) 

The linear algebraic system resulting from the boundary conditions, written in matrix form, is: 

[
 
 
 
 1 cos (√𝜆 𝐻⁄ − 𝛼2) sin (√𝜆 𝐻⁄ − 𝛼2)

0 − sin(√𝜆 𝐻⁄ − 𝛼2) cos (√𝜆 𝐻⁄ − 𝛼2)

0 cos (√𝜆 𝐻⁄ − 𝛼2) 0 ]
 
 
 
 

{
𝐶0
𝐶1
𝐶2

} = 0 

( 1146 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular), that is: 

𝐶𝑜𝑠 (√𝜆 𝐻⁄ − 𝛼2) = 0 → √𝜆 𝐻⁄ − 𝛼2 = (2𝑛 − 1)
𝜋

2
 / 𝑛 = 1, 2, 3 … 

( 1147 ) 

Solving, it is found that the critical load is: 

𝑞𝑐𝑟 = 𝐾𝑠 + (2𝑛 − 1)
2
𝜋2

4

𝐾𝑏
𝐻2

 
( 1148 ) 

For the case when n=1, we have: 

𝑞𝑐𝑟 = 𝐾𝑠 +
𝜋2𝐾𝑏
4𝐻2

= 𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ò𝑛 + 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒 
( 1149 ) 
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Since the resulting critical load is independent of some approximation function, it can be 

considered exact and identical to the one that would be obtained by applying Föppl's theorem. 

4.3.4.2 Case 2 

 Calculation of the Transfer Matrix 

According to fourth degree differential equations: 

𝐾𝑏2𝑢(𝑥)
′′′′ + (𝑞 − 𝐾𝑠1)𝑢(𝑥)

′′ = 0 
( 1150 ) 

Using the method of coefficients: 

𝐷2(𝐷2 + 𝑟2) = 0 ( 1151 ) 

The expression for 𝑢(𝑧) and 𝑢′(𝑧) is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cos(√𝜉𝑧) + 𝐶3 sin(√𝜉𝑧)

𝑢(𝑧)
′ = 𝐶1 − 𝐶2√𝜉 sin(√𝜉𝑧) + 𝐶3√𝜉 cos(√𝜉𝑧)

} 
( 1152 ) 

Where: 

{𝜉 =
𝑞 − 𝐾𝑠1
𝐾𝑏2

, 𝛼∗ = √
𝐾𝑠1
𝐾𝑏2

} 

( 1153 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 

{
𝑀(𝑧) = 𝐾𝑏2𝑢(𝑥)

′′ = −[𝜉𝐾𝑏2 cos(√𝜉𝑧)]𝐶2 − [𝜉𝐾𝑏2 sin(√𝜉𝑧)]𝐶3

𝑉(𝑧) = 𝐾𝑏2𝑢(𝑥)
′′′ + (𝑞 − 𝐾𝑠1)𝑢(𝑥)

′ = (𝑞 − 𝐾𝑠1)𝐶1
} 

( 1154 ) 

Writing the equations in matrix form: 

{
 

 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑀𝑖(𝑧𝑖)
𝑉𝑖(𝑧𝑖)}

 

 
= 𝐾𝑖(𝑧𝑖) {

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 1155 ) 
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Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 1 𝑧𝑖 cos(√𝜉𝑧) sin(√𝜉𝑧)

0 1 −√𝜉 sin(√𝜉𝑧) √𝜉 cos(√𝜉𝑧)

0 0 −𝜉𝐾𝑏2 cos(√𝜉𝑧) −𝜉𝐾𝑏2 sin(√𝜉𝑧)

0 𝑞 − 𝐾𝑠1 0 0 ]
 
 
 
 

𝑖

 

( 1156 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the base to the top of the beam and expressing the equation between 

the product symbol: 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
= t

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 1157 ) 

Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1158 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝐾𝑏2𝑢(0)
′′ = 0

𝐾𝑏2𝑢(0)
′′′ + (𝑞 − 𝐾𝑠1)𝑢(0)

′ = 0}
 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 1159 ) 

Replacing: 

{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 1160 ) 
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Solving for bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 1161 ) 

Which has a different solution than the trivial if the determinant is equal to zero (the coefficient matrix 

is singular). Solving the critical loads of the beam. 
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4.3.5 Parallel Coupling of Bending Beam and Shear Beam of a Field (CTB) - 
Torsional Behavior 

Just as the torsional displacement analysis can be derived based on the analogy that exists between 

the stresses of thin-walled structures in bending and torsion, the torsional stability analysis of a 

structural core can also be extended using this analogy. The model to be used is a thin-walled open 

cross-section equivalent cantilever having an effective Saint Venant stiffness (𝐺𝐽𝑒) and 

deformation stiffness (𝐸𝐼𝑤). 

4.3.5.1 Case 1 

When analyzing the balance of an elementary section of the structural core, its differential equation 

is: 

𝐸𝐼𝑤𝜑
′′′′ − 𝐺𝐽∗𝜑′′ +𝑚(𝑥)

′ 𝜑(𝑥)
′ +𝑚(𝑥)𝜑(𝑥)

′′ = 0 ( 1162 ) 

Where: 

{
 
 
 

 
 
 

𝐽∗ = 𝐽 + 𝐽̅

𝐽 =
1

3
∑ℎ𝑖𝑣𝑖

3

𝑚

𝑖=1

(𝑆𝑒𝑐. 𝑎𝑏𝑖𝑒𝑟𝑡𝑎 ), 𝐽 =
4𝐴0

2

∑
ℎ𝑖
𝑣𝑖

𝑚
𝑖=1

(𝑆𝑒𝑐. 𝑐𝑒𝑟𝑟𝑎𝑑𝑎),

𝐽 ̅ =
4𝐴0

2

𝑙3𝑠𝐺
12𝐸𝐼𝑏

+
1.2𝑙𝑠
𝐴𝑏

, 𝐴𝑏 = 𝑡𝑏𝑑, 𝐼𝑏 =
𝑡𝑏𝑑

3

12
}
 
 
 

 
 
 

 

( 1163 ) 

Boundary conditions: 

{
 
 

 
 

𝜑(1) = 0

𝜑(1)
′ = 0

𝜑(0)
′′ = 0

(𝑓(0) − 𝐺𝐽
∗)𝜑(0)

′ + 𝐸𝐼𝑤𝜑(0)
′′′ = 0}

 
 

 
 

 

( 1164 ) 

The differential equation is identical to the equation presented for the case of the stability analysis 

of a CTB beam, with the difference that only the nomenclature of its stiffnesses changes; 

furthermore, the same boundary conditions hold, so the solution given in the previous section is 

completely valid for the pure torsional analysis of a structural core. To solve it, it is necessary to 

use the equivalent stiffnesses: 
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{
𝐾𝑏 → 𝐸𝐼𝑤
𝐾𝑠 → 𝐺𝐽
𝜌𝐴 → 𝜌𝐼

} 

( 1165 ) 

4.3.5.2 Case 2 

 Calculation of the Transfer Matrix 

According to fourth degree differential equations: 

𝐸𝐼𝑤𝜑
′′′′ − 𝐺𝐽∗𝜑′′ +𝑚(𝑥)𝜑(𝑥)

′′ = 0 ( 1166 ) 

Using the method of coefficients: 

𝐷2(𝐷2 + 𝑟2) = 0 ( 1167 ) 

The expression for 𝜑
(𝑧)

 and 𝜑′(𝑧) is proposed: 

{
𝜑(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cos(√𝜉𝑧) + 𝐶3 sin(√𝜉𝑧)

𝜑(𝑧)
′ = 𝐶1 − 𝐶2𝑟 sin(√𝜉𝑧) + 𝐶3𝑟 cos(√𝜉𝑧)

} 
( 1168 ) 

Where: 

{𝜉 =
𝑚 − 𝐺𝐽∗

𝐸𝐼𝑤
, 𝛼∗ = √

𝐺𝐽∗

𝐸𝐼𝑤
} 

( 1169 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 

{
𝑀(𝑧) = 𝐸𝐼𝑤𝜑(𝑥)

′′ = −[𝜉𝐸𝐼𝑤 cos(√𝜉𝑧)]𝐶2 − [𝜉𝐸𝐼𝑤 sin(√𝜉𝑧)]𝐶3

𝑉(𝑧) = 𝐸𝐼𝑤𝜑(𝑥)
′′′ + (𝑚 − 𝐺𝐽∗)𝜑(𝑥)

′ = (𝑞 − 𝐺𝐽∗)𝐶1
} 

( 1170 ) 

Writing the equations in matrix form: 
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{
 

 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑀𝑖(𝑧𝑖)
𝑉𝑖(𝑧𝑖)}

 

 
= 𝐾𝑖(𝑧𝑖) {

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 1171 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 1 𝑧𝑖 cos(√𝜉𝑧) sin(√𝜉𝑧)

0 1 −√𝜉 sin(√𝜉𝑧) √𝜉 cos(√𝜉𝑧)

0 0 −𝜉𝐸𝐼𝑤 cos(√𝜉𝑧) −𝜉𝐸𝐼𝑤 sin(√𝜉𝑧)

0 𝑞 − 𝐺𝐽∗ 0 0 ]
 
 
 
 

𝑖

 

( 1172 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the base to the top of the beam and expressing the equation between 

the product symbol: 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
= t

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 1173 ) 

Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1174 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝐸𝐼𝑤𝑢(0)
′′ = 0

𝐸𝐼𝑤𝑢(0)
′′′ + (𝑞 − 𝐺𝐽∗)𝑢(0)

′ = 0}
 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 1175 ) 

Replacing: 
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{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 1176 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 1177 ) 

Which has a different solution than the trivial if the determinant is equal to zero (the coefficient matrix 

is singular). Solving the critical loads of the beam. 
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4.3.6 Sandwich Beam of Two Field (SWB) 

4.3.6.1 Case 1 

The potential energy of the two-field SWB model is expressed as follows: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+ 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑏2𝑢(𝑥)

′′ 2
𝐻

0

𝑑𝑥 
( 1178 ) 

 Coupled shear wall: 

{
  
 

  
 𝐾𝑏1 =∑𝐸𝐴𝑤,𝑖𝑐𝑖

2

𝑤

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑤𝑖

𝑤

𝑖=1

, 𝐾𝑠1 = (𝐾𝑏
−1 +𝐾𝑤

−1)
−1

𝐾𝑏 =∑
6𝐸𝐼𝑣[(𝑙

∗ + 𝑆1)
2 + (𝑙∗ + 𝑆2)

2]

𝑙∗3ℎ (1 + 12
𝜌𝐸𝐼𝑏
𝑙∗2𝐺𝐴𝑏

)

𝑏

𝑖=1

 , 𝐾𝑤 =∑
𝜋2𝐸𝐼𝑤
ℎ2

𝑤

𝑖=1

, 𝑟 =
𝐾𝑐

𝐾𝑐 + 𝐾𝑏
 

}
  
 

  
 

 

( 1179 ) 

 Frame: 

{
 
 

 
 𝐾𝑏1 =∑𝐸𝐴𝑐,𝑖𝑐𝑖

2

𝑐

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

, 𝐾𝑠1 = (𝐾𝑏
−1 + 𝐾𝑐

−1)
−1

𝐾𝑏 =∑
12𝐸𝐼𝑏,𝑖
𝑙ℎ

𝑏

𝑖=1

, 𝐾𝑐 =∑
𝜋2𝐸𝐼𝑐,𝑖
ℎ2

𝑐

𝑖=1

, 𝑟 =
𝐾𝑐

𝐾𝑐 +𝐾𝑏 }
 
 

 
 

 

( 1180 ) 

The work done by the external force is expressed as: 

𝑊 = −𝑓(𝑥)𝑑𝑙 = −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1181 ) 

Consequently, the total potential energy of the model is expressed as: 

𝒰 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
+ 𝐾𝑏2𝑢(𝑥)

′′ 2
}

𝐻

0

𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1182 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 
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𝛿𝒰 = ∫ {𝐾𝑏1𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ + 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)
′ ]𝛿𝜃(𝑥) −𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]𝛿𝑢(𝑥)
′ + 𝐾𝑏2𝑢(𝑥)

′′ 𝛿𝑢(𝑥)
′′

𝐻

0

− 𝑓(𝑥)𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ }𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1183 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏1𝜃(𝑥)
′ 𝛿𝜃(𝑥)]0

𝐻
+ [𝐾𝑏2𝑢(𝑥)

′′ 𝛿𝑢(𝑥)
′ ]

0

𝐻
− {{𝐾𝑏2𝑢(𝑥)

′′′ + 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)
′ ] + 𝑓(𝑥)𝑢(𝑥)

′ }𝛿𝑢(𝑥)}
0

𝐻

+∫ {𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)
′ ] − 𝐾𝑏1𝜃(𝑥)

′′ }𝛿𝜃(𝑥)𝑑𝑥
𝐻

0

+∫ {𝐾𝑏2𝑢(𝑥)
′′′′ + [𝑓(𝑥) −𝐾𝑠1]𝑢(𝑥)

′′ +𝐾𝑠1𝜃(𝑥)
′ + 𝑓(𝑥)

′ 𝑢(𝑥)
′ }𝛿𝑢(𝑥)𝑑𝑥

𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1184 ) 

Setting the terms equal to zero, the following equations result: 

{
𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ] − 𝐾𝑏1𝜃(𝑥)
′′ = 0

𝐾𝑏2𝑢(𝑥)
′′′′ + [𝑓(𝑥) − 𝐾𝑠1]𝑢(𝑥)

′′ + 𝐾𝑠1𝜃(𝑥)
′ + 𝑓(𝑥)

′ 𝑢(𝑥)
′ = 0

} 
( 1185 ) 

And boundary conditions: 

{

𝜃(0)
′ = 0

𝑢(0)
′′ = 0

𝐾𝑏2𝑢(0)
′′′ + 𝐾𝑠1[𝜃(0) − 𝑢(0)

′ ] + 𝑓(0)𝑢(0)
′ = 0

} 

( 1186 ) 

Integrating the equation once and evaluating at x=0: 

𝐾𝑏2𝑢(𝑥)
′′′′ −𝐾𝑠1𝑢(𝑥)

′′ +𝐾𝑠1𝜃(𝑥)
′ + 𝑓(𝑥)𝑢(𝑥)

′ = 0 ( 1187 ) 

We have a new system of coupled differential equations: 

{
𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ] − 𝐾𝑏1𝜃(𝑥)
′′ = 0

𝐾𝑏2𝑢(𝑥)
′′′ −𝐾𝑠1𝑢(𝑥)

′ +𝐾𝑠1𝜃(𝑥) + 𝑓(𝑥)𝑢(𝑥)
′ = 0

} 
( 1188 ) 

Using the method of coefficients for the solution of the system of equations: 
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[
−𝐾𝑠1𝐷 𝐾𝑠1 −𝐾𝑏1𝐷

2

𝐾𝑏2𝐷
3 − (𝐾𝑠1 + 𝑓(𝑥))𝐷 𝐾𝑠1𝐷

] {
𝑢(𝑥)
𝜃(𝑥)

} = {
0
0
} 

( 1189 ) 

The determinant is equal to zero (the coefficient matrix is singular): 

𝐾𝑏1𝐾𝑏2
𝐾𝑠1

𝑢(𝑥)
′′′′′ − (𝐾𝑏1 +𝐾𝑏2)𝑢(𝑥)

′′′ + 𝑓(𝑥) [
𝐾𝑏1
𝐾𝑠1

𝑢(𝑥)
′′′ − 𝑢(𝑥)

′ ] = 0 
( 1190 ) 

Reordering: 

𝑢(𝑥)
′′′′′ −𝐾𝑠1 (

1

𝐾𝑏1
+

1

𝐾𝑏2
)𝑢(𝑥)

′′′ + 𝑓(𝑥) [
1

𝐾𝑏2
𝑢(𝑥)
′′′ −

𝐾𝑠1
𝐾𝑏1𝐾𝑏2

𝑢(𝑥)
′ ] = 0 

( 1191 ) 

A fourth order differential equation is obtained, where the critical load results from the smallest 

eigenvalue. Normalizing the differential equation by the variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′′′ − 𝐾𝑠1 (

1

𝐾𝑏1
+

1

𝐾𝑏2
)𝐻2𝑢(𝑧)

′′′ + 𝑓(𝑧) [
𝐻2

𝐾𝑏2
𝑢(𝑧)
′′′ −

𝐾𝑠1𝐻
4

𝐾𝑏1𝐾𝑏2
𝑢(𝑧)
′ ] = 0 

( 1192 ) 

Where: 

𝑓(𝑧) = 𝑞𝛼(𝑧) ( 1193 ) 

We define: 

{𝛼 = 𝐻√
𝐾𝑠1
𝐾𝑏2

, 𝜅 = √1 +
𝐾𝑏2
𝐾𝑏1

, 𝜆 =
𝑞𝐻3

𝐾𝑏2
} 

( 1194 ) 

Rewriting: 

𝑢(𝑧)
′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′ + 𝜆𝛼(𝑧)[𝑢(𝑧)
′′′ − 𝛼2(𝜅2 − 1)𝑢(𝑧)

′ ] = 0 ( 1195 ) 

However, the rotation function is of a lower degree: 

𝜃(𝑧)
′′′′ − (𝛼𝜅)2𝜃(𝑧)

′′ + 𝜆𝛼(𝑧)[𝜃(𝑧)
′′ − 𝛼2(𝜅2 − 1)𝜃(𝑧)] = 0 ( 1196 ) 

Expressing the boundary conditions as a function of 𝜃(𝑧): 
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{
 
 

 
 
𝜃(1) = 0

𝜃(0)
′ = 0

𝜃(1)
′′ = 0

𝜃(0)
′′′ = 0}

 
 

 
 

 

( 1197 ) 

 Uniformly Distributed Load 

The stability of the sandwich beam (SWB), the governing differential equation is of the form: 

[
𝑑4

𝑑𝑧4
− (𝛼𝜅)2

𝑑2

𝑑𝑧2
] 𝜃(𝑧) − 𝜆 {−𝛼(𝑧) [

𝑑2

𝑑𝑧2
− 𝛼2(𝜅2 − 1)]}𝜃(𝑧) = 0 

( 1198 ) 

Multiplying the equation by [𝜃(𝑧)
′′ − 𝛼2(𝜅2 − 1)𝜃(𝑧)] and integrating from 0 to 1: 

∫ [𝜃(𝑧)
′′ 𝜃(𝑧)

′′′′ − (𝛼𝜅)2𝜃′′(𝑧)
2 − 𝛼2(𝜅2 − 1)𝜃(𝑧)𝜃(𝑧)

′′′′ + 𝛼2(𝜅2 − 1)(𝛼𝜅)2𝜃(𝑧)𝜃(𝑧)
′′ ]𝑑𝑧

1

0

+ 𝜆∫ 𝛼(𝑧)[𝜃(𝑧)
′′ − 𝛼2(𝜅2 − 1)𝜃(𝑧)]

2
𝑑𝑧

1

0

= 0 
( 1199 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

−∫ [𝜃′′′(𝑧)
2
+ 𝛼2(2𝜅2 − 1)𝜃′′(𝑧)

2
+ 𝛼2(𝜅2 − 1)(𝛼𝜅)2𝜃′(𝑧)

2
]

1

0

𝑑𝑧

+ 𝜆∫ 𝛼(𝑧)[𝜃(𝑧)
′′ − 𝛼2(𝜅2 − 1)𝜃(𝑧)]

2
𝑑𝑧

1

0

= 0 
( 1200 ) 

Solving the parameter 𝛾:  

𝜆 =
∫ [𝜃′′′(𝑧)

2
+ 𝛼2(2𝜅2 − 1)𝜃′′(𝑧)

2
+ 𝛼2(𝜅2 − 1)(𝛼𝜅)2𝜃′(𝑧)

2 ]
1

0
𝑑𝑧

∫ 𝛼(𝑧)[𝜃(𝑧)
′′ − 𝛼2(𝜅2 − 1)𝜃(𝑧)]

2
𝑑𝑧

1

0

 

( 1201 ) 

This Rayleigh ratio represents an approximation of the upper limit of the critical load, and it is 

exact if and only if the exact equilibrium curve 𝜃(𝑧) is used to calculate 𝜆. 

For the case of a uniformly distributed load, the function 𝛼(𝑧) results in: 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 1202 ) 
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The Rayleigh quotient becomes: 

𝜆 =
∫ [𝜃′′′(𝑧)

2
+ 𝛼2(2𝜅2 − 1)𝜃′′(𝑧)

2
+ 𝛼2(𝜅2 − 1)(𝛼𝜅)2𝜃′(𝑧)

2
]

1

0
𝑑𝑧

∫ 𝑧[𝜃(𝑧)
′′ − 𝛼2(𝜅2 − 1)𝜃(𝑧)]

2
𝑑𝑧

1

0

 

( 1203 ) 

Taking into account the boundary conditions. We consider two simple polynomials of different 

degrees that satisfy the boundary condition: 

𝜙1
1 = 1 −

6

5
𝑧2 +

1

5
𝑧4, 𝜙2

1 = 1 −
10

9
𝑧2 +

1

9
𝑧5 

( 1204 ) 

Taking a linear combination of both terms: 

𝜃(𝑧) = 𝐴𝜙1
1 + 𝐵𝜙2

1 = 𝐴(1 −
6

5
𝑧2 +

1

5
𝑧4) + 𝐵 (1 −

10

9
𝑧2 +

1

9
𝑧5) 

( 1205 ) 

We expand the integrals and substitute into the Rayleigh quotient: 

𝑈 = ∫ [𝜃′′′(𝑧)
2
+ 𝛼2(2𝜅2 − 1)𝜃′′(𝑧)

2
+ 𝛼2(𝜅2 − 1)(𝛼𝜅)2𝜃′(𝑧)

2
]

1

0

𝑑𝑧

− 𝜆∫ 𝑧[𝜃(𝑧)
′′ − 𝛼2(𝜅2 − 1)𝜃(𝑧)]

2
𝑑𝑧

1

0

 
( 1206 ) 

Expanding the integrals and joining common terms: 

𝑈 = 𝐴2(𝑎1 − 𝜆𝑎2) + 𝐵
2(𝑏1 − 𝜆𝑏2) + 𝐴𝐵[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] ( 1207 ) 

Where: 

{
  
 

  
 

𝑎1 = 7.68 + 3.072[𝛼
2(2𝜅2 − 1)] + 1.2434[𝛼2(𝜅2 − 1)(𝛼𝜅)2]

𝑎2 = 0.96 + 0.1507[𝛼
2(𝜅2 − 1)]2 − 1.3166[𝛼2(𝜅2 − 1)]

𝑏1 = 8.8889 + 3.1746[𝛼
2(2𝜅2 − 1)] + 1.2689[𝛼2(𝜅2 − 1)(𝛼𝜅)2]

𝑏2 = 1.1111 + 0.1555[𝛼
2(𝜅2 − 1)]2 − 1.5089[𝛼2(𝜅2 − 1)]

(𝑎𝑏)1 = 16 + 6.2222[𝛼
2(2𝜅2 − 1)] + 2.5111[𝛼2(𝜅2 − 1)(𝛼𝜅)2]

(𝑎𝑏)2 = 2.0571 + 0.3062[𝛼
2(𝜅2 − 1)]2 − 3.1030[𝛼2(𝜅2 − 1)] }

  
 

  
 

 

( 1208 ) 

The condition for the critical load to be the minimum is expressed as: 
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{

𝜕𝑈

𝜕𝐴
= 0 → 2(𝑎1 − 𝜆𝑎2)𝐴 + [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]𝐵

𝜕𝑈

𝜕𝐵
= 0 → [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]𝐴 + 2(𝑏1 − 𝜆𝑏2)𝐵

} 

( 1209 ) 

Expressing in matrix form: 

[
2(𝑎1 − 𝜆𝑎2) [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]

[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] 2(𝑏1 − 𝜆𝑏2)
] {
𝐴
𝐵
} = {

0
0
} 

( 1210 ) 

For a nontrivial solution (a and b cannot be equal to zero simultaneously), the determinant of the 

coefficient matrix for a and b must be equal to zero; namely: 

|
2(𝑎1 − 𝜆𝑎2) [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]

[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] 2(𝑏1 − 𝜆𝑏2)
| = 0 

( 1211 ) 

Operating the determinant, we have: 

[4𝑎2𝑏2 − (𝑎𝑏)2
2]𝜆2 + [2(𝑎𝑏)1(𝑎𝑏)2 − 4(𝑎1𝑏2 + 𝑎2𝑏1)]𝜆 + [4𝑎1𝑏1 − (𝑎𝑏)1

2] = 0 ( 1212 ) 

The minimum eigenvalue is obtained from the minimum root of the quadratic equation. 

𝜆 =
𝑞𝐻3

𝐾𝑏2
→ 𝑞𝑐𝑟𝐻 = 𝜆

𝐾𝑏2
𝐻2

 
( 1213 ) 

Which is the first approximation to the value of the critical load of the SWB beam. For most 

practical cases the resulting critical load is accurate enough; In order to obtain a better 

approximation to the exact critical load, it is necessary to repeat the previous procedure with two 

new higher degree polynomials. 

The first polynomial to be considered will be the one with the highest degree of the previous 

iteration: 

𝜙1
2 = 1−

10

9
𝑧2 +

1

9
𝑧5 

( 1214 ) 

To obtain a new polynomial of higher degree and that takes into account the eigenvalue calculated 

in the previous iteration, we will integrate the resulting differential equation of the SWB beam 

model four times: 
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𝜃(𝑧) = (𝛼𝜅)
2∬𝜃(𝑧)𝑑𝑧 − 𝜆⨌𝛼(𝑧)𝜃(𝑧)

′′ 𝑑𝑧 + 𝜆𝛼2(𝜅2 − 1)⨌𝛼(𝑧)𝜃(𝑧)𝑑𝑧 + 𝐶3𝑧
3 + 𝐶2𝑧

2 + 𝐶1𝑧 + 𝐶0 ( 1215 ) 

For the case of a uniform load: 

𝜃(𝑧) = (𝛼𝜅)
2∬𝜃(𝑧)𝑑𝑧 − 𝜆⨌𝑧𝜃(𝑧)

′′ 𝑑𝑧 + 𝜆𝛼2(𝜅2 − 1)⨌𝑧𝜃(𝑧)𝑑𝑧 + 𝐶3𝑧
3 + 𝐶2𝑧

2 + 𝐶1𝑧 + 𝐶0 ( 1216 ) 

When evaluating the boundary conditions, the constants 𝐶0, 𝐶1, 𝐶2 and 𝐶3 are determined and the 

new polynomial to be used in the second iteration is determined. 

Taking a linear combination of both terms: 

𝜃(𝑧) = 𝐴𝜙1
2 +𝐵𝜙2

2 = 𝐴𝜙2
1 +𝐵𝜙2

2 ( 1217 ) 

A closer approximation to the exact value can be achieved by repeating the two iteration steps, 

resulting in polynomials of higher and higher degree. Numerically it can be seen that with a fourth 

iteration the approximation can be considered exact. 

 Point Load at x=0 (z=0) 

For the case of a point load applied at x=0 (z=0), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1218 ) 

Substituting into the differential equation: 

𝜃(𝑧)
′′′′ − (𝛼𝜅)2𝜃(𝑧)

′′ +
𝜆

𝐻
[𝜃(𝑧)
′′ − 𝛼2(𝜅2 − 1)𝜃(𝑧)] = 0 

( 1219 ) 

The expression for 𝜃(𝑧) can be derived as: 

𝜃(𝑧) = 𝐶1 cosh(√𝜉𝑧) + 𝐶2 sinh(√𝜉𝑧) + 𝐶3 cos(√𝛽𝑧) + 𝐶4 sin(√𝛽𝑧) ( 1220 ) 

Where:  

{
 
 

 
 

𝜉 =
−[

𝜆
𝐻 −

(𝛼𝜅)2] + √[
𝜆
𝐻 −

(𝛼𝜅)2]
2

+ 4
𝜆
𝐻 𝛼

2(𝜅2 − 1)

2

𝛽 =
[
𝜆
𝐻
− (𝛼𝜅)2] + √[

𝜆
𝐻
− (𝛼𝜅)2]

2

+ 4
𝜆
𝐻
𝛼2(𝜅2 − 1)

2 }
 
 

 
 

 

( 1221 ) 
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The linear algebraic system resulting from the boundary conditions, written in matrix form, is: 

[
 
 
 
 cosh√𝜉 sinh√𝜉 cos√𝛽 sin√𝛽

0 𝜉1/2 0 𝛽1/2

𝜉 cosh√𝜉 𝜉 sinh√𝜉 −𝛽 cos√𝛽 −𝛽 sin√𝛽

0 𝜉3/2 0 −𝛽3/2 ]
 
 
 
 

{

𝐶1
𝐶2
𝐶3
𝐶4

} = 0 

( 1222 ) 

Which has a solution different from the trivial one if the determinant is equal to zero (the matrix 

of coefficients is singular), that is, for: 

𝐶𝑜𝑠√𝛽 = 0 → √𝛽 = (2𝑛 − 1)
𝜋

2
 / 𝑛 = 1, 2, 3… 

( 1223 ) 

i.e., 

[
𝜆
𝐻 −

(𝛼𝜅)2] + √[
𝜆
𝐻 −

(𝛼𝜅)2]
2

+ 4
𝜆
𝐻 𝛼

2(𝜅2 − 1)

2
= (2𝑛 − 1)2

𝜋2

4
 

( 1224 ) 

After some simple manipulations: 

𝜆

𝐻
= (2𝑛 − 1)2

𝜋2

4
+

1

4(𝜅2 − 1)
(2𝑛 − 1)2𝜋2

+
1
𝛼2

 

( 1225 ) 

Replacing by its characteristic rigidities: 

𝑞𝑐𝑟 = (2𝑛 − 1)
2
𝜋2𝐾𝑏2
4𝐻2

+
1

4𝐻2

(2𝑛 − 1)2𝜋2𝐾𝑏1
+

1
𝐾𝑠1

 

( 1226 ) 

Sorting properly: 

𝑞𝑐𝑟 = (2𝑛 − 1)
2
𝜋2𝐾𝑏2
4𝐻2

+ {[(2𝑛 − 1)2
𝜋2𝐾𝑏1
4𝐻2

]

−1

+𝐾𝑠1
−1}

−1

 

( 1227 ) 
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Tabla.7 Eigenvalue as a function of the parameter α≤300 and 1.0000 ≤ 𝜅 ≤ 1.0010 for the case of a 

uniformly distributed axial load 

 𝜅 
1.0000 1.0001 1.0002 1.0003 1.0004 1.0005 1.00075 1.001 

𝛼  

0.00 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 

0.25 8.025 8.025 8.025 8.025 8.025 8.025 8.025 8.025 

0.50 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 

0.75 9.504 9.504 9.504 9.504 9.504 9.504 9.503 9.503 

1.0 10.772 10.772 10.771 10.771 10.771 10.771 10.770 10.770 

2.5 24.377 24.370 24.363 24.356 24.349 24.342 24.325 24.308 

5.0 60.763 60.706 60.649 60.593 60.536 60.480 60.339 60.199 

7.5 110.356 110.184 110.011 109.839 109.667 109.494 109.063 108.633 

10 180.103 179.710 179.315 178.918 178.517 178.114 177.096 175.908 

15 375.170 372.847 370.536 368.238 365.954 363.682 358.062 352.530 

20 645.789 638.861 631.998 625.201 618.474 611.818 595.498 579.650 

25 993.453 977.024 960.837 944.903 929.231 913.829 876.547 841.067 

30 1418.270 1384.802 1352.054 1320.066 1288.872 1258.498 1186.249 1119.331 

35 1920.277 1859.052 1799.654 1742.207 1686.797 1633.482 1509.471 1398.434 

40 2499.489 2396.104 2296.840 2202.001 2111.775 2026.232 1832.554 1665.809 

45 3155.914 2991.815 2836.189 2689.694 2552.612 2424.909 2144.534 1913.202 

50 3889.557 3641.615 3409.868 3195.521 2998.794 2819.166 2437.723 2136.428 

60 5588.502 5083.452 4628.145 4224.991 3871.677 3563.355 2952.339 2508.135 

70 7596.334 6678.947 5889.347 5226.932 4676.364 4218.316 3367.608 2791.331 

80 9913.056 8382.991 7138.713 6157.556 5385.894 4772.494 3695.166 3005.458 

90 12538.671 10150.636 8333.911 6993.577 5994.334 5231.631 3952.173 3168.370 

100 15473.180 11939.666 9446.823 7728.042 6508.082 5608.691 4154.620 3293.825 

110 18716.583 13712.812 10462.460 8364.508 6938.873 5917.955 4315.436 3391.129 

120 22268.880 15439.279 11376.149 8911.991 7299.585 6172.402 4444.229 3468.208 

130 26130.072 17095.467 12190.267 9381.527 7602.212 6382.901 4548.098 3530.191 

140 30300.158 18664.880 12911.369 9784.197 7857.111 6558.206 4633.366 3580.663 

150 34779.140 20137.434 13548.049 10130.167 8072.896 6704.513 4704.066 3622.238 

160 39567.016 21508.394 14109.526 10428.331 8256.589 6827.771 4763.239 3656.847 

170 44663.788 22777.179 14604.806 10686.262 8412.684 6932.745 4813.197 3685.935 

180 50069.455 23946.227 15042.236 10910.313 8547.089 7022.746 4855.716 3710.600 

190 55784.017 25020.007 15429.316 11105.138 8663.585 7100.401 4892.174 3731.681 

200 61807.473 26004.228 15772.654 11274.990 8765.098 7167.805 4923.651 3749.832 

220 74781.073 27729.609 16350.315 11556.851 8932.253 7278.266 4974.902 3779.289 

240 88990.253 29174.101 16810.104 11778.956 9062.854 7364.123 5014.457 3801.942 

260 104435.013 30385.836 17181.134 11956.612 9166.629 7432.069 5045.589 3819.722 

280 121115.354 31406.366 17485.079 12100.663 9250.332 7486.698 5070.512 3833.924 

300 139031.276 32270.223 17736.669 12218.916 9318.754 7531.238 5090.761 3845.444 
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Tabla.8 Eigenvalue as a function of the parameter α≤300 and 1.0020 ≤ 𝜅 ≤ 1.0090 for the case of a 

uniformly distributed axial load 

  𝜅 
1.0020 1.0030 1.0040 1.0050 1.0060 1.0070 1.00800 1.009 

𝛼   

0.00 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 

0.25 8.025 8.025 8.025 8.025 8.025 8.025 8.025 8.025 

0.50 8.583 8.583 8.583 8.582 8.582 8.582 8.582 8.582 

0.75 9.502 9.502 9.501 9.500 9.499 9.499 9.498 9.497 

1.0 10.767 10.765 10.763 10.760 10.758 10.756 10.754 10.751 

2.5 24.239 24.171 24.104 24.037 23.970 23.904 23.839 23.773 

5.0 59.642 59.091 58.547 58.010 57.479 56.956 56.439 55.929 

7.5 106.912 105.199 103.498 101.813 100.149 98.507 96.892 95.305 

10 170.792 167.394 161.063 156.460 152.035 147.786 143.712 139.808 

15 331.323 311.656 293.595 276.961 261.805 247.974 235.353 223.826 

20 521.202 470.650 427.370 390.397 358.728 331.463 307.840 287.234 

25 717.227 619.617 542.848 481.808 432.524 392.098 358.441 330.039 

30 901.314 746.529 634.334 550.391 485.639 434.348 392.799 358.499 

35 1063.505 849.154 704.230 600.774 523.570 463.886 416.406 377.738 

40 1200.903 930.252 757.193 637.918 551.001 484.852 432.951 391.162 

45 1314.864 993.976 797.555 665.649 571.079 500.132 444.966 400.854 

50 1408.542 1408.542 828.665 686.591 586.216 511.576 453.917 408.044 

60 1548.741 1116.161 871.951 715.593 606.981 527.166 466.047 417.747 

70 1644.792 1163.229 899.916 734.088 620.107 536.959 473.629 423.790 

80 1711.917 1195.568 918.873 746.521 628.882 543.479 478.663 427.792 

90 1760.522 1218.605 932.253 755.249 635.018 548.026 482.166 430.572 

100 1796.693 1235.532 942.021 761.595 639.468 551.318 484.698 432.580 

110 1824.243 1248.305 949.357 766.348 642.794 553.774 486.586 434.076 

120 1845.659 1258.165 954.999 769.995 645.343 555.655 488.030 435.219 

130 1862.610 1265.925 959.429 772.853 647.339 557.126 489.159 436.113 

140 1876.240 1272.139 962.967 775.134 648.929 558.298 490.058 436.824 

150 1887.353 1277.188 965.837 776.981 650.217 559.246 490.785 437.399 

160 1896.528 1281.344 968.196 778.499 651.274 560.024 491.381 437.870 

170 1904.186 1284.805 970.158 779.760 652.152 560.671 491.877 438.262 

180 1910.643 1287.717 971.808 780.820 652.890 561.213 492.292 438.590 

190 1916.134 1290.190 973.207 781.719 653.515 561.673 492.645 438.869 

200 1920.843 1292.308 974.405 782.487 654.049 562.066 492.946 439.107 

220 1928.446 1295.721 976.334 783.724 654.910 562.698 493.430 439.489 

240 1934.261 1298.327 977.805 784.668 655.565 563.180 493.799 439.781 

260 1938.807 1300.361 978.952 785.403 656.076 563.556 494.086 440.008 

280 1942.425 1301.978 979.864 785.987 656.482 563.854 494.314 440.188 

300 1945.352 1303.286 980.601 786.459 656.810 564.094 494.499 440.333 
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Tabla.9 Eigenvalue as a function of the parameter α≤300 and 1.01 ≤ 𝜅 ≤ 1.25 for the case of a uniformly 

distributed axial load 

  𝜅 
1.01 1.02 1.03 1.04 1.05 1.1 1.15 1.2 1.25 

𝛼   

0.00 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 7.837 

0.25 8.025 8.024 8.024 8.024 8.024 8.024 8.023 8.023 8.022 

0.50 8.582 8.580 8.579 8.577 8.576 8.568 8.560 8.552 8.544 

0.75 9.497 9.489 9.482 9.474 9.467 9.429 9.392 9.355 9.318 

1.0 10.749 10.726 10.704 10.681 10.659 10.549 10.443 10.341 10.243 

2.5 23.709 23.085 22.501 21.954 21.440 19.286 17.652 16.376 15.355 

5.0 55.426 50.781 46.791 43.371 40.431 30.522 24.975 21.473 19.074 

7.5 93.748 79.980 69.294 61.107 54.687 36.520 28.176 23.426 20.371 

10 136.070 106.509 87.118 73.751 64.051 39.667 29.696 24.303 20.933 

15 213.283 144.020 108.748 87.647 73.698 42.469 30.974 25.016 21.380 

20 269.138 164.906 119.357 94.042 77.952 43.591 31.467 25.286 21.547 

25 305.781 176.628 125.025 97.355 80.115 44.139 31.704 25.415 21.627 

30 329.726 183.686 128.336 99.260 81.347 44.444 31.835 25.486 21.671 

35 345.695 188.203 130.417 100.447 82.109 44.631 31.916 25.530 21.697 

40 356.801 191.246 131.803 101.232 82.612 44.754 31.968 25.558 21.715 

45 364.781 193.385 132.770 101.778 82.961 44.838 32.004 25.577 21.726 

50 370.682 194.942 133.471 102.173 83.213 44.899 32.030 25.591 21.735 

60 378.619 197.004 134.393 102.691 83.543 44.979 32.064 25.609 21.746 

70 383.546 198.267 134.956 103.006 83.743 45.027 32.084 25.620 21.753 

80 386.803 199.095 135.323 103.212 83.874 45.058 32.097 25.628 21.757 

90 389.063 199.666 135.576 103.353 83.964 45.079 32.107 25.632 21.760 

100 390.694 200.076 135.758 103.454 84.028 45.095 32.113 25.636 21.762 

110 391.908 200.381 135.892 103.530 84.076 45.106 32.118 25.639 21.764 

120 392.835 200.613 135.995 103.587 84.112 45.115 32.122 25.641 21.765 

130 393.560 200.794 136.075 103.631 84.141 45.122 32.124 25.642 21.766 

140 394.136 200.938 136.138 103.667 84.163 45.127 32.127 25.643 21.767 

150 394.602 201.054 136.190 103.695 84.181 45.131 32.129 25.644 21.768 

160 394.984 201.149 136.232 103.719 84.196 45.135 32.130 25.645 21.768 

170 395.302 201.228 136.266 103.738 84.208 45.138 32.131 25.646 21.768 

180 395.568 201.294 136.295 103.754 84.219 45.140 32.132 25.646 21.769 

190 395.793 201.350 136.320 103.768 84.227 45.142 32.133 25.647 21.769 

200 395.986 201.398 136.341 103.780 84.235 45.144 32.134 25.647 21.769 

220 396.296 201.475 136.375 103.799 84.247 45.147 32.135 25.648 21.770 

240 396.532 201.533 136.401 103.813 84.256 45.149 32.136 25.648 21.770 

260 396.715 201.579 136.421 103.824 84.263 45.151 32.137 25.649 21.770 

280 396.861 201.615 136.437 103.833 84.269 45.152 32.137 25.649 21.770 

300 396.979 201.644 136.450 103.840 84.273 45.153 32.138 25.649 21.771 
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For the case when 𝑛 = 1, we have: 

𝑞𝑐𝑟 =
𝜋2𝐾𝑏2
4𝐻2

+ [(
𝜋2𝐾𝑏1
4𝐻2

)

−1

+𝐾𝑠1
−1]

−1

= 𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ò𝑛 𝑙𝑜𝑐𝑎𝑙 + [𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ò𝑛 𝑔𝑙𝑜𝑏𝑎𝑙
−1 + 𝑞𝑐𝑟𝑚𝑐𝑜𝑟𝑡𝑒

−1]
−1

 
( 1228 ) 

Since the resulting critical load is independent of some approximation function, it can be 

considered exact and identical to the one that would be obtained by applying Föppl's theorem. 

4.3.6.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations: 

{
𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ] − 𝐾𝑏1𝜃(𝑥)
′′ = 0

𝐾𝑏2𝑢(𝑥)
′′′′ + (𝑞 − 𝐾𝑠1)𝑢(𝑥)

′′ +𝐾𝑠1𝜃(𝑥)
′ = 0

} 
( 1229 ) 

Using the method of coefficients: 

[
−𝐾𝑠1𝐷 −𝐾𝑏1𝐷

2 + 𝐾𝑠1
𝐾𝑏2𝐷

4 − (𝐾𝑠1 − 𝑞)𝐷
2 𝐾𝑠1𝐷

] {
𝑢(𝑥)
𝜃(𝑥)

} = {
0
0
} 

( 1230 ) 

To avoid trivial solutions, the determinant must be equal to zero, that is: 

𝐷2 {𝐷4 − [
𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−

𝑞

𝐾𝑏2
]𝐷2 − (

𝐾𝑠1𝑞

𝐾𝑏1𝐾𝑏2
)} = 0 

( 1231 ) 

Rewriting: 

𝐷2{𝐷4 − [(𝛼∗𝜅)2 − 𝜆]𝐷2 − [𝛼∗2(𝜅2 − 1)𝜆]} = 0 ( 1232 ) 

Where: 

{𝛼∗ = √
𝐾𝑠1
𝐾𝑏2

, 𝜅 = √1 +
𝐾𝑏2
𝐾𝑏1

, 𝜆 =
𝑞

𝐾𝑏2
} 

( 1233 ) 

The expression for 𝑢(𝑧) and 𝜃(𝑧) is proposed: 
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{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(√𝜉𝑧) + 𝐶3 sinh(√𝜉𝑧) + 𝐶4 cos(√𝛽𝑧) + 𝐶5 sin(√𝛽𝑧)

𝜃(𝑧) = 𝐶6 + 𝐶7 cosh(√𝜉𝑧) + 𝐶8 sinh(√𝜉𝑧) + 𝐶9 cos(√𝛽𝑧) + 𝐶10 sin(√𝛽𝑧)
} 

( 1234 ) 

Where: 

{
 
 

 
 

𝜉 =
[(𝛼∗𝜅)2 − 𝜆] + √[(𝛼∗𝜅)2 − 𝜆]2 + 4𝛼∗2(𝜅2 − 1)𝜆

2

𝛽 =
−[(𝛼∗𝜅)2 − 𝜆] + √[(𝛼∗𝜅)2 − 𝜆]2 + 4𝛼∗2(𝜅2 − 1)𝜆

2 }
 
 

 
 

 

( 1235 ) 

Expressing the coefficients of 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{
𝑢(𝑧) = 𝐶0 + 𝐶1 cosh(√𝜉𝑧) + 𝐶2 sinh(√𝜉𝑧) + 𝐶3 cos(√𝛽𝑧) + 𝐶4 sin(√𝛽𝑧)

𝜃(𝑧) = 𝐶1 + 𝐶2[𝑅𝜉 sinh(√𝜉𝑧)] + 𝐶3[𝑅𝜉 cosh(√𝜉𝑧)] + 𝐶4[−𝑅𝛽 sin(√𝛽𝑧)] + 𝐶5[𝑅𝛽 cos(√𝛽𝑧)]
} 

 ( 1236 ) 

Where: 

{𝑅𝜉 =
𝐾𝑠1√𝜉

𝐾𝑠1 − 𝜉𝐾𝑏1
, 𝑅𝛽 =

𝐾𝑠1√𝛽

𝐾𝑠1 − 𝛽𝐾𝑏1
} 

( 1237 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 

{
 
 
 
 

 
 
 
 {
𝑀l(𝑧) = 𝐾𝑏1𝜃(𝑧)

′ = 𝐶2[𝐾𝑏1𝑅𝜉√𝜉 cosh(√𝜉𝑧)] + 𝐶3[𝐾𝑏1𝑅𝜉√𝜉 sinh(√𝜉𝑧)]

+𝐶4[−𝐾𝑏1𝑅𝛽√𝛽cos(√𝛽𝑧)] + 𝐶4[−𝐾𝑏1𝑅𝛽√𝛽 sin(√𝛽𝑧)]
}

{
𝑀2 = 𝐾𝑏2𝑢(𝑥)

′′ = 𝐶2[𝐾𝑏2𝜉 cosh(√𝜉𝑧)] + 𝐶3[𝐾𝑏2𝜉 sinh(√𝜉𝑧)]

+𝐶4[−𝐾𝑏2𝛽 cos(√𝛽𝑧)] + 𝐶5[−𝐾𝑏2𝛽 sin(√𝛽𝑧)]
}

{
𝑉(𝑧) = 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ] + 𝐾𝑏2𝑢(𝑥)
′′′ = 𝑞𝐶1 + 𝐶2[𝑃𝜉 sinh(√𝜉𝑧)]

+𝐶3[𝑃𝜉 cosh(√𝜉𝑧)] + 𝐶4[𝑃𝛽 sin(√𝛽𝑧)] + 𝐶5[−𝑃𝛽 cos(√𝛽𝑧)]
}

}
 
 
 
 

 
 
 
 

 

( 1238 ) 

Where: 

{𝑃𝜉 = (
𝐾𝑏1𝐾𝑠1

𝐾𝑠1 − 𝜉𝐾𝑏1
+ 𝐾𝑏2) 𝜉√𝜉, 𝑃𝛽 = (−

𝐾𝑏1𝐾𝑠1

𝐾𝑠1 − 𝛽𝐾𝑏1
+ 𝐾𝑏2) 𝛽√𝛽} 

( 1239 ) 
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Writing the equations in matrix form: 

{
  
 

  
 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝜃𝑖(𝑧𝑖)

𝑀l,i(𝑧𝑖)

𝑀r,i(𝑧𝑖)

𝑉𝑖(𝑧𝑖) }
  
 

  
 

= 𝐾𝑖(𝑧𝑖)

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

 

( 1240 ) 

Where: 

𝐾𝑖(𝑧𝑖)

=

[
 
 
 
 
 
 
 1 𝑧 cosh(√𝜉𝑧) sinh(√𝜉𝑧) cos(√𝛽𝑧) sin(√𝛽𝑧)

0 1 √𝜉 sinh(√𝜉𝑧) √𝜉 cosh(√𝜉𝑧) −√𝛽 sin(√𝛽𝑧) √𝛽 cos(√𝛽𝑧)

0 1 𝑅𝜉 sinh(√𝜉𝑧) 𝑅𝜉 cosh(√𝜉𝑧) −𝑅𝛽 sin(√𝛽𝑧) 𝑅𝛽 cos(√𝛽𝑧)

0 0 𝐾𝑏1𝑅𝜉√𝜉 cosh(√𝜉𝑧) 𝐾𝑏1𝑅𝜉√𝜉 sinh(√𝜉𝑧) −𝐾𝑏1𝑅𝛽√𝛽cos(√𝛽𝑧) −𝐾𝑏1𝑅𝛽√𝛽 sin(√𝛽𝑧)

0 0 𝐾𝑏2𝜉 cosh(√𝜉𝑧) 𝐾𝑏2𝜉 sinh(√𝜉𝑧) −𝐾𝑏2𝛽cos(√𝛽𝑧) −𝐾𝑏2𝛽 sin(√𝛽𝑧)

0 𝑞 (𝑃𝜉 + 𝑞√𝜉) sinh(√𝜉𝑧) (𝑃𝜉 + 𝑞√𝜉) cosh(√𝜉𝑧) (𝑃𝛽 − 𝑞√𝜉) sin(√𝛽𝑧) −(𝑃𝛽 − 𝑞√𝜉) cos(√𝛽𝑧)]
 
 
 
 
 
 
 

𝑖

 

 ( 1241 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the base to the top of the beam and expressing the equation between 

the product symbol: 

{
  
 

  
 
𝑢𝑛(0)

𝑢′𝑛(0)

𝜃𝑛(0)

𝑀ln(0)

𝑀rn(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑘(0)

𝑛

𝑘=1

{
  
 

  
 
𝑢1(ℎ1)

𝑢′1(ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

= t

{
  
 

  
 
𝑢1(ℎ1)

𝑢′1(ℎ1)

𝜃1(ℎ1)

𝑀l1(ℎ1)

𝑀r1(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

 

( 1242 ) 

Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1243 ) 
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This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝑢′(1) = 0

𝜃(1) = 0

𝜓(0)
′ = 0

𝜃(0)
′ = 0

(𝐾𝑠1 + 𝐾𝑠2 − 𝑞)𝑢(0)
′ − 𝐾𝑠1𝜓(0) − 𝐾𝑠2𝜃(0) = 0}

 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝑢′1(ℎ1) = 0

𝜃1(ℎ1) = 0
𝑀1𝑛 (0) = 0

𝑀2𝑛 (0) = 0

𝑉𝑛(0) = 0 }
  
 

  
 

 

( 1244 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝑢′𝑛(0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀1(ℎ1)

𝑀2(ℎ1)

𝑉1(ℎ1)}
 
 

 
 

 

( 1245 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀1(ℎ1)

𝑀2(ℎ1)

𝑉1(ℎ1)
} 

( 1246 ) 

Which has a different solution than the trivial if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the critical loads of the beam. 
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4.3.7 Generalized Sandwich Beam of Three Field (GSB1) 

4.3.7.1 Case 1 

The potential energy of the three-field GSB1 model is expressed as follows: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜓

′2 + 𝐾𝑠1[𝑢(𝑥)
′ − 𝜓(𝑥)]

2
+𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 
( 1247 ) 

 Coupled shear wall: 

{
  
 

  
 𝐾𝑏1 =∑𝐸𝐴𝑤,𝑖𝑐𝑖

2

𝑤

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑤,𝑖

𝑤

𝑖=1

, 𝐾𝑠1 = (𝐾𝑏
−1 +𝐾𝑤

−1)
−1
, 𝐾𝑠2 =∑𝐺𝐴𝑐,𝑖

𝑐

𝑖=1

𝐾𝑏 =∑
6𝐸𝐼𝑏,𝑖[(𝑙

∗ + 𝑆1)
2 + (𝑙∗ + 𝑆2)

2]

𝑙∗3ℎ (1 + 12
𝑘𝐸𝐼𝑏.𝑖
𝑙∗2𝐺𝐴𝑏.𝑖

)

𝑏

𝑖=1

 , 𝐾𝑤 =∑
𝜋2𝐸𝐼𝑤
ℎ2

𝑤

𝑖=1

, 𝑟 =
𝐾𝑐

𝐾𝑐 +𝐾𝑏
 

}
  
 

  
 

 

( 1248 ) 

 Frame: 

{
 
 

 
 𝐾𝑏1 =∑𝐸𝐴𝑐𝑖𝑐𝑖

2

𝑐

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑐𝑖

𝑐

𝑖=1

, 𝐾𝑠1 = (𝐾𝑏
−1 +𝐾𝑐

−1)
−1

𝐾𝑠2 =∑𝐺𝐴𝑐𝑖

𝑐

𝑖=1

, 𝐾𝑏 =∑
12𝐸𝐼𝑏
𝑙ℎ

𝑏

𝑖=1

, 𝐾𝑐 =∑
𝜋2𝐸𝐼𝑐
ℎ2

𝑐

𝑖=1

, 𝑟 =
𝐾𝑐

𝐾𝑐 + 𝐾𝑏}
 
 

 
 

 

( 1249 ) 

 Dual (frame + shear wall): 

{
 
 

 
 𝐾𝑏1 =∑𝐸𝐴𝑐,𝑖𝑐𝑖

2

𝑐

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

+∑𝑟𝐸𝐼𝑤,𝑖

𝑤

𝑖=1

, 𝐾𝑠1 = (𝐾𝑏
−1 + 𝐾𝑐

−1)
−1

𝐾𝑠2 =∑𝐺𝐴𝑤,𝑖

𝑤

𝑖=1

  ;   𝐾𝑏 =∑
12𝐸𝐼𝑏
𝑙ℎ

𝑏

𝑖=1

  ;   𝐾𝑐 =∑
𝜋2𝐸𝐼𝑐
ℎ2

𝑐

𝑖=1

  ;   𝑟 =
𝐾𝑐

𝐾𝑐 +𝐾𝑏 }
 
 

 
 

 

( 1250 ) 

The work done by the external force is expressed as: 

𝑊 = −𝑓(𝑥)𝑑𝑙 = −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1251 ) 

Consequently, the total potential energy of the model is expressed as: 
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𝒰 =
1

2
∫ {𝐾𝑏1𝜓(𝑥)

′ 2
+𝐾𝑠1[𝑢(𝑥)

′ −𝜓(𝑥)]
2
+ 𝐾𝑏2𝜃(𝑥)

′ 2
+𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1252 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝐾𝑏1𝜓(𝑥)
′ 𝛿𝜓(𝑥)

′ + 𝐾𝑠1[𝑢(𝑥)
′ − 𝜓(𝑥)][𝛿𝑢(𝑥)

′ − 𝛿𝜓(𝑥)] + 𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′
𝐻

0

+ 𝐾𝑠2[𝑢(𝑥)
′ − 𝜃(𝑥)][𝛿𝑢(𝑥)

′ − 𝛿𝜃(𝑥)] − 𝑓(𝑥)𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ }𝑑𝑥

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1253 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏1𝜓(𝑥)
′ 𝛿𝜓(𝑥)]

0

𝐻
+ {[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)

′ − 𝐾𝑠1𝜓(𝑥) − 𝐾𝑠2𝜓(𝑥)}𝛿𝑢(𝑥)
0

𝐻

+ [𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)]

0

𝐻
−∫ {𝐾𝑏1𝜓(𝑥)

′′ +𝐾𝑠1[𝑢(𝑥)
′ −𝜓(𝑥)]}𝛿𝜃(𝑥)

𝐻

0

−∫ {[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′′ − 𝐾𝑠1𝜓(𝑥)

′ − 𝐾𝑠2𝜃(𝑥)
′ − 𝑓(𝑥)

′ 𝑢(𝑥)
′ }

𝐻

0

𝛿𝑢(𝑥)

−∫ {𝐾𝑏2𝜃(𝑥)
′′ +𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]}𝛿𝜓(𝑥)

𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1254 ) 

Setting the terms equal to zero, the following equations result: 

{

𝐾𝑏1𝜓(𝑥)
′′ +𝐾𝑠1[𝑢(𝑥)

′ −𝜓(𝑥)] = 0

𝐾𝑏2𝜃(𝑥)
′′ +𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)] = 0

[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′′ −𝐾𝑠1𝜓(𝑥)

′ − 𝐾𝑠2𝜃(𝑥)
′ − 𝑓(𝑥)

′ 𝑢(𝑥)
′ = 0

} 

( 1255 ) 

And boundary conditions: 

{

𝜃(0)
′ = 0

𝜓(0)
′ = 0

[𝐾𝑠1 +𝐾𝑠2 − 𝑓(0)]𝑢(0)
′ −𝐾𝑠1𝜓(0) −𝐾𝑠2𝜃(0) = 0

} 

( 1256 ) 

Integrating the equation once and evaluating at 𝑥=0: 
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[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′ − 𝐾𝑠1𝜓(𝑥) −𝐾𝑠2𝜃(𝑥) = 0 ( 1257 ) 

We have a new system of coupled differential equations: 

{

𝜃(0)
′ = 0

𝜓(0)
′ = 0

[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′ − 𝐾𝑠1𝜓(𝑥) −𝐾𝑠2𝜃(𝑥) = 0

} 

( 1258 ) 

Using the method of coefficients for the solution of the system of equations: 

[

𝐾𝑠1𝐷 0 𝐾𝑏1𝐷
2 −𝐾𝑠1

𝐾𝑠2𝐷 𝐾𝑏2𝐷
2 −𝐾𝑠2 0

[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝐷 −𝐾𝑠2 −𝐾𝑠1

] {

𝑢(𝑥)
𝜃(𝑥)
𝜓(𝑥)

} = {
0
0
0
} 

Which has a solution other than the trivial one if the determinant is equal to zero: 

𝑢(𝑥)
′′′′′ − [

𝐾𝑠1𝐾𝑠2(𝐾𝑏1 + 𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
] 𝑢(𝑥)

′′′

+ 𝑓(𝑥) {−(
1

𝐾𝑠1 +𝐾𝑠2
)𝑢(𝑥)

′′′′′ + [
𝐾𝑏1𝐾𝑠2 + 𝐾𝑠1𝐾𝑏2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

] 𝑢(𝑥)
′′′

− [
𝐾𝑠1𝐾𝑠2

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
] 𝑢(𝑥)

′ } = 0 
( 1259 ) 

A fourth order differential equation is obtained, where the critical load results from the smallest 

eigenvalue. Normalizing the differential equation by the variable 𝑧=𝑥/𝐻: 

𝑢(𝑧)
′′′′′ − [

𝐾𝑠1𝐾𝑠2(𝐾𝑏1 + 𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝐻2] 𝑢(𝑧)

′′′

+ 𝑓(𝑧) {−(
1

𝐾𝑠1 +𝐾𝑠2
)𝑢(𝑧)

′′′′′ + [
𝐾𝑏1𝐾𝑠2 + 𝐾𝑠1𝐾𝑏2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

𝐻2] 𝑢(𝑧)
′′′

− [
𝐾𝑠1𝐾𝑠2

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝐻4] 𝑢(𝑧)

′ } = 0 
( 1260 ) 

Where: 

𝑓(𝑧) = 𝑞𝛼(𝑧) ( 1261 ) 

The equation can be rewritten as: 
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𝑢(𝑧)
′′′′′ − 𝑎0𝑢(𝑧)

′′′ + 𝑞𝛼(𝑧)[−𝑎1𝑢(𝑧)
′′′′′ + 𝑎2𝑢(𝑧)

′′′ − 𝑎3𝑢(𝑧)
′ ] = 0 ( 1262 ) 

Where: 

{
 
 

 
 𝑎0 =

𝐾𝑠1𝐾𝑠2(𝐾𝑏1 + 𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝐻2 , 𝑎1 =

1

𝐾𝑠1 +𝐾𝑠2

𝑎2 =
𝐾𝑏1𝐾𝑠2 +𝐾𝑠1𝐾𝑏2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

𝐻2 , 𝑎3 =
𝐾𝑠1𝐾𝑠2

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝐻4

}
 
 

 
 

 

( 1263 ) 

Expressing the boundary conditions as a function of 𝑢(𝑧): 

{
 
 

 
 
𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝑢(1)
′′′ = 0

𝑢(0)
′′′′ = 0}

 
 

 
 

 

( 1264 ) 

 Uniformly Distributed Load 

For beam stability, the governing differential equation is of the form: 

(
𝑑5

𝑑𝑧5
− 𝑎0

𝑑3

𝑑𝑧3
)𝑢(𝑧) − 𝑞 [𝛼(𝑧) (𝑎1

𝑑5

𝑑𝑧5
− 𝑎2

𝑑3

𝑑𝑧3
+ 𝑎3

𝑑

𝑑𝑧
)] 𝑢(𝑧) = 0 

( 1265 ) 

Multiplying the equation by (𝑎1
𝑑5

𝑑𝑧5
− 𝑎2

𝑑3

𝑑𝑧3
+ 𝑎3

𝑑

𝑑𝑧
), integrating from 0 to 1 and clearing: 

𝜆 =
∫ {𝑎1𝑢′′′′′(𝑧)

2 + (𝑎0𝑎1 + 𝑎2)𝑢′′′′(𝑧)
2 + (𝑎0𝑎2 + 𝑎3)𝑢′′′(𝑧)

2 + 𝑎0𝑎3𝑢′′(𝑧)
2 }𝑑𝑧

1

0

∫ 𝛼(𝑧)
1

0
[𝑎1𝑢(𝑧)

′′′′′ − 𝑎2𝑢(𝑧)
′′′ + 𝑎3𝑢(𝑧)

′ ]
2
𝑑𝑧

 

( 1266 ) 

This Rayleigh ratio represents an approximation of the upper limit of the critical load, and it is 

exact if and only if the exact equilibrium curve 𝑢(𝑧) is used to calculate 𝜆. 

For the case of a uniformly distributed load, the function 𝛼(𝑧) results in: 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 1267 ) 

The Rayleigh quotient becomes: 
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𝜆 =
∫ {𝑎1𝑢′′′′′(𝑧)

2 + (𝑎0𝑎1 + 𝑎2)𝑢′′′′(𝑧)
2 + (𝑎0𝑎2 + 𝑎3)𝑢′′′(𝑧)

2 + 𝑎0𝑎3𝑢′′(𝑧)
2 }𝑑𝑧

1

0

∫ 𝑧
1

0
[𝑎1𝑢(𝑧)

′′′′′ − 𝑎2𝑢(𝑧)
′′′ + 𝑎3𝑢(𝑧)

′ ]
2
𝑑𝑧

 

( 1268 ) 

 Point Load at x=0 (z=0) 

For the case of a point load applied at x=H (z=1), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1269 ) 

Substituting into the differential equation: 

𝑢(𝑧)
′′′′′ − 𝑎0𝑢(𝑧)

′′′ + 𝑞[−𝑎1𝑢(𝑧)
′′′′′ + 𝑎2𝑢(𝑧)

′′′ − 𝑎3𝑢(𝑧)
′ ] = 0 ( 1270 ) 

The expression for 𝑢(𝑧) can be derived as: 

𝑢(𝑧) = 𝐶0 + 𝐶1 cosh(√𝜉𝑧) + 𝐶2 sinh(√𝜉𝑧) + 𝐶3 cos(√𝛽𝑧) + 𝐶4 sin(√𝛽𝑧) ( 1271 ) 

Where: 

{
 
 

 
 𝜉 =

(𝑎0 − 𝑞𝑎2) + √(𝑎0 − 𝑞𝑎2)2 + 4𝑞𝑎3(1 − 𝑞𝑎1)

2(1 − 𝑞𝑎1)

𝛽 =
−(𝑎0 − 𝑞𝑎2) + √(𝑎0 − 𝑞𝑎2)2 + 4𝑞𝑎3(1 − 𝑞𝑎1)

2(1 − 𝑞𝑎1) }
 
 

 
 

 

( 1272 ) 

The linear algebraic system resulting from the boundary conditions, written in matrix form, is: 

[
 
 
 
 
 1 cosh(√𝜉) sinh(√𝜉) cos(√𝛽) sin(√𝛽)

0 𝜉1/2 sinh(√𝜉) 𝜉1/2 cosh(√𝜉) −𝛽1/2 sin(√𝛽) 𝛽1/2 cos(√𝛽)

0 𝜉 0 −𝛽 0

0 𝜉3/2 sinh(√𝜉) 𝜉3/2 cosh(√𝜉) 𝛽3/2 sin(√𝛽) −𝛽3/2 cos(√𝛽)

0 𝜉2 0 𝛽2 0 ]
 
 
 
 
 

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4}
 
 

 
 

= 0 

( 1273 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular), that is, for: 

𝐶𝑜𝑠√𝛽 = 0 → √𝛽 = (2𝑛 − 1)
𝜋

2
 / 𝑛 = 1, 2, 3… 

( 1274 ) 
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i.e., 

−(𝑎0 − 𝑞𝑎2) + √(𝑎0 − 𝑞𝑎2)2 + 4𝑞𝑎3(1 − 𝑞𝑎1)

2(1 − 𝑞𝑎1)
= (2𝑛 − 1)2

𝜋2

4
 

( 1275 ) 

Solving: 

𝑞𝑐𝑟 =

(2𝑛 − 1)4𝜋4

4
+ 𝑎0(2𝑛 − 1)

2𝜋2

4𝑎0 + 𝑎2(2𝑛 − 1)
2𝜋2 + 𝑎1

(2𝑛 − 1)4𝜋4

4

 

( 1276 ) 

Replacing the coefficients and after some simple manipulations: 

𝑞𝑐𝑟 =
1

4𝐻2

(2𝑛 − 1)2𝜋2𝐾𝑏1
+

1
𝐾𝑠1

+
1

4𝐻2

(2𝑛 − 1)2𝜋2𝐾𝑏2
+

1
𝐾𝑠2

 

( 1277 ) 

Sorting properly: 

𝑞𝑐𝑟 = {[(2𝑛 − 1)
2
𝜋2𝐾𝑏1
4𝐻2

]

−1

+ 𝐾𝑠1
−1}

−1

+ {[(2𝑛 − 1)2
𝜋2𝐾𝑏2
4𝐻2

]

−1

+𝐾𝑠2
−1}

−1

 

( 1278 ) 

For the case when 𝑛 = 1, we have: 

𝑞𝑐𝑟 = [(
𝜋2𝐾𝑏1
4𝐻2

)

−1

+ 𝐾𝑠1
−1]

−1

+ [(
𝜋2𝐾𝑏1
4𝐻2

)

−1

+ 𝐾𝑠1
−1]

−1

 

( 1279 ) 

i.e., 

𝑞𝑐𝑟 = [𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ò𝑛 𝑔𝑙𝑜𝑏𝑎𝑙
−1 + 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒 𝑔𝑙𝑜𝑏𝑎𝑙

−1]
−1
+ [𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ò𝑛 𝑙𝑜𝑐𝑎𝑙

−1 + 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒 𝑙𝑜𝑐𝑎𝑙
−1]

−1
 ( 1280 ) 

Since the resulting critical load is independent of some approximation function, it can be 

considered exact and identical to the one that would be obtained by applying Föppl's theorem. 

4.3.7.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations: 
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{
 
 

 
 𝐾𝑏1𝜓(𝑥)

′′ + 𝐾𝑠1 [𝑢(𝑥)
′ − 𝜓(𝑥)] = 0

𝐾𝑏2𝜃(𝑥)
′′ + 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)] = 0

[𝐾𝑠1 + 𝐾𝑠2 − 𝑓(𝑥)] 𝑢(𝑥)
′′ − 𝐾𝑠1𝜓(𝑥)

′ − 𝐾𝑠2𝜃(𝑥)
′ = 0

}
 
 

 
 

 

( 1281 ) 

Using the method of coefficients: 

[

𝐾𝑠1𝐷 0 𝐾𝑏1𝐷
2 −𝐾𝑠1

𝐾𝑠2𝐷 𝐾𝑏2𝐷
2 −𝐾𝑠2 0

(𝐾𝑠1 +𝐾𝑠2 − 𝑞)𝐷
2 −𝐾𝑠2𝐷 −𝐾𝑠1𝐷

]{

𝑢(𝑥)
𝜃(𝑥)
𝜓(𝑥)

} = {
0
0
0
} 

( 1282 ) 

To avoid trivial solutions, the determinant must be equal to zero, that is: 

𝐷2 {𝐷4 − [
𝐾𝑠1𝐾𝑠2(𝐾𝑏1 +𝐾𝑏2) − 𝑞(𝐾𝑏1𝐾𝑠2 +𝐾𝑠1𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2 − 𝑞)
]𝐷2 − [

𝐾𝑠1𝐾𝑠2𝑞

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2 − 𝑞)
]} = 0 

( 1283 ) 

Rewriting: 

𝐷2(𝐷4 − 𝑟1𝐷
2 − 𝑟2) = 0 ( 1284 ) 

Where: 

{
 

 𝑟1 =
𝐾𝑠1𝐾𝑠2(𝐾𝑏1 + 𝐾𝑏2) − 𝑞(𝐾𝑏1𝐾𝑠2 + 𝐾𝑠1𝐾𝑏2)

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2 − 𝑞)

𝑟2 =
𝐾𝑠1𝐾𝑠2𝑞

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2 − 𝑞) }
 

 

 

( 1285 ) 

The expression for 𝑢(𝑧), 𝜓(𝑧) and 𝜃(𝑧)  is proposed: 

{
 

 𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(√𝜉𝑧) + 𝐶3 sinh(√𝜉𝑧) + 𝐶4 cos(√𝛽𝑧) + 𝐶5 sin(√𝛽𝑧)

𝜓
(𝑧)
= 𝐶6 + 𝐶7 cosh(√𝜉𝑧) + 𝐶8 sinh(√𝜉𝑧) + 𝐶9 cos(√𝛽𝑧) + 𝐶10 sin(√𝛽𝑧)

𝜃(𝑧) = 𝐶11 + 𝐶12 cosh(√𝜉𝑧) + 𝐶13 sinh(√𝜉𝑧) + 𝐶14 cos(√𝛽𝑧) + 𝐶15 sin(√𝛽𝑧) }
 

 
 

( 1286 ) 

Where: 
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{
 
 

 
 
𝜉 =

𝑟1 +√𝑟1
2 + 4𝑟2
2

𝛽 =
−𝑟1 +√𝑟1

2 + 4𝑟2
2 }

 
 

 
 

 

( 1287 ) 

Expressing the coefficients of 𝜓(𝑧) and 𝜃(𝑧)  as a function of the coefficients of 𝑢(𝑧): 

{
 

 𝑢(𝑧) = 𝐶0 + 𝐶1𝑧+ 𝐶2 cosh(√𝜉𝑧) + 𝐶3 sinh(√𝜉𝑧) + 𝐶4 cos(√𝛽𝑧) + 𝐶5 sin(√𝛽𝑧)

𝜓(𝑧) = 𝐶1 + [𝑅𝜓1 sinh(√𝜉𝑧)]𝐶2 + [𝑅𝜓1 cosh(√𝜉𝑧)]𝐶3 − [𝑅𝜓2 sin(√𝛽𝑧)]𝐶4 + [𝑅𝜓2 cos(√𝛽𝑧)]𝐶5

𝜃(𝑧) = 𝐶1 + [𝑅𝜃1 sinh(√𝜉𝑧)]𝐶2 + [𝑅𝜃1 cosh(√𝜉𝑧)]𝐶3 − [𝑅𝜃2 sin(√𝛽𝑧)]𝐶4 + [𝑅𝜃2 cos(√𝛽𝑧)]𝐶5 }
 

 
 

 ( 1288 ) 

Where: 

{𝑅𝜓1 =
𝐾𝑠1√𝜉

𝐾𝑠1 − 𝜉𝐾𝑏1
, 𝑅𝜓2 =

𝐾𝑠1√𝜉

𝐾𝑠1 − 𝛽𝐾𝑏1
, 𝑅𝜃1 =

𝐾𝑠2√𝛽

𝐾𝑠2 − 𝛽𝐾𝑏2
, 𝑅𝜃2 =

𝐾𝑠2√𝛽

𝐾𝑠2 − 𝛽𝐾𝑏2
} 

( 1289 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 

{
 
 
 
 

 
 
 
 
{
𝑀1(𝑧) = 𝐾𝑏1𝜓(𝑥)

′ = [𝑅𝜓1√𝜉𝐾𝑏1 cosh(√𝜉𝑧)]𝐶2 + [𝑅𝜓1√𝜉𝐾𝑏1 sinh(√𝜉𝑧)]𝐶3

−[𝑅𝜓2√𝛽𝐾𝑏1 cos (√𝛽𝑧)]𝐶4 − [𝑅𝜓2√𝛽𝐾𝑏1 sin (√𝛽𝑧)]𝐶5
}

{
𝑀2(𝑧) = 𝐾𝑏2𝜃(𝑥)

′ = [𝑅𝜃1√𝜉𝐾𝑏1 cosh(√𝜉𝑧)] 𝐶2 + [𝑅𝜃1√𝜉𝐾𝑏1 sinh(√𝜉𝑧)] 𝐶3

−[𝑅𝜃2√𝛽𝐾𝑏1 cos (√𝛽𝑧)]𝐶4 − [𝑅𝜃2√𝛽𝐾𝑏1 sin (√𝛽𝑧)]𝐶5
}

{
𝑉(𝑧) = (𝐾𝑠1 + 𝐾𝑠2 − 𝑞)𝑢(𝑥)

′ −𝐾𝑠1𝜓(𝑥) −𝐾𝑠2𝜃(𝑥) = −𝑞𝐶1 + 𝑅1 sinh(√𝜉𝑧)𝐶2

+𝑅1 cosh(√𝜉𝑧)𝐶3 − 𝑅2 sin(√𝛽𝑧)𝐶4 +𝑅2 cos(√𝛽𝑧)𝐶5
}
}
 
 
 
 

 
 
 
 

 

( 1290 ) 

Where: 

{
𝑅1 = (𝐾𝑠1 + 𝐾𝑠2 − 𝑞)√𝜉 − 𝐾𝑠1𝑅𝜓1 − 𝐾𝑠2𝑅𝜃1

𝑅2 = (𝐾𝑠1 + 𝐾𝑠2 − 𝑞)√𝛽 − 𝐾𝑠1𝑅𝜓2 − 𝐾𝑠2𝑅𝜃2
} 

( 1291 ) 

Writing the equations in matrix form: 
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{
  
 

  
 
𝑢𝑖(𝑧𝑖)

𝜓𝑖(𝑧𝑖)

𝜃𝑖(𝑧𝑖)

𝑀1i(𝑧𝑖)

𝑀2i(𝑧𝑖)

𝑉𝑖(𝑧𝑖) }
  
 

  
 

= 𝐾𝑖(𝑧𝑖)

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

 

( 1292 ) 

Where: 

𝐾𝑖(𝑧𝑖)

=

[
 
 
 
 
 
 
 
 1 𝑧 cosh(√𝜉𝑧) sinh(√𝜉𝑧) cos(√𝛽𝑧) sin(√𝛽𝑧)

0 1 𝑅𝜓1 sinh(√𝜉𝑧) 𝑅𝜓1 cosh(√𝜉𝑧) −𝑅𝜓2 sin(√𝛽𝑧) 𝑅𝜓2 cos(√𝛽𝑧)

0 1 𝑅𝜃1 sinh(√𝜉𝑧) 𝑅𝜃1 cosh(√𝜉𝑧) −𝑅𝜃2 sin(√𝛽𝑧) 𝑅𝜃2 cos(√𝛽𝑧)

0 0 𝑅𝜓1√𝜉𝐾𝑏1 cosh(√𝜉𝑧) 𝑅𝜓1√𝜉𝐾𝑏1 sinh(√𝜉𝑧) −𝑅𝜓2√𝛽𝐾𝑏1 cos(√𝛽𝑧) −𝑅𝜓2√𝛽𝐾𝑏1 sin(√𝛽𝑧)

0 0 𝑅𝜃1√𝜉𝐾𝑏1 cosh(√𝜉𝑧) 𝑅𝜃1√𝜉𝐾𝑏1 sinh(√𝜉𝑧) −𝑅𝜃2√𝛽𝐾𝑏1 cos(√𝛽𝑧) −𝑅𝜃2√𝛽𝐾𝑏1 sin(√𝛽𝑧)

0 −𝑞 𝑅1 sinh(√𝜉𝑧) 𝑅1 cosh(√𝜉𝑧) −𝑅2 sin(√𝛽𝑧) 𝑅2 cos(√𝛽𝑧) ]
 
 
 
 
 
 
 
 

𝑖

 

 ( 1293 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the base to the top of the beam and expressing the equation between 

the product symbol: 

{
  
 

  
 
𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)

𝑀1n(0)

𝑀2n(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑘(0)

𝑛

𝑘=1

{
  
 

  
 
𝑢1(ℎ1)

𝜓1(ℎ1)

𝜃1(ℎ1)

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

= t

{
  
 

  
 
𝑢1(ℎ1)

𝜓1(ℎ1)

𝜃1(ℎ1)

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

 

( 1294 ) 

Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1295 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors.Según las condiciones de contorno definidas en el caso 1: 
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{
 
 
 

 
 
 

𝑢(1) = 0

𝜓(1) = 0

𝜃(1) = 0

𝜓(0)
′ = 0

𝜃(0)
′ = 0

(𝐾𝑠1 +𝐾𝑠2 − 𝑞)𝑢(0)
′ −𝐾𝑠1𝜓(0) − 𝐾𝑠2𝜃(0) = 0}

 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝜓1(ℎ1) = 0

𝜃1(ℎ1) = 0
𝑀1𝑛 (0) = 0

𝑀2𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
  
 

  
 

 

( 1296 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

 

( 1297 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀1(ℎ1)

𝑀2(ℎ1)

𝑉1(ℎ1)
} 

( 1298 ) 

Which has a different solution than the trivial if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the critical loads of the beam. 
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4.3.8 Generalized Sandwich Beam of Three Field (GSB2) 

4.3.8.1 Case 1 

The potential energy of the three-field GSB2 model is expressed as follows: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+ 𝐾𝑠1[𝜃(𝑥) −𝜓(𝑥)]

2
+ 𝐾𝑏2𝜓(𝑥)

′ 2
}

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠2[𝜓(𝑥) − 𝑢(𝑥)

′ ]
2

𝐻

0

𝑑𝑥 
( 1299 ) 

 Coupled shear wall: 

{
 
 

 
 𝐾𝑏1 =∑𝐸𝐴𝑤𝑖𝑐𝑖

2

𝑤

𝑖=1

, 𝐾𝑏2 = 𝑟∑𝐸𝐼𝑤𝑖

𝑤

𝑖=1

𝐾𝑠1 =∑[
ℎ

𝐿
(

𝐿2

12𝐸𝐼𝑏
+

1

𝐺𝐴𝑏
′ )]

−1𝑏

𝑖=1

, 𝐾𝑠2 =∑[
1

2
(

ℎ2

𝜋2𝐸𝐼𝑤
+

1

𝐺𝐴𝑤
′
)]

−1𝑤

𝑖=1 }
 
 

 
 

 

( 1300 ) 

 Frame: 

{
 
 

 
 𝐾𝑏1 =∑𝐸𝐴𝑐,𝑖𝑐𝑖

2

𝑐

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

𝐾𝑠1 =∑[
ℎ

𝐿
(

𝐿2

12𝐸𝐼𝑏
+

1

𝐺𝐴𝑏
′ )]

−1𝑏

𝑖=1

, 𝐾𝑠2 =∑[
1

2
(
ℎ2

𝜋2𝐸𝐼𝑐
+

1

𝐺𝐴𝑐
′ )]

−1𝑐

𝑖=1 }
 
 

 
 

 

( 1301 ) 

 Dual (frame + shear wall): 

{
 
 

 
 
𝐾𝑏1 =∑𝐸𝐴𝑐,𝑖𝑐𝑖

2

𝑐

𝑖=1

, 𝐾𝑏2 =∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

+∑𝑟𝐸𝐼𝑤,𝑖

𝑤

𝑖=1

, 𝐾𝑠1 =∑[
ℎ

𝐿
(

𝐿2

12𝐸𝐼𝑏
+

1

𝐺𝐴𝑏
′ )]

−1𝑏

𝑖=1

𝐾𝑠2 =∑[
1

2
(
ℎ2

𝜋2𝐸𝐼𝑐
+

1

𝐺𝐴𝑐
′ )]

−1𝑐

𝑖=1

+∑[
1

2
(

ℎ2

𝜋2𝐸𝐼𝑤
+

1

𝐺𝐴𝑤′
)]

−1𝑤

𝑖=1 }
 
 

 
 

 

( 1302 ) 

The work done by the external force is expressed as: 

𝑊 = −𝑓(𝑥)𝑑𝑙 = −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1303 ) 

Consequently, the total potential energy of the model is expressed as: 
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𝒰 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+ 𝐾𝑠1 [𝜃(𝑥) − 𝜓(𝑥)]

2

+ 𝐾𝑏2𝜓(𝑥)
′ 2

+ 𝐾𝑠2 [𝜓(𝑥) − 𝑢(𝑥)
′ ]

2

}
𝐻

0

𝑑𝑥

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1304 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝐾𝑏1𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ +𝐾𝑠1 [𝜃(𝑥) − 𝜓(𝑥)] [𝛿𝜃(𝑥) − 𝛿𝜓(𝑥)] + 𝐾𝑏2𝜓(𝑥)
′ 𝛿𝜓(𝑥)

′
𝐻

0

+ 𝐾𝑠2 [𝜓(𝑥) − 𝑢(𝑥)
′ ] [𝛿𝜓

(𝑥)
− 𝛿𝑢(𝑥)

′ ] − 𝑓(𝑥)𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ }𝑑𝑥

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1305 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = {[𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′ −𝐾𝑠2𝜓(𝑥)}𝛿𝑢(𝑥)

0

𝐻
+ [𝐾𝑏1𝜃(𝑥)

′ 𝛿𝜃(𝑥)]
0

𝐻
+ [𝐾𝑏2𝜓(𝑥)

′ 𝛿𝜓(𝑥)]
0

𝐻

−∫ {[𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′′ −𝐾𝑠2𝜓(𝑥)

′ − 𝑓(𝑥)
′ 𝑢(𝑥)

′ }
𝐻

0

𝛿𝑢(𝑥)

−∫ {𝐾𝑏1𝜃(𝑥)
′′ − 𝐾𝑠1[𝜃(𝑥) −𝜓(𝑥)]}𝛿𝜃(𝑥)

𝐻

0

−∫ [𝐾𝑏2𝜓(𝑥)
′′ − (𝐾𝑠1 + 𝐾𝑠2)𝜓(𝑥) + 𝐾𝑠1𝜃(𝑥) + 𝐾𝑠2𝑢(𝑥)

′ ]𝛿𝜓(𝑥)

𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1306 ) 

Setting the terms equal to zero, the following equations result: 

{

[𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′′ −𝐾𝑠2𝜓(𝑥)

′ − 𝑓(𝑥)
′ 𝑢(𝑥)

′ = 0

𝐾𝑏1𝜃(𝑥)
′′ −𝐾𝑠1[𝜃(𝑥) −𝜓(𝑥)] = 0

𝐾𝑏2𝜓(𝑥)
′′ − (𝐾𝑠1 + 𝐾𝑠2)𝜓(𝑥) +𝐾𝑠1𝜃(𝑥) + 𝐾𝑠2𝑢(𝑥)

′ = 0

} 

( 1307 ) 

And boundary conditions: 
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{

[𝐾𝑠2 − 𝑓(0)]𝑢(0)
′ − 𝐾𝑠2𝜓(0) = 0

𝜃(0)
′ = 0

𝜓(0)
′ = 0

} 

( 1308 ) 

Integrating the equation once and evaluating at 𝑥=0: 

[𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′ − 𝐾𝑠2𝜓(𝑥) = 0 ( 1309 ) 

We have a new system of coupled differential equations: 

{

[𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′ − 𝐾𝑠2𝜓(𝑥) = 0

𝐾𝑏1𝜃(𝑥)
′′ −𝐾𝑠1[𝜃(𝑥) −𝜓(𝑥)] = 0

𝐾𝑏2𝜓(𝑥)
′′ − (𝐾𝑠1 + 𝐾𝑠2)𝜓(𝑥) +𝐾𝑠1𝜃(𝑥) + 𝐾𝑠2𝑢(𝑥)

′ = 0

} 

( 1310 ) 

Using the method of coefficients for the solution of the system of equations: 

[

[𝐾𝑠2 − 𝑓(𝑥)]𝐷 0 −𝐾𝑠2
0 𝐾𝑏1𝐷

2 − 𝐾𝑠1 𝐾𝑠1
𝐾𝑠2𝐷 𝐾𝑠1 𝐾𝑏2𝐷

2 − (𝐾𝑠1 + 𝐾𝑠2)

] {

𝑢(𝑥)
𝜃(𝑥)
𝜓(𝑥)

} = {
0
0
0
} 

( 1311 ) 

Which has a solution other than the trivial one if the determinant is equal to zero: 

𝑢(𝑥)
′′′′′ − [

𝐾𝑠1(𝐾𝑏1 + 𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
] 𝑢(𝑥)

′′′ + 𝑓(𝑥) {−
1

𝐾𝑠2
𝑢(𝑥)
′′′′′ + (

𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1
𝐾𝑏1𝐾𝑏2𝐾𝑠2

) 𝑢(𝑥)
′′′ −

𝐾𝑠1
𝐾𝑏1𝐾𝑏2

𝑢(𝑥)
′ } = 0 

 ( 1312 ) 

Or its equivalent: 

𝐾𝑏1𝐾𝑏2
𝐾𝑠1

𝑢(𝑥)
′′′′′ − (𝐾𝑏1 +𝐾𝑏2)𝑢(𝑥)

′′′ + 𝑓(𝑥) {−
𝐾𝑏1𝐾𝑏2
𝐾𝑠1𝐾𝑠2

𝑢(𝑥)
′′′′′ + [

𝐾𝑏2
𝐾𝑠2

+𝐾𝑏1 (
1

𝐾𝑠1
+

1

𝐾𝑠2
)] 𝑢(𝑥)

′′′ − 𝑢(𝑥)
′ } = 0 

 ( 1313 ) 

A fourth order differential equation is obtained, where the critical load results from the smallest 

eigenvalue. Normalizing the differential equation by the variable 𝑧=𝑥/𝐻: 

𝑢(𝑧)
′′′′′ − [

𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
𝐻2] 𝑢(𝑧)

′′′

+ 𝑓(𝑧) {−
1

𝐾𝑠2
𝑢(𝑧)
′′′′′ + [(

𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 + 𝐾𝑠1𝐾𝑏1
𝐾𝑏1𝐾𝑏2𝐾𝑠2

)𝐻2] 𝑢(𝑧)
′′′ − (

𝐾𝑠1
𝐾𝑏1𝐾𝑏2

𝐻4)𝑢(𝑧)
′ } = 0 
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 ( 1314 ) 

Where: 

𝑓(𝑧) = 𝑞𝛼(𝑧) ( 1315 ) 

The equation can be rewritten as: 

𝑢(𝑧)
′′′′′ − 𝑎0𝑢(𝑧)

′′′ + 𝑞𝛼(𝑧)[−𝑎1𝑢(𝑧)
′′′′′ + 𝑎2𝑢(𝑧)

′′′ − 𝑎3𝑢(𝑧)
′ ] = 0 ( 1316 ) 

Where: 

𝑎0 =
𝐾𝑠1(𝐾𝑏1 +𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
𝐻2 , 𝑎1 =

1

𝐾𝑠2

𝑎2 = (
𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1

𝐾𝑏1𝐾𝑏2𝐾𝑠2
)𝐻2 , 𝑎3 =

𝐾𝑠1
𝐾𝑏1𝐾𝑏2

𝐻4
 

( 1317 ) 

Expressing the boundary conditions as a function of 𝑢(𝑧): 

{
 
 

 
 
𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝑢(1)
′′′ = 0

𝑢(0)
′′′′ = 0}

 
 

 
 

 

( 1318 ) 

 Uniformly Distributed Load 

For beam stability, the governing differential equation is of the form: 

(
𝑑5

𝑑𝑧5
− 𝑎0

𝑑3

𝑑𝑧3
)𝑢(𝑧) − 𝑞 [𝛼(𝑧) (𝑎1

𝑑5

𝑑𝑧5
− 𝑎2

𝑑3

𝑑𝑧3
+ 𝑎3

𝑑

𝑑𝑧
)] 𝑢(𝑧) = 0 

( 1319 ) 

Multiplying the equation by (𝑎1
𝑑5

𝑑𝑧5
− 𝑎2

𝑑3

𝑑𝑧3
+ 𝑎3

𝑑

𝑑𝑧
), integrating from 0 to 1 and solving: 

𝜆 =
∫ {𝑎1𝑢′′′′′(𝑧)

2 + (𝑎0𝑎1 + 𝑎2)𝑢′′′′(𝑧)
2 + (𝑎0𝑎2 + 𝑎3)𝑢′′′(𝑧)

2 + 𝑎0𝑎3𝑢′′(𝑧)
2 }𝑑𝑧

1

0

∫ 𝛼(𝑧)
1

0
[𝑎1𝑢(𝑧)

′′′′′ − 𝑎2𝑢(𝑧)
′′′ + 𝑎3𝑢(𝑧)

′ ]
2
𝑑𝑧

 

( 1320 ) 

This Rayleigh ratio represents an approximation of the upper limit of the critical load, and it is 

exact if and only if the exact equilibrium curve 𝑢(𝑧) is used to calculate 𝜆. 
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For the case of a uniformly distributed load, the function 𝛼(𝑧) results in: 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 1321 ) 

The Rayleigh quotient becomes: 

𝜆 =
∫ {𝑎1𝑢′′′′′(𝑧)

2 + (𝑎0𝑎1 + 𝑎2)𝑢′′′′(𝑧)
2 + (𝑎0𝑎2 + 𝑎3)𝑢′′′(𝑧)

2 + 𝑎0𝑎3𝑢′′(𝑧)
2 }𝑑𝑧

1

0

∫ 𝑧
1

0
[𝑎1𝑢(𝑧)

′′′′′ − 𝑎2𝑢(𝑧)
′′′ + 𝑎3𝑢(𝑧)

′ ]
2
𝑑𝑧

 

( 1322 ) 

 Point Load at x=0 (z=0) 

For the case of a point load applied at x=H (z=1), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1323 ) 

Substituting into the differential equation: 

𝑢(𝑧)
′′′′′ − 𝑎0𝑢(𝑧)

′′′ + 𝑞[−𝑎1𝑢(𝑧)
′′′′′ + 𝑎2𝑢(𝑧)

′′′ − 𝑎3𝑢(𝑧)
′ ] = 0 ( 1324 ) 

The expression for 𝑢(𝑧)  can be derived as: 

𝑢(𝑧) = 𝐶0 + 𝐶1 cosh(√𝜉𝑧) + 𝐶2 sinh(√𝜉𝑧) + 𝐶3 cos(√𝛽𝑧) + 𝐶4 sin(√𝛽𝑧) ( 1325 ) 

Where: 

{
 
 

 
 𝜉 =

(𝑎0 − 𝑞𝑎2) + √(𝑎0 − 𝑞𝑎2)2 + 4𝑞𝑎3(1 − 𝑞𝑎1)

2(1 − 𝑞𝑎1)

𝛽 =
−(𝑎0 − 𝑞𝑎2) + √(𝑎0 − 𝑞𝑎2)2 + 4𝑞𝑎3(1 − 𝑞𝑎1)

2(1 − 𝑞𝑎1) }
 
 

 
 

 

( 1326 ) 

The linear algebraic system resulting from the boundary conditions, written in matrix form, is: 

[
 
 
 
 
 1 cosh(√𝜉) sinh(√𝜉) cos(√𝛽) sin(√𝛽)

0 𝜉1/2 sinh(√𝜉) 𝜉1/2 cosh(√𝜉) −𝛽1/2 sin(√𝛽) 𝛽1/2 cos(√𝛽)

0 𝜉 0 −𝛽 0

0 𝜉3/2 sinh(√𝜉) 𝜉3/2 cosh(√𝜉) 𝛽3/2 sin(√𝛽) −𝛽3/2 cos(√𝛽)

0 𝜉2 0 𝛽2 0 ]
 
 
 
 
 

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4}
 
 

 
 

= 0 

( 1327 ) 
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Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular), that is, for: 

𝐶𝑜𝑠√𝛽 = 0 → √𝛽 = (2𝑛 − 1)
𝜋

2
 / 𝑛 = 1, 2, 3… 

( 1328 ) 

i.e., 

−(𝑎0 − 𝑞𝑎2) + √(𝑎0 − 𝑞𝑎2)2 + 4𝑞𝑎3(1 − 𝑞𝑎1)

2(1 − 𝑞𝑎1)
= (2𝑛 − 1)2

𝜋2

4
 

( 1329 ) 

Solving: 

𝑞𝑐𝑟 =

(2𝑛 − 1)4𝜋4

4 + 𝑎0(2𝑛 − 1)
2𝜋2

4𝑎0 + 𝑎2(2𝑛 − 1)2𝜋2 + 𝑎1
(2𝑛 − 1)4𝜋4

4

 

( 1330 ) 

Replacing the coefficients and after some simple manipulations: 

𝑞𝑐𝑟 =
1

[
1

4𝐻2

(2𝑛 − 1)2𝜋2𝐾𝑏1
+

1
𝐾𝑠1

+ (2𝑛 − 1)2
𝜋2𝐾𝑏2
4𝐻2

]

−1

+
1
𝐾𝑠2

 

( 1331 ) 

Sorting properly: 

𝑞𝑐𝑟 = {{{[(2𝑛 − 1)
2
𝜋2𝐾𝑏1
4𝐻2

]

−1

+ 𝐾𝑠1
−1}

−1

+ (2𝑛 − 1)2
𝜋2𝐾𝑏2
4𝐻2

}

−1

+𝐾𝑠2
−1}

−1

 

( 1332 ) 

For the case when 𝑛 = 1, we have: 

𝑞𝑐𝑟 = {{[(
𝜋2𝐾𝑏1
4𝐻2

)

−1

+ 𝐾𝑠1
−1]

−1

+
𝜋2𝐾𝑏2
4𝐻2

}

−1

+𝐾𝑠2
−1}

−1

 

( 1333 ) 

i.e., 
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𝑞𝑐𝑟 = {[(𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ó𝑛 𝑔𝑙𝑜𝑏𝑎𝑙
−1 + 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒 𝑔𝑙𝑜𝑏𝑎𝑙

−1 )
−1
+ 𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ó𝑛 𝑙𝑜𝑐𝑎𝑙]

−1

+ 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒 𝑙𝑜𝑐𝑎𝑙
−1 }

−1

 
( 1334 ) 

Since the resulting critical load is independent of some approximation function, it can be 

considered exact and identical to the one that would be obtained by applying Föppl's theorem. 

4.3.8.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations: 

{
 
 

 
 𝐾𝑠2𝑢(𝑥)

′′ − 𝐾𝑠2𝜓(𝑥)
′ = 0

𝐾𝑏1𝜃(𝑥)
′′ − 𝐾𝑠1 [𝜃(𝑥) − 𝜓(𝑥)] = 0

𝐾𝑏2𝜓(𝑥)
′′ − (𝐾𝑠1 + 𝐾𝑠2)𝜓(𝑥) + 𝐾𝑠1𝜃(𝑥) + 𝐾𝑠2𝑢(𝑥)

′ = 0
}
 
 

 
 

 

( 1335 ) 

Using the method of coefficients: 

[

𝐾𝑠2𝐷
2 0 −𝐾𝑠2𝐷

0 𝐾𝑏1𝐷
2 − 𝐾𝑠1 𝐾𝑠1

𝐾𝑠2𝐷 𝐾𝑠1 𝐾𝑏2𝐷
2 − (𝐾𝑠1 + 𝐾𝑠2)

] {

𝑢(𝑥)
𝜃(𝑥)
𝜓(𝑥)

} = {
0
0
0
} 

( 1336 ) 

To avoid trivial solutions, the determinant must be equal to zero, that is: 

𝐷2 {𝐷4 − [
𝐾𝑠1𝐾𝑠2(𝐾𝑏1 +𝐾𝑏2) − 𝑞(𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)

𝐾𝑏1𝐾𝑏2(𝐾𝑠2 − 𝑞)
]𝐷2 − [

𝐾𝑠1𝐾𝑠2𝑞

𝐾𝑏1𝐾𝑏2(𝐾𝑠2 − 𝑞)
]} = 0 

( 1337 ) 

Rewriting: 

𝐷2(𝐷4 − 𝑟1𝐷
2 − 𝑟2) = 0 ( 1338 ) 

Where: 

{
 

 𝑟1 =
𝐾𝑠1𝐾𝑠2(𝐾𝑏1 + 𝐾𝑏2) − 𝑞(𝐾𝑠1𝐾𝑏2 + 𝐾𝑠2𝐾𝑏1 + 𝐾𝑠1𝐾𝑏1)

𝐾𝑏1𝐾𝑏2(𝐾𝑠2 − 𝑞)

𝑟2 =
𝐾𝑠1𝐾𝑠2𝑞

𝐾𝑏1𝐾𝑏2(𝐾𝑠2 − 𝑞) }
 

 

 

( 1339 ) 
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The expression for 𝑢(𝑧), 𝜓(𝑧) and 𝜃(𝑧) is proposed: 

{
 

 𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(√𝜉𝑧) + 𝐶3 sinh(√𝜉𝑧) + 𝐶4 cos(√𝛽𝑧) + 𝐶5 sin(√𝛽𝑧)

𝜃(𝑧) = 𝐶6 + 𝐶7 cosh(√𝜉𝑧) + 𝐶8 sinh(√𝜉𝑧) + 𝐶9 cos(√𝛽𝑧) + 𝐶10 sin(√𝛽𝑧)

𝜓
(𝑧)
= 𝐶11 + 𝐶12 cosh(√𝜉𝑧) + 𝐶13 sinh(√𝜉𝑧) + 𝐶14 cos(√𝛽𝑧) + 𝐶15 sin(√𝛽𝑧) }

 

 
 

( 1340 ) 

Where: 

{𝜉 =
𝑟1 +√𝑟1

2 + 4𝑟2
2

, 𝛽 =
−𝑟1 + √𝑟1

2 + 4𝑟2
2

} 
( 1341 ) 

Expressing the coefficients of 𝜓(𝑧) and 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{
 

 𝑢(𝑧) = 𝐶0 +𝐶1𝑧 + 𝐶2 cosh(√𝜉𝑧) + 𝐶3 sinh(√𝜉𝑧) + 𝐶4 cos(√𝛽𝑧) + 𝐶5 sin(√𝛽𝑧)

𝜃(𝑧) = 𝐶1 + [𝑝1√𝜉sinh(√𝜉𝑧)]𝐶2+ [𝑝1√𝜉 cosh(√𝜉𝑧)]𝐶3 − [𝑝3√𝛽sin(√𝛽𝑧)]𝐶4+ [𝑝3√𝛽cos(√𝛽𝑧)]𝐶5

𝜓(𝑧) = 𝐶1 + [𝑝2√𝜉 sinh(√𝜉𝑧)]𝐶2 + [𝑝2√𝜉cosh(√𝜉𝑧)]𝐶3− [𝑝4√𝛽sin(√𝛽𝑧)]𝐶4 + [𝑝4√𝛽cos(√𝛽𝑧)]𝐶5}
 

 
 

( 1342 ) 

Where: 

{
 
 
 
 

 
 
 
 𝑝1 =

𝐾𝑠1𝐾𝑠2

𝐾𝑏1𝐾𝑏2𝜉2 − (𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝜉 +𝐾𝑠1𝐾𝑠2

𝑝
2
=

−(𝐾𝑏1𝜉 − 𝐾𝑠1)𝐾𝑠1
𝐾𝑏1𝐾𝑏2𝜉2 − (𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝜉 +𝐾𝑠1𝐾𝑠2

𝑝
3
=

𝐾𝑠1𝐾𝑠2

𝐾𝑏1𝐾𝑏2𝛽2 − (𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝛽 + 𝐾𝑠1𝐾𝑠2

𝑝
4
=

(𝐾𝑏1𝛽 + 𝐾𝑠1)𝐾𝑠1
𝐾𝑏1𝐾𝑏2𝛽2 − (𝐾𝑠1𝐾𝑏2 +𝐾𝑠2𝐾𝑏1 +𝐾𝑠1𝐾𝑏1)𝛽 + 𝐾𝑠1𝐾𝑠2}

 
 
 
 

 
 
 
 

 

( 1343 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 

{
 
 
 
 

 
 
 
 {

𝑀1(𝑧) = 𝐾𝑏1𝜃(𝑥)
′ = [𝑝1𝜉𝐾𝑏1 cosh(√𝜉𝑧)]𝐶2 + [𝑝1𝜉𝐾𝑏1 sinh(√𝜉𝑧)]𝐶3

−[𝑝3𝛽𝐾𝑏1 cos(√𝛽𝑧)]𝐶4 − [𝑝3𝛽𝐾𝑏1 sin(√𝛽𝑧)]𝐶5
}

{
𝑀2(𝑧) = 𝐾𝑏2𝜓(𝑥)

′ = [𝑝2𝜉𝐾𝑏2 cosh(√𝜉𝑧)]𝐶2 + [𝑝2𝜉𝐾𝑏2 sinh(√𝜉𝑧)]𝐶3

−[𝑝4𝛽𝐾𝑏2 cos(√𝛽𝑧)]𝐶4 − [𝑝4𝛽𝐾𝑏2 sin(√𝛽𝑧)]𝐶5
}

{
𝑉(𝑧) = (𝐾𝑠2 − 𝑞)𝑢(𝑥)

′ −𝐾𝑠2𝜓(𝑥) = −𝑞𝐶1 +𝑅1√𝜉 sinh(√𝜉𝑧)𝐶2 + 𝑅1√𝜉 cosh(√𝜉𝑧)𝐶3

−𝑅2√𝛽 sin(√𝛽𝑧)𝐶4 + 𝑅2√𝛽 cos(√𝛽𝑧) 𝐶5
}
}
 
 
 
 

 
 
 
 

 

( 1344 ) 

Where: 
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{𝑅1 = 𝐾𝑠2(1 − 𝑝2) − 𝑞, 𝑅2 = 𝐾𝑠2(1 − 𝑝4) − 𝑞} ( 1345 ) 

Writing the equations in matrix form: 

{
  
 

  
 
𝑢𝑖(𝑧𝑖)

𝜓𝑖(𝑧𝑖)

𝜃𝑖(𝑧𝑖)

𝑀1i(𝑧𝑖)

𝑀2i(𝑧𝑖)

𝑉𝑖(𝑧𝑖) }
  
 

  
 

= 𝐾𝑖(𝑧𝑖)

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

 

( 1346 ) 

Where: 

𝐾𝑖(𝑧𝑖)

=

[
 
 
 
 
 
 
 
 1 𝑧 cosh(√𝜉𝑧) sinh(√𝜉𝑧) cos(√𝛽𝑧) sin(√𝛽𝑧)

0 1 𝑝
1√𝜉 sinh(√𝜉𝑧) 𝑝

1√𝜉 cosh(√𝜉𝑧) −𝑝
3√𝛽 sin(√𝛽𝑧) 𝑝

3√𝛽 cos(√𝛽𝑧)

0 1 𝑝
2√𝜉 sinh(√𝜉𝑧) 𝑝

2√𝜉 cosh(√𝜉𝑧) −𝑝
4√𝛽 sin(√𝛽𝑧) 𝑝

4√𝛽 cos(√𝛽𝑧)

0 0 𝑝
1
𝜉𝐾𝑏1 cosh(√𝜉𝑧) 𝑝

1
𝜉𝐾𝑏1 sinh(√𝜉𝑧) −𝑝

3
𝛽𝐾𝑏1 cos (√𝛽𝑧) −𝑝

3
𝛽𝐾𝑏1 sin(√𝛽𝑧)

0 0 𝑝
2
𝜉𝐾𝑏2 cosh(√𝜉𝑧) 𝑝

2
𝜉𝐾𝑏2 sinh(√𝜉𝑧) −𝑝

4
𝛽𝐾𝑏2 cos (√𝛽𝑧) −𝑝

4
𝛽𝐾𝑏2 sin(√𝛽𝑧)

0 −𝑞 𝑅1√𝜉 sinh(√𝜉𝑧) 𝑅1√𝜉 cosh(√𝜉𝑧) −𝑅2√𝛽 sin(√𝛽𝑧) 𝑅2√𝛽 cos(√𝛽𝑧) ]
 
 
 
 
 
 
 
 

𝑖

 

 ( 1347 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the base to the top of the beam and expressing the equation between 

the product symbol: 

{
  
 

  
 
𝑢𝑛(0)

𝜃𝑛(0)

𝜓𝑛(0)

𝑀1n(0)

𝑀2n(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑘(0)

𝑛

𝑘=1

{
  
 

  
 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝜓1(ℎ1)

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

= t

{
  
 

  
 
𝑢1(ℎ1)

𝜃1(ℎ1)

𝜓1(ℎ1)

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

 

( 1348 ) 

Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1349 ) 
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This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝜃(1) = 0

𝜓(1) = 0

𝜓(0)
′ = 0

𝜃(0)
′ = 0

[𝐾𝑠2 − 𝑞]𝑢(0)
′ − 𝐾𝑠2𝜓(0) = 0}

 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝜃1(ℎ1) = 0

𝜓1(ℎ1) = 0
𝑀1𝑛 (0) = 0

𝑀2𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
  
 

  
 

 

( 1350 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝜃𝑛(0)

𝜓𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

 

( 1351 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀1(ℎ1)

𝑀2(ℎ1)

𝑉1(ℎ1)
} 

( 1352 ) 

Which has a different solution than the trivial if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the critical loads of the beam. 
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4.3.9 Modified Generalized Sandwich Beam of Two Field (MGSB1) 

4.3.9.1 Case 1 

The potential energy of the two-field MGSB1 model is expressed as follows: 

𝑉 =
1

2
∫ {𝐾𝑏

∗𝜃(𝑥)
′ 2

+ 𝐾𝑠
∗[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 
( 1353 ) 

Where:  

{
  
 

  
 𝐾𝑏

∗ = 𝜂∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

+ (1 − 𝜂)∑𝐸𝐴𝑐,𝑖𝑐𝑖
2

𝑐

𝑖=1

, 𝐾𝑠
∗ =∑𝐺𝐴𝑐,𝑖

𝑐

𝑖=1

+ (𝐾𝑏
−1 +𝐾𝑐

−1)
−1

𝐾𝑏 =∑
6𝐸𝐼𝑏,𝑖[(𝑙

∗ + 𝑆1)
2 + (𝑙∗ + 𝑆2)

2]

𝑙∗3ℎ (1 + 12
𝑘𝐸𝐼𝑏,𝑖
𝑙∗2𝐺𝐴𝑏,𝑖

)

𝑏

𝑖=1

, 𝐾𝑐 =∑
𝜋2𝐸𝐼𝑐,𝑖
ℎ2

𝑐

𝑖=1
}
  
 

  
 

 

( 1354 ) 

The equation can that allows to determine the critical load, according to the beam TB it results: 

𝜃(𝑧)
′′ − 𝜆𝛼(𝑧) [

1

𝛼2
𝜃(𝑧)
′′ − 𝜃(𝑧)] = 0 

( 1355 ) 

Where: 

{𝛼 = 𝐻√
𝐾𝑠
∗

𝐾𝑏
∗ , 𝜆 =

𝑞𝐻3

𝐾𝑏
∗ } 

( 1356 ) 

Subject to boundary conditions: 

{

𝜃(1) = 0

𝜃(0)
′ = 0

𝜃(0)
′′ = 0

} 

( 1357 ) 

 Uniformly Distributed Load 

The Rayleigh quotient, according to the beam TB, is: 
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𝜆 =
∫ [

1
𝛼2
𝜃′′(𝑧)

2 + 𝜃′(𝑧)
2
] 𝑑𝑧

1

0

∫ 𝑧 [
1
𝛼2
𝜃(𝑧)
′′ − 𝜃(𝑧)]

2

𝑑𝑧
1

0

 

( 1358 ) 

 Point Load at x=0 (z=0) 

The critical load, according to the beam TB, is: 

𝑞𝑐𝑟 = {[(2𝑛 − 1)
2
𝜋2𝐾𝑏

∗

4𝐻2
]

−1

+𝐾𝑠
∗−1}

−1

 

( 1359 ) 

For the case when 𝑛 = 1, we have: 

𝑞𝑐𝑟 = [(
𝜋2𝐾𝑏

∗

4𝐻2
)

−1

+ 𝐾𝑠
∗−1]

−1

= (𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ò𝑛 𝑔𝑙𝑜𝑏𝑎𝑙
−1 + 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒

−1)
−1

 

( 1360 ) 

Since the resulting critical load is independent of some approximation function, it can be 

considered exact and identical to the one that would be obtained by applying Föppl's theorem. 

4.3.9.2 Case 2 

 Calculation of the Transfer Matrix 

The transfer matrix, according to the beam TB, results: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
 
 
 
 
 
 1 𝑧𝑖 cos(√𝜉𝑧) sin(√𝜉𝑧)

0 1 −
𝐾𝑠√𝜉 sin(√𝜉𝑧)

𝜉
𝛼∗2

+ 1
−

𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
sin(√𝜉𝑧)

0 0 −
𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
cos(√𝜉𝑧) −

𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
sin(√𝜉𝑧)

0 𝑞 (
𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
− 𝑞)√𝜉 sin(√𝜉𝑧) −(

𝐾𝑏𝜉

𝜉
𝛼∗2

+ 1
− 𝑞)√𝜉 cos(√𝜉𝑧)

]
 
 
 
 
 
 
 
 
 
 
 

𝑖

 

( 1361 ) 

Where: 
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{𝜉 =
𝑞𝐾𝑠

∗

(𝐾𝑠 − 𝑞)𝐾𝑏
∗ , 𝛼

∗ = √
𝐾𝑠
∗

𝐾𝑏
∗} 

( 1362 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

The critical load is obtained by setting the determinant equal to zero (the matrix of coefficients is 

singular): 

|
𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

| = 0 
( 1363 ) 

Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1364 ) 
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4.3.10 Parallel Coupling of Shear Beam and Timoshenko Beam of Two Field 
(MCTB) 

4.3.10.1 Case 1 

The potential energy of the two-field MCTB model is expressed as follows: 

𝑉 =
1

2
∫ {𝐾𝑏2𝜃(𝑥)

′ 2
+𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝐻

0

𝑑𝑥 +
1

2
∫ 𝐾𝑠1𝑢(𝑥)

′2
𝐻

0

𝑑𝑥 
( 1365 ) 

Where: 

{
 
 

 
 𝐾𝑠1 = (𝐾𝑏

−1 + 𝐾𝑐
−1)

−1
 , 𝐾𝑏2 =∑𝑟𝐸𝐼𝑐,𝑖

𝑐

𝑖=1

 , 𝐾𝑠2 =∑𝐺𝐴𝑐,𝑖

𝑐

𝑖=1

 ,

𝐾𝑏 =∑
12𝐸𝐼𝑏,𝑖
ℎ𝐿

𝑏

𝑖=1

 , 𝐾𝑐 =∑
𝜋2𝐸𝐼𝑐,𝑖
ℎ2

𝑐

𝑖=1 }
 
 

 
 

 

( 1366 ) 

The work done by the external force is expressed as: 

𝑊 = −𝑓(𝑥)𝑑𝑙 = −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1367 ) 

Consequently, the total potential energy of the model is expressed as: 

𝒰 =
1

2
∫ {𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
+𝐾𝑠1𝑢(𝑥)

′2 }
𝐻

0

𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1368 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ + 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)
′ ]𝛿𝜃(𝑥) − 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)

′ ]𝛿𝑢(𝑥)
′ + 𝐾𝑠1𝑢(𝑥)

′ 𝛿𝑢(𝑥)
′

𝐻

0

− 𝑓(𝑥)𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ }𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1369 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 
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𝛿𝒰 = [𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)]

0

𝐻
+ {[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)

′ −𝐾𝑠2𝜃(𝑥)}𝛿𝑢(𝑥)
0

𝐻

−∫ {𝐾𝑏2𝜃(𝑥)
′′ −𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)

′ ]}𝛿𝜃(𝑥)𝑑𝑥
𝐻

0

−∫ {[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′′ −𝐾𝑠2𝜃(𝑥)

′ − 𝑓(𝑥)
′ 𝑢(𝑥)

′ }𝛿𝑢(𝑥)

𝐻

0

𝑑𝑥

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1370 ) 

Setting the terms equal to zero, the following equations result: 

{
𝐾𝑏2𝜃(𝑥)

′′ − 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)
′ ] = 0

[𝐾𝑠1 + 𝐾𝑠2 − 𝑓(𝑥)
′ ]𝑢(𝑥)

′′ − 𝐾𝑠2𝜃(𝑥)
′ − 𝑓

(𝑥)
𝑢(𝑥)
′′ = 0

} 

( 1371 ) 

And boundary conditions: 

{
𝜃(0)
′ = 0

[𝐾𝑠1 + 𝐾𝑠2 − 𝑓(0)] 𝑢(0)
′ − 𝐾𝑠2𝜃(0) = 0

} 

( 1372 ) 

Integrating the equation once and evaluating at 𝑥 = 0: 

[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′ −𝐾𝑠2𝜃(𝑥) = 0 ( 1373 ) 

We have a new system of coupled differential equations: 

{
𝐾𝑏2𝜃(𝑥)

′′ − 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)
′ ] = 0

[𝐾𝑠1 + 𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′ − 𝐾𝑠2𝜃(𝑥) = 0

} 

( 1374 ) 

Using the method of coefficients for the solution of the system of equations: 

[
𝐾𝑠2𝐷 −𝐾𝑠2 +𝐾𝑏2𝐷

2

[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝐷 −𝐾𝑠2
] {
𝑢(𝑥)
𝜃(𝑥)

} = {
0
0
} 

( 1375 ) 

The determinant is equal to zero (the coefficient matrix is singular): 

𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)𝑢(𝑥)
′′′ −𝐾𝑠1𝐾𝑠2𝑢(𝑥)

′ − 𝑓(𝑥)[𝐾𝑏2𝑢(𝑥)
′′′ − 𝐾𝑠2𝑢(𝑥)

′ ] = 0 ( 1376 ) 
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Reordering: 

𝑢(𝑥)
′′′ −

𝐾𝑠1𝐾𝑠2
𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

𝑢(𝑥)
′ − 𝑓(𝑥) [

1

𝐾𝑠1 + 𝐾𝑠2
𝑢(𝑥)
′′′ −

𝐾𝑠2
𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

𝑢(𝑥)
′ ] = 0 

( 1377 ) 

A third order differential equation is obtained, where the critical load results from the smallest 

eigenvalue. Normalizing the differential equation by the variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′ −

𝐾𝑠1𝐾𝑠2
𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

𝐻2𝑢(𝑧)
′ − 𝑓(𝑧) [

1

𝐾𝑠1 +𝐾𝑠2
𝑢(𝑧)
′′′ −

𝐾𝑠2
𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)

𝐻2𝑢(𝑧)
′ ] = 0 

( 1378 ) 

Where: 

𝑓(𝑧) = 𝑞𝛼(𝑧) ( 1379 ) 

We define: 

{𝛼 = 𝐻√
𝐾𝑠2
2

𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
 , 𝜅 = √

𝐾𝑠1
𝐾𝑠2

, 𝜆 =
𝑞𝐻

𝐾𝑠1 + 𝐾𝑠2
} 

( 1380 ) 

Rewriting: 

𝑢(𝑧)
′′′ − (𝛼𝜅)2𝑢(𝑧)

′ − 𝜆𝛼(𝑧)[𝑢(𝑧)
′′′ − 𝛼2(𝑘2 + 1)𝑢(𝑧)

′ ] = 0 ( 1381 ) 

However, the rotation function is of a lower degree: 

𝜃(𝑧)
′′ − (𝛼𝜅)2𝜃(𝑧) − 𝜆𝛼(𝑧)[𝜃(𝑧)

′′ − 𝛼2(𝑘2 + 1)𝜃(𝑧)] = 0 ( 1382 ) 

Expressing the boundary conditions as a function of 𝜃(𝑧): 

{
𝜃(1) = 0

𝜃(0)
′ = 0

} 
( 1383 ) 

 Uniformly Distributed Load 

The stability of the two-field MCTB, the governing differential equation is of the form: 
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[
𝑑2

𝑑𝑧2
− (𝛼𝜅)2] 𝜃(𝑧) − 𝜆 {𝛼(𝑧) [

𝑑2

𝑑𝑧2
− 𝛼2(𝜅2 + 1)]}𝜃(𝑧) = 0 

( 1384 ) 

Multiplying the equation by [𝜃(𝑧)
′′ − 𝛼2(𝜅2 + 1)𝜃(𝑧)]  and integrating from 0 to 1: 

∫ [𝜃′′(𝑧)
2 − 𝛼2(2𝜅2 + 1)𝜃(𝑧)𝜃(𝑧)

′′ + 𝛼2(𝜅2 + 1)(𝛼𝜅)2𝜃(𝑥)
2 ]𝑑𝑧

1

0

− 𝜆∫ 𝛼(𝑧)[𝜃(𝑧)
′′ − 𝛼2(𝜅2 + 1)𝜃(𝑧)]

2
𝑑𝑧

1

0

= 0 
( 1385 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

∫ [𝜃′′(𝑧)
2 + 𝛼2(2𝜅2 + 1)𝜃′(𝑧)

2 + 𝛼2(𝜅2 + 1)(𝛼𝜅)2𝜃(𝑥)
2 ]

1

0

𝑑𝑧

− 𝜆∫ 𝛼(𝑧)[𝜃(𝑧)
′′ − 𝛼2(𝜅2 + 1)𝜃(𝑧)]

2
𝑑𝑧

1

0

= 0 
( 1386 ) 

Solving the parameter 𝛾: 

𝜆 =
∫ [𝜃′′(𝑧)

2 + 𝛼2(2𝜅2 + 1)𝜃′(𝑧)
2 + 𝛼2(𝜅2 + 1)(𝛼𝜅)2𝜃(𝑥)

2 ]
1

0
𝑑𝑧

∫ 𝛼(𝑧)[𝜃(𝑧)
′′ − 𝛼2(𝜅2 + 1)𝜃(𝑧)]

2
𝑑𝑧

1

0

 

( 1387 ) 

This Rayleigh ratio represents an approximation of the upper limit of the critical load, and it is 

exact if and only if the exact equilibrium curve 𝜃(𝑧) is used to calculate 𝜆. 

For the case of a uniformly distributed load, the function 𝛼(𝑧) results in: 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 1388 ) 

The Rayleigh quotient becomes: 

𝜆 =
∫ [𝜃′′(𝑧)

2 + 𝛼2(2𝜅2 + 1)𝜃′(𝑧)
2 + 𝛼2(𝜅2 + 1)(𝛼𝜅)2𝜃(𝑥)

2 ]
1

0
𝑑𝑧

∫ 𝑧[𝜃(𝑧)
′′ − 𝛼2(𝜅2 + 1)𝜃(𝑧)]

2
𝑑𝑧

1

0

 

( 1389 ) 

Taking into account the boundary conditions. We consider two simple polynomials of different 

degrees that satisfy the boundary condition: 
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𝜙1
1 = 1 − 𝑧3 , 𝜙2

1 = 1 − 𝑧4 ( 1390 ) 

Taking a linear combination of both terms: 

𝜃(𝑧) = 𝐴𝜙1
1 +𝐵𝜙2

1 = 𝐴(1 − 𝑧3) + 𝐵(1 − 𝑧4) ( 1391 ) 

We expand the integrals and substitute into the Rayleigh quotient: 

𝑈 = ∫ [𝜃′′(𝑧)
2 + 𝛼2(2𝜅2 + 1)𝜃′(𝑧)

2 + 𝛼2(𝜅2 + 1)(𝛼𝜅)2𝜃(𝑥)
2 ]

1

0

𝑑𝑧 − 𝜆∫ 𝑧[𝜃(𝑧)
′′ − 𝛼2(𝜅2 + 1)𝜃(𝑧)]

2
𝑑𝑧

1

0

 
( 1392 ) 

Expanding the integrals and joining common terms: 

𝑈 = 𝐴2(𝑎1 − 𝜆𝑎2) + 𝐵
2(𝑏1 − 𝜆𝑏2) + 𝐴𝐵[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] ( 1393 ) 

Where: 

{
  
 

  
 

𝑎1 = 12 + 1.8[𝛼2(2𝜅2 + 1)] + 0.6428[𝛼2(𝜅2 + 1)(𝛼𝜅)2]

𝑎2 = 9 + 0.225[𝛼2(𝜅2 + 1)]2 + 2[𝛼2(𝜅2 + 1)]

𝑏1 = 28.8 + 2.2857[𝛼2(2𝜅2 + 1)] + 0.7111[𝛼2(𝜅2 + 1)(𝛼𝜅)2]

𝑏2 = 28.8 + 0.7111[𝛼2(𝜅2 + 1)]2 + 3[𝛼2(𝜅2 + 1)]

(𝑎𝑏)1 = 36 + 4[𝛼2(2𝜅2 + 1)] + 1.35[𝛼2(𝜅2 + 1)(𝛼𝜅)2]

(𝑎𝑏)2 = 28.8 + 0.4889[𝛼2(𝜅2 + 1)]2 + 4.8571[𝛼2(𝜅2 + 1)] }
  
 

  
 

 

( 1394 ) 

The condition for the critical load to be the minimum is expressed as: 

{

𝜕𝑈

𝜕𝐴
= 0 → 2(𝑎1 − 𝜆𝑎2)𝐴 + [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]𝐵

𝜕𝑈

𝜕𝐵
= 0 → [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]𝐴 + 2(𝑏1 − 𝜆𝑏2)𝐵

} 

( 1395 ) 

Expressing in matrix form: 

[
2(𝑎1 − 𝜆𝑎2) [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]

[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] 2(𝑏1 − 𝜆𝑏2)
] {
𝐴
𝐵
} = {

0
0
} 

( 1396 ) 

For a nontrivial solution (a and b cannot be equal to zero simultaneously), the determinant of the 

coefficient matrix for a and b must be equal to zero; namely: 
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|
2(𝑎1 − 𝜆𝑎2) [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]

[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] 2(𝑏1 − 𝜆𝑏2)
| = 0 

( 1397 ) 

Operating the determinant, we have: 

[4𝑎2𝑏2 − (𝑎𝑏)2
2]𝜆2 + [2(𝑎𝑏)1(𝑎𝑏)2 − 4(𝑎1𝑏2 + 𝑎2𝑏1)]𝜆 + [4𝑎1𝑏1 − (𝑎𝑏)1

2] = 0 ( 1398 ) 

The minimum eigenvalue is obtained from the minimum root of the quadratic equation. 

𝜆 =
𝑞𝐻

𝐾𝑠1 + 𝐾𝑠2
→ 𝑞𝑐𝑟𝐻 = 𝜆(𝐾𝑠1 + 𝐾𝑠2) 

( 1399 ) 

Which is the first approximation to the value of the critical load of the two-field MCTB beam. In 

order to obtain a better approximation to the exact critical load, it is necessary to repeat the previous 

procedure with two new higher degree polynomials. 

The first polynomial to be considered will be the one with the highest degree of the previous 

iteration: 

𝜙1
2 = 1− 𝑧4 ( 1400 ) 

To obtain a new polynomial of higher degree and that takes into account the eigenvalue calculated 

in the previous iteration, we will integrate the resulting differential equation of the two-field 

MCTB beam model twice: 

𝜃(𝑧) = (𝛼𝜅)
2∬𝜃(𝑧)𝑑𝑧 + 𝜆∬𝛼(𝑧)𝜃(𝑧)

′′ 𝑑𝑧 − 𝜆𝛼2(𝜅2 + 1)∬ 𝛼(𝑧)𝜃(𝑧)𝑑𝑧 + 𝐶1𝑧 + 𝐶0 ( 1401 ) 

For the case of a uniform load: 

𝜃(𝑧) = (𝛼𝜅)
2∬𝜃(𝑧)𝑑𝑧 + 𝜆∬ 𝑧𝜃(𝑧)

′′ 𝑑𝑧 − 𝜆𝛼2(𝜅2 + 1)∬ 𝑧𝜃(𝑧)𝑑𝑧 + 𝐶1𝑧 + 𝐶0 ( 1402 ) 

When evaluating the boundary conditions, the constants 𝐶0 and 𝐶1 are determined and the new 

polynomial to be used in the second iteration is determined. 

Taking a linear combination of both terms: 

𝜃(𝑧) = 𝐴𝜙1
2 +𝐵𝜙2

2 = 𝐴𝜙2
1 +𝐵𝜙2

2 ( 1403 ) 
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A closer approximation to the exact value can be achieved by repeating the two iteration steps, 

resulting in polynomials of higher and higher degree. Numerically it can be seen that with a fourth 

iteration the approximation can be considered exact. 

 Point Load at x=0 (z=0) 

For the case of a point load applied at x=0 (z=0), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1404 ) 

Substituting into the differential equation: 

𝜃(𝑧)
′′ − (𝛼𝜅)2𝜃(𝑧) −

𝜆

𝐻
[𝜃(𝑧)
′′ − 𝛼2(𝑘2 + 1)𝜃(𝑧)] = 0 

( 1405 ) 

The expression for 𝜃(𝑧) can be derived as: 

𝜃(𝑧) = 𝐶1 cos(√𝜉𝑧) + 𝐶2 sin(√𝜉𝑧) ( 1406 ) 

Where: 

{𝜉 =

𝜆
𝐻𝛼

2(𝑘2 + 1) − (𝛼𝜅)2

𝜆
𝐻
− 1

} 

( 1407 ) 

The linear algebraic system resulting from the boundary conditions, written in matrix form, is: 

[
cosh√𝜉 sinh√𝜉

0 𝜉1/2
] {
𝐶1
𝐶2
} = 0 

( 1408 ) 

Which has a solution different from the trivial one if the determinant is equal to zero (the matrix 

of coefficients is singular), that is, for: 

𝐶𝑜𝑠√𝜉 = 0 → √𝛽 = (2𝑛 − 1)
𝜋

2
 / 𝑛 = 1, 2, 3… 

( 1409 ) 

i.e., 
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𝜆
𝐻
𝛼2(𝑘2 + 1) − (𝛼𝜅)2

1 −
𝜆
𝐻

= (2𝑛 − 1)2
𝜋2

4
 

( 1410 ) 

After some simple manipulations: 

𝜆

𝐻
=

(2𝑛 − 1)2
𝜋2

4
+ (𝛼𝜅)2

(2𝑛 − 1)2
𝜋2

4
+ 𝛼2(𝜅2 + 1)

 

( 1411 ) 

Replacing by its characteristic rigidities: 

𝑞𝑐𝑟 = 𝐾𝑠1 +
1

4𝐻2

(2𝑛 − 1)2𝜋2𝐾𝑏2
+

1
𝐾𝑠2

 

( 1412 ) 

Sorting properly: 

𝑞𝑐𝑟 = 𝐾𝑠1 + {[(2𝑛 − 1)
2
𝜋2𝐾𝑏2
4𝐻2

]

−1

+𝐾𝑠2
−1}

−1

 

( 1413 ) 

For the case when 𝑛 = 1, we have: 

𝑞𝑐𝑟 = 𝐾𝑠1 + [(
𝜋2𝐾𝑏2
4𝐻2

)

−1

+𝐾𝑠2
−1]

−1

= 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 + [𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ó𝑛 𝑔𝑙𝑜𝑏𝑎𝑙
−1 + 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒 𝑙𝑜𝑐𝑎𝑙

−1]
−1

 
( 1414 ) 

Since the resulting critical load is independent of some approximation function, it can be 

considered exact and identical to the one that would be obtained by applying Föppl's theorem. 

4.3.10.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations: 

{
𝐾𝑏2𝜃(𝑥)

′′ − 𝐾𝑠2[𝜃(𝑥) − 𝑢(𝑥)
′ ] = 0

[𝐾𝑠1 + 𝐾𝑠2 − 𝑞]𝑢(𝑥)
′ − 𝐾𝑠2𝜃(𝑥) = 0

} 

( 1415 ) 
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Using the method of coefficients: 

[
𝐾𝑠2𝐷 −𝐾𝑠2 + 𝐾𝑏2𝐷

2

[𝐾𝑠1 +𝐾𝑠2 − 𝑞]𝐷 −𝐾𝑠2
] {
𝑢(𝑥)
𝜃(𝑥)

} = {
0
0
} 

( 1416 ) 

To avoid trivial solutions, the determinant must be equal to zero, that is: 

𝐷 {𝐷2 − [
𝐾𝑠1(𝐾𝑏1 + 𝐾𝑏2)

𝐾𝑏1𝐾𝑏2
−

𝑞

𝐾𝑏2
]} = 0 

( 1417 ) 

Rewriting: 

𝐷 {𝐷2 +
𝜆𝛼∗2(𝑘2 + 1) − (𝛼∗𝜅)2

1 − 𝜆
} = 0 

( 1418 ) 

Where: 

{𝛼∗ = √
𝐾𝑠2
2

𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
, 𝜅 = √

𝐾𝑠1
𝐾𝑠2

, 𝜆 =
𝑞

𝐾𝑠1 + 𝐾𝑠2
} 

( 1419 ) 

The expression for 𝑢(𝑧) and 𝜃(𝑧) is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1 cos(√𝜉𝑧) + 𝐶2 sin(√𝜉𝑧)

𝜃(𝑧) = 𝐶3 + 𝐶4 cos(√𝜉𝑧) + 𝐶5 sin(√𝜉𝑧)
} 

( 1420 ) 

Where: 

{𝜉 =
𝜆𝛼∗2(𝑘2 + 1) − (𝛼∗𝜅)2

1 − 𝜆
} 

( 1421 ) 

Expressing the coefficients of 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{

𝑢(𝑧) = 𝐶0 + cos(√𝜉𝑧) 𝐶1 + sin(√𝜉𝑧) 𝐶2

𝜃(𝑧) = − [
𝐾𝑆2√𝜉

𝐾𝑆2 + 𝜉𝐾𝑏2
sin(√𝜉𝑧)]𝐶1 + [

𝐾𝑆2√𝜉

𝐾𝑆2 + 𝜉𝐾𝑏2
cos(√𝜉𝑧)]𝐶2

} 

( 1422 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 
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{
 
 
 

 
 
 𝑀(𝑧) = 𝐾𝑏2𝜃(𝑥)

′ = −[
𝐾𝑆2𝜉

𝐾𝑆2 + 𝜉𝐾𝑏2
cos(√𝜉𝑧)]𝐶1 − [

𝐾𝑆2𝜉

𝐾𝑆2 + 𝜉𝐾𝑏2
sin(√𝜉𝑧)]𝐶2

{
 
 

 
 𝑉(𝑧) = (𝐾𝑠1 + 𝐾𝑠2 − 𝑞)𝑢(𝑥)

′ −𝐾𝑠2𝜃(𝑥) = {−(𝐾𝑠1 +𝐾𝑠2 − 𝑞) +
𝐾𝑠2
2 √𝜉

𝐾𝑆2 + 𝜉𝐾𝑏2
} sin(√𝜉𝑧)𝐶1

−{−(𝐾𝑠1 + 𝐾𝑠2 − 𝑞) +
𝐾𝑠2
2 √𝜉

𝐾𝑆2 + 𝜉𝐾𝑏2
} cos(√𝜉𝑧)𝐶2

}
 
 

 
 

}
 
 
 

 
 
 

 

( 1423 ) 

Where: 

{
𝑅1 = (𝐾𝑠1 + 𝐾𝑠2 − 𝑞)√𝜉 − 𝐾𝑠1𝑅𝜓1 − 𝐾𝑠2𝑅𝜃1

𝑅2 = (𝐾𝑠1 + 𝐾𝑠2 − 𝑞)√𝛽− 𝐾𝑠1𝑅𝜓2 − 𝐾𝑠2𝑅𝜃2
} 

( 1424 ) 

Writing the equations in matrix form: 

{

𝑢𝑖(𝑧𝑖)

𝑀i(𝑧𝑖)

𝑉𝑖(𝑧𝑖)
} = 𝐾𝑖(𝑧𝑖) {

𝐶0
𝐶1
𝐶2

} 

( 1425 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 1 cos(√𝜉𝑧) sin(√𝜉𝑧)

0 −
𝐾𝑆2𝜉

𝐾𝑆2 + 𝜉𝐾𝑏2
cos(√𝜉𝑧) −

𝐾𝑆2𝜉

𝐾𝑆2 + 𝜉𝐾𝑏2
sin(√𝜉𝑧)

0 [−(𝐾𝑠1 + 𝐾𝑠2 − 𝑞) +
𝐾𝑠2
2 √𝜉

𝐾𝑆2 + 𝜉𝐾𝑏2
] sin(√𝜉𝑧) [(𝐾𝑠1 + 𝐾𝑠2 − 𝑞) −

𝐾𝑠2
2 √𝜉

𝐾𝑆2 + 𝜉𝐾𝑏2
] cos(√𝜉𝑧)

]
 
 
 
 
 

𝑖

 

 ( 1426 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the base to the top of the beam and expressing the equation between 

the product symbol: 

{

𝑢𝑛(0)

𝑀n(0)

𝑉𝑛(0)
} =∏𝑇𝑘(0)

𝑛

𝑘=1

{

𝑢1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)
} = t {

𝑢1(ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 1427 ) 

Where: 
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t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1428 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 3x3 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{

𝑢(1) = 0

𝜃(0)
′ = 0

[𝐾𝑠1 + 𝐾𝑠2 − 𝑞]𝑢(0)
′ −𝐾𝑠2𝜃(0) = 0

} → {

𝑢1(ℎ1) = 0
𝑀𝑛 (0) = 0

𝑉𝑛(0) = 0
} 

( 1429 ) 

Replacing: 

{
𝑢𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3
𝑡2,1 𝑡2,2 𝑡2,3
𝑡3,1 𝑡3,2 𝑡3,3

] {
0

𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 1430 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡4,4 𝑡4,5
𝑡5,4 𝑡5,5

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 1431 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the critical loads of the beam. 
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4.3.11 Generalized Parallel Coupling of Two Beams and Three Field (GCTB) 

4.3.11.1 Case 1 

The potential energy of the three-field GCTB model is expressed as follows: 

𝑉 =
1

2
∫ {𝐾𝑏1𝑤(𝑥)

′ 2
+ 𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥+
1

2
∫ 𝐾𝑠1[𝑢(𝑥)

′ +𝑚𝜃(𝑥) − 𝑛𝑤(𝑥)]
2

𝐻

0

𝑑𝑥 
( 1432 ) 

Where: 

{𝐾𝑏1 = 𝐸(𝐴2 +
𝐴2
2

𝐴1
) , 𝐾𝑏2 = 𝐸(𝐼1 + 𝐼2), 𝐾𝑠1 = 𝐺𝑒𝑞𝑡𝑤𝑙𝑏, 𝐾𝑠2 = 𝐺𝜅(𝐴1 + 𝐴2)} 

( 1433 ) 

The work done by the external force is expressed as: 

𝑊 = −𝑓(𝑥)𝑑𝑙 = −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1434 ) 

Consequently, the total potential energy of the model is expressed as: 

𝒰 =
1

2
∫ {𝐾𝑏1𝑤(𝑥)

′ 2
+ 𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
+ 𝐾𝑠1[𝑢(𝑥)

′ +𝑚𝜃(𝑥) − 𝑛𝑤(𝑥)]
2
}

𝐻

0

𝑑𝑥

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1435 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝐾𝑏1𝑤(𝑥)
′ 𝛿𝑤(𝑥)

′ + 𝐾𝑏2𝜃(𝑥)
′ 𝛿𝜃(𝑥)

′ +𝐾𝑠2[𝑢(𝑥)
′ − 𝜃(𝑥)][𝛿𝑢(𝑥)

′ − 𝛿𝜃(𝑥)]
𝐻

0

+ 𝐾𝑠1[𝑢(𝑥)
′ +𝑚𝜃(𝑥) − 𝑛𝑤(𝑥)][𝛿𝑢(𝑥)

′ +𝑚𝛿𝜃(𝑥) − 𝑛𝛿𝑤(𝑥)]

− 𝑓(𝑥)𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ }𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1436 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 
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𝛿𝒰 = 𝐾𝑏1[𝑤(𝑥)
′ 𝛿𝑤(𝑥)]0

𝐻
+𝐾𝑏2[𝜃(𝑥)

′ 𝛿𝜃(𝑥)]0
𝐻

+ {{[𝐾𝑠1 + 𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥) − 𝑛𝐾𝑠1𝑤(𝑥)}𝛿𝜃(𝑥)}

0

𝐻

+∫ {−𝐾𝑏1𝑤(𝑥)
′′ − 𝑛𝐾𝑠1𝑢(𝑥)

′ −𝑚𝑛𝐾𝑠1𝜃(𝑥) + 𝑛
2𝐾𝑠1𝑤(𝑥)}𝛿𝑤(𝑥)

𝐻

0

+∫ {−𝐾𝑏2𝜃(𝑥)
′′ − (𝐾𝑠2 −𝑚𝐾𝑠1)𝑢(𝑥)

′ + (𝐾𝑠2 +𝑚
2𝐾𝑠1)𝜃(𝑥) −𝑚𝑛𝐾𝑠1𝑤(𝑥)}𝛿𝜃(𝑥)

𝐻

0

+∫ {−[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′′ + (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥)

′ + 𝑛𝐾𝑠1𝑤(𝑥)
′

𝐻

0

+ 𝑓(𝑥)
′ 𝑢(𝑥)

′ }𝛿𝑢(𝑥) −∫ 𝑢(𝑥)

𝐻

0

𝛿𝑓(𝑥)𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1437 ) 

Setting the terms equal to zero, the following equations result: 

{
 

 
−𝐾𝑏1𝑤(𝑥)

′′ − 𝑛𝐾𝑠1𝑢(𝑥)
′ −𝑚𝑛𝐾𝑠1𝜃(𝑥) + 𝑛

2𝐾𝑠1𝑤(𝑥) = 0

−𝐾𝑏2𝜃(𝑥)
′′ − (𝐾𝑠2 − 𝑚𝐾𝑠1)𝑢(𝑥)

′ + (𝐾𝑠2 + 𝑚
2𝐾𝑠1)𝜃(𝑥) −𝑚𝑛𝐾𝑠1𝑤(𝑥) = 0

− [𝐾𝑠1 + 𝐾𝑠2 − 𝑓(𝑥)] 𝑢(𝑥)
′′ + (𝐾𝑠2 − 𝑚𝐾𝑠1)𝜃(𝑥)

′ + 𝑛𝐾𝑠1𝑤(𝑥)
′ + 𝑓

(𝑥)
′ 𝑢(𝑥)

′ = 0}
 

 

 

( 1438 ) 

And boundary conditions: 

{
 

 
𝑤(0)
′ = 0

𝜃(0)
′ = 0

[𝐾𝑠1 + 𝐾𝑠2 − 𝑓(0)] 𝑢(0)
′ − (𝐾𝑠2 − 𝑚𝐾𝑠1)𝜃(0) − 𝑛𝐾𝑠1𝑤(0) = 0}

 

 

 

( 1439 ) 

Integrating the equation once and evaluating at 𝑥=0: 

−[𝐾𝑠1 +𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′ + (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥) + 𝑛𝐾𝑠1𝑤(𝑥) = 0 ( 1440 ) 

We have a new system of coupled differential equations: 

{
 

 
−𝐾𝑏1𝑤(𝑥)

′′ − 𝑛𝐾𝑠1𝑢(𝑥)
′ − 𝑚𝑛𝐾𝑠1𝜃(𝑥) + 𝑛

2𝐾𝑠1𝑤(𝑥) = 0

−𝐾𝑏2𝜃(𝑥)
′′ − (𝐾𝑠2 − 𝑚𝐾𝑠1)𝑢(𝑥)

′ + (𝐾𝑠2 + 𝑚
2𝐾𝑠1)𝜃(𝑥) −𝑚𝑛𝐾𝑠1𝑤(𝑥) = 0

− [𝐾𝑠1 + 𝐾𝑠2 − 𝑓(𝑥)]𝑢(𝑥)
′ + (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥) + 𝑛𝐾𝑠1𝑤(𝑥) = 0 }

 

 

 

( 1441 ) 

Using the method of coefficients for the solution of the system of equations: 



 

 

400 

[

−𝑛𝐾𝑠1𝐷 −𝐾𝑏1𝐷
2 + 𝑛2𝐾𝑠1 −𝑚𝑛𝐾𝑠1

−(𝐾𝑠2 −𝑚𝐾𝑠1)𝐷 −𝑚𝑛𝐾𝑠1 −𝐾𝑏2𝐷
2 + (𝐾𝑠2 +𝑚

2𝐾𝑠1)

− [𝐾𝑠1 + 𝐾𝑠2 − 𝑓(𝑥)]𝐷 𝑛𝐾𝑠1 (𝐾𝑠2 −𝑚𝐾𝑠1)

] {

𝑢(𝑥)
𝑤(𝑥)
𝜃(𝑥)

} = {
0
0
0
} 

Which has a solution other than the trivial one if the determinant is equal to zero: 

𝑢(𝑥)
′′′′′ −

𝐾𝑠1𝐾𝑠2[𝑛
2𝐾𝑏2 + (𝑚 + 1)2𝐾𝑏1]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝑢(𝑥)
′′′′

− 𝑓(𝑥) [
1

(𝐾𝑠1 +𝐾𝑠2)
𝑢(𝑥)
′′′′′ −

𝐾𝑏1(𝐾𝑠2 +𝑚
2𝐾𝑠1) + 𝑛

2𝐾𝑠1𝐾𝑏2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

𝑢(𝑥)
′′′

+
𝑛2𝐾𝑠1𝐾𝑠2

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝑢(𝑥)
′ ] = 0 

( 1442 ) 

A fourth order differential equation is obtained, where the critical load results from the smallest 

eigenvalue. Normalizing the differential equation by the variable 𝑧=𝑥/𝐻: 

𝑢(𝑧)
′′′′′ −

𝐾𝑠1𝐾𝑠2[𝑛
2𝐾𝑏2 + (𝑚 + 1)2𝐾𝑏1]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝐻2𝑢(𝑧)

′′′′

+ 𝑓(𝑧) [−
1

(𝐾𝑠1 +𝐾𝑠2)
𝑢(𝑧)
′′′′′ +

𝐾𝑏1(𝐾𝑠2 +𝑚
2𝐾𝑠1) + 𝑛

2𝐾𝑠1𝐾𝑏2
𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)

𝐻2𝑢(𝑧)
′′′

−
𝑛2𝐾𝑠1𝐾𝑠2

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2)
𝐻4𝑢(𝑧)

′ ] = 0 
( 1443 ) 

Where: 

𝑓(𝑧) = 𝑞𝛼(𝑧) ( 1444 ) 

The equation can be rewritten as: 

𝑢(𝑧)
′′′′′ − 𝑎0𝑢(𝑧)

′′′ + 𝑞𝛼(𝑧)[−𝑎1𝑢(𝑧)
′′′′′ + 𝑎2𝑢(𝑧)

′′′ − 𝑎3𝑢(𝑧)
′ ] = 0 ( 1445 ) 

Where: 

{
 
 

 
 𝑎0 =

𝐾𝑠1𝐾𝑠2[𝑛
2𝐾𝑏2 + (𝑚+ 1)2𝐾𝑏1]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝐻2, 𝑎1 =

1

𝐾𝑠1 + 𝐾𝑠2

𝑎2 =
𝐾𝑏1(𝐾𝑠2 +𝑚

2𝐾𝑠1) + 𝑛
2𝐾𝑠1𝐾𝑏2

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝐻2, 𝑎3 =

𝑛2𝐾𝑠1𝐾𝑠2

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2)
𝐻4

}
 
 

 
 

 

( 1446 ) 
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Expressing the boundary conditions as a function of 𝑢(𝑧): 

{
  
 

  
 
𝑢(1) = 0

𝑢(1)
′ = 0

𝑢(0)
′′ = 0

𝑢(1)
′′′ = 0

𝑢(0)
′′′′ = 0}

  
 

  
 

 

( 1447 ) 

 Uniformly Distributed Load 

For beam stability, the governing differential equation is of the form: 

(
𝑑5

𝑑𝑧5
− 𝑎0

𝑑3

𝑑𝑧3
)𝑢(𝑧) − 𝑞 [𝛼(𝑧) (𝑎1

𝑑5

𝑑𝑧5
− 𝑎2

𝑑3

𝑑𝑧3
+ 𝑎3

𝑑

𝑑𝑧
)] 𝑢(𝑧) = 0 

( 1448 ) 

Multiplying the equation by (𝑎1
𝑑5

𝑑𝑧5
− 𝑎2

𝑑3

𝑑𝑧3
+ 𝑎3

𝑑

𝑑𝑧
), integrating from 0 to 1 and solving: 

𝜆 =
∫ {𝑎1𝑢′′′′′(𝑧)

2 + (𝑎0𝑎1 + 𝑎2)𝑢′′′′(𝑧)
2 + (𝑎0𝑎2 + 𝑎3)𝑢′′′(𝑧)

2 + 𝑎0𝑎3𝑢′′(𝑧)
2 }𝑑𝑧

1

0

∫ 𝛼(𝑧)
1

0
[𝑎1𝑢(𝑧)

′′′′′ − 𝑎2𝑢(𝑧)
′′′ + 𝑎3𝑢(𝑧)

′ ]
2
𝑑𝑧

 

( 1449 ) 

This Rayleigh ratio represents an approximation of the upper limit of the critical load, and it is 

exact if and only if the exact equilibrium curve 𝑢(𝑧) is used to calculate 𝜆. 

For the case of a uniformly distributed load, the function 𝛼(𝑧) results in: 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 1450 ) 

The Rayleigh quotient becomes: 

𝜆 =
∫ {𝑎1𝑢′′′′′(𝑧)

2 + (𝑎0𝑎1 + 𝑎2)𝑢′′′′(𝑧)
2 + (𝑎0𝑎2 + 𝑎3)𝑢′′′(𝑧)

2 + 𝑎0𝑎3𝑢′′(𝑧)
2 }𝑑𝑧

1

0

∫ 𝑧
1

0
[𝑎1𝑢(𝑧)

′′′′′ − 𝑎2𝑢(𝑧)
′′′ + 𝑎3𝑢(𝑧)

′ ]
2
𝑑𝑧

 

( 1451 ) 

 Point Load at x=0 (z=0) 

For the case of a point load applied at x=0 (z=0), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1452 ) 
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Substituting into the differential equation: 

𝑢(𝑧)
′′′′′ − 𝑎0𝑢(𝑧)

′′′ + 𝑞[−𝑎1𝑢(𝑧)
′′′′′ + 𝑎2𝑢(𝑧)

′′′ − 𝑎3𝑢(𝑧)
′ ] = 0 ( 1453 ) 

The expression for 𝑢(𝑧) can be derived as: 

𝑢(𝑧) = 𝐶0 + 𝐶1 cosh(√𝜉𝑧) + 𝐶2 sinh(√𝜉𝑧) + 𝐶3 cos(√𝛽𝑧) + 𝐶4 sin(√𝛽𝑧) ( 1454 ) 

Where: 

{
 
 

 
 𝜉 =

(𝑎0 − 𝑞𝑎2)+ √(𝑎0 − 𝑞𝑎2)2 + 4𝑞𝑎3(1 − 𝑞𝑎1)

2(1 − 𝑞𝑎1)

𝛽 =
−(𝑎0 − 𝑞𝑎2)+ √(𝑎0 − 𝑞𝑎2)

2 + 4𝑞𝑎3(1 − 𝑞𝑎1)

2(1 − 𝑞𝑎1) }
 
 

 
 

 

( 1455 ) 

The linear algebraic system resulting from the boundary conditions, written in matrix form, is: 

[
 
 
 
 
 1 cosh(√𝜉) sinh(√𝜉) cos(√𝛽) sin(√𝛽)

0 𝜉1/2 sinh(√𝜉) 𝜉1/2 cosh(√𝜉) −𝛽1/2 sin(√𝛽) 𝛽1/2 cos(√𝛽)

0 𝜉 0 −𝛽 0

0 𝜉3/2 sinh(√𝜉) 𝜉3/2 cosh(√𝜉) 𝛽3/2 sin(√𝛽) −𝛽3/2 cos(√𝛽)

0 𝜉2 0 𝛽2 0 ]
 
 
 
 
 

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4}
 
 

 
 

= 0 

( 1456 ) 

Which has a different solution than the trivial one if the determinant is equal to zero (the matrix of 

coefficients is singular), that is, for: 

𝐶𝑜𝑠√𝛽 = 0 → √𝛽 = (2𝑛 − 1)
𝜋

2
 / 𝑛 = 1, 2, 3… 

( 1457 ) 

i.e., 

−(𝑎0 − 𝑞𝑎2) + √(𝑎0 − 𝑞𝑎2)2 + 4𝑞𝑎3(1 − 𝑞𝑎1)

2(1 − 𝑞𝑎1)
= (2𝑛 − 1)2

𝜋2

4
 

( 1458 ) 

Solving: 
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𝑞𝑐𝑟 =

(2𝑛 − 1)4𝜋4

4
+ 𝑎0(2𝑛 − 1)

2𝜋2

4𝑎0 + 𝑎2(2𝑛 − 1)
2𝜋2 + 𝑎1

(2𝑛 − 1)4𝜋4

4

 

( 1459 ) 

Replacing the coefficients and after some simple manipulations: 

𝑞𝑐𝑟 =
(2𝑛 − 1)4𝜋4𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2) + 4𝐻

2(2𝑛 − 1)2𝜋2[(𝑚 + 1)2𝐾𝑏1 + 𝑛
2𝐾𝑏2]

(2𝑛 − 1)4𝜋4𝐾𝑏1𝐾𝑏2 + 4𝐻
2(2𝑛 − 1)2𝜋2[𝐾𝑏1(𝐾𝑠2 +𝑚

2𝐾𝑠1) + 𝑛
2𝐾𝑠1𝐾𝑏2] + 16𝐻

4𝑛2𝐾𝑠1𝐾𝑠2
 

 ( 1460 ) 

It is observed that a formula where the modes interact independently is not possible due to the 

existing coupling between the bending and shear behaviors produced by the connecting beams. 

For the case of n=1: 

𝑞𝑐𝑟 =
𝜋4𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2) + 4𝐻

2𝜋2[(𝑚 + 1)2𝐾𝑏1 + 𝑛
2𝐾𝑏2]

𝜋4𝐾𝑏1𝐾𝑏2 + 4𝐻
2𝜋2[𝐾𝑏1(𝐾𝑠2 +𝑚

2𝐾𝑠1) + 𝑛
2𝐾𝑠1𝐾𝑏2] + 16𝐻

4𝑛2𝐾𝑠1𝐾𝑠2
 

( 1461 ) 

4.3.11.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations: 

{

−𝐾𝑏1𝑤(𝑥)
′′ − 𝑛𝐾𝑠1𝑢(𝑥)

′ −𝑚𝑛𝐾𝑠1𝜃(𝑥) + 𝑛
2𝐾𝑠1𝑤(𝑥) = 0

−𝐾𝑏2𝜃(𝑥)
′′ − (𝐾𝑠2 − 𝑚𝐾𝑠1)𝑢(𝑥)

′ + (𝐾𝑠2 + 𝑚
2𝐾𝑠1)𝜃(𝑥) −𝑚𝑛𝐾𝑠1𝑤(𝑥) = 0

−[𝐾𝑠1 + 𝐾𝑠2 − 𝑞]𝑢(𝑥)
′′ + (𝐾𝑠2 − 𝑚𝐾𝑠1)𝜃(𝑥)

′ + 𝑛𝐾𝑠1𝑤(𝑥)
′ + 𝑓(𝑥)

′ 𝑢(𝑥)
′ = 0

} 

( 1462 ) 

Using the method of coefficients: 

[

−𝑛𝐾𝑠1𝐷 −𝐾𝑏1𝐷
2 + 𝑛2𝐾𝑠1 −𝑚𝑛𝐾𝑠1

−(𝐾𝑠2 −𝑚𝐾𝑠1)𝐷 −𝑚𝑛𝐾𝑠1 −𝐾𝑏2𝐷
2 + (𝐾𝑠2 +𝑚

2𝐾𝑠1)

−[𝐾𝑠1 + 𝐾𝑠2 − 𝑞]𝐷
2 𝑛𝐾𝑠1𝐷 (𝐾𝑠2 −𝑚𝐾𝑠1)𝐷

] {

𝑢(𝑥)
𝑤(𝑥)
𝜃(𝑥)

} = {
0
0
0
} 

( 1463 ) 

To avoid trivial solutions, the determinant must be equal to zero, that is: 
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𝐷2 {𝐷4 − {
𝐾𝑠1𝐾𝑠2[(𝑚+ 1)2𝐾𝑏1 + 𝑛

2𝐾𝑏2] − 𝑞[𝐾𝑏1(𝐾𝑠2 +𝑚
2𝐾𝑠1)+ 𝑛

2𝐾𝑠1𝐾𝑏2]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2 − 𝑞)
}𝐷2

−
𝑛2𝐾𝑠1𝐾𝑠2𝑞

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 +𝐾𝑠2 − 𝑞)
} = 0 

( 1464 ) 

Rewriting: 

𝐷2(𝐷4 − 𝑟1𝐷
2 − 𝑟2) = 0 ( 1465 ) 

Where: 

{
 
 

 
 𝑟1 =

𝐾𝑠1𝐾𝑠2[(𝑚+ 1)2𝐾𝑏1 + 𝑛
2𝐾𝑏2] − 𝑞[𝐾𝑏1(𝐾𝑠2 +𝑚

2𝐾𝑠1) + 𝑛
2𝐾𝑠1𝐾𝑏2]

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2 − 𝑞)

𝑟2 =
𝑛2𝐾𝑠1𝐾𝑠2𝑞

𝐾𝑏1𝐾𝑏2(𝐾𝑠1 + 𝐾𝑠2 − 𝑞) }
 
 

 
 

 

( 1466 ) 

The expression for 𝑢(𝑧), 𝜓(𝑧)  and 𝜃(𝑧) is proposed: 

{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(√𝜉𝑧) + 𝐶3 sinh(√𝜉𝑧) + 𝐶4 cos(√𝛽𝑧) + 𝐶5 sin(√𝛽𝑧)

𝑤(𝑥) = 𝐶6 + 𝐶7𝑧 + 𝐶8 cosh(√𝜉𝑧) + 𝐶9 sinh(√𝜉𝑧) + 𝐶10 cos(√𝛽𝑧) + 𝐶11 sin(√𝛽𝑧)

𝜃(𝑥) = 𝐶12 + 𝐶13𝑧 + 𝐶14 cosh(√𝜉𝑧) + 𝐶15 sinh(√𝜉𝑧) + 𝐶16 cos(√𝛽𝑧) + 𝐶17 sin(√𝛽𝑧)

} 

( 1467 ) 

Where: 

{
 
 

 
 
𝜉 =

𝑟1 +√𝑟1
2 + 4𝑟2
2

𝛽 =
−𝑟1 +√𝑟1

2 + 4𝑟2
2 }

 
 

 
 

 

( 1468 ) 

Expressing the coefficients of 𝜓(𝑧) and 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{

𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(√𝜉𝑧) + 𝐶3 sinh(√𝜉𝑧) + 𝐶4 cos(√𝛽𝑧) + 𝐶5 sin(√𝛽𝑧)

𝑤(𝑥) = 𝑝3𝐶1 + [√𝜉𝑝1 sinh(√𝜉𝑧)]𝐶2 + [√𝜉𝑝1 cosh(√𝜉𝑧)]𝐶3 − [√𝛽𝑝1 sin(√𝛽𝑧)]𝐶4 − [√𝛽𝑝1 cos(√𝛽𝑧)]𝐶5

𝜃(𝑥) = 𝑝4𝐶1 + [√𝜉𝑝2 sinh(√𝜉𝑧)]𝐶2 + [√𝜉𝑝2 cosh(√𝜉𝑧)]𝐶3 − [√𝛽𝑝2 sin(√𝛽𝑧)]𝐶4 − [√𝛽𝑝2 cos(√𝛽𝑧)]𝐶5

} 

 ( 1469 ) 

Where: 
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{
  
 

  
 𝑝1 =

𝑛𝐾𝑠1[(𝑚 + 1)𝐾𝑠2 + 𝛽𝐾𝑏2]

(𝑛2𝐾𝑠1 + 𝛽𝐾𝑏1)(𝐾𝑠2 +𝑚2𝐾𝑠2 + 𝛽𝐾𝑏2) −𝑚2𝑛2𝐾𝑠1
2

𝑝2 =
(𝐾𝑠2 −𝑚𝐾𝑠1)[𝑛

2𝐾𝑠1𝐾𝑠2 + 𝛽𝐾𝑏1(𝐾𝑠2 −𝑚𝐾𝑠1)]

(𝑛2𝐾𝑠1 + 𝛽𝐾𝑏1)(𝐾𝑠2 +𝑚
2𝐾𝑠2 + 𝛽𝐾𝑏2) −𝑚

2𝑛2𝐾𝑠1
2

𝑝3 = (
𝑚 + 1

𝑛
) (1 + 𝑚2

𝐾𝑠1
𝐾𝑠2

) , 𝑝4 = 1 −𝑚(𝑚 − 1)
𝐾𝑠1
𝐾𝑠2 }

  
 

  
 

 

( 1470 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 

{
 
 
 
 

 
 
 
 {

𝑀1(𝑧) = 𝐾𝑏1𝑤(𝑥)
′ = [𝜉𝑝1𝐾𝑏1 cosh(√𝜉𝑧)]𝐶2 + [𝜉𝑝1𝐾𝑏1 sinh(√𝜉𝑧)]𝐶3

−[𝛽𝑝
1
𝐾𝑏1 cos(√𝛽𝑧)]𝐶4 − [𝛽𝑝1𝐾𝑏1 sin(√𝛽𝑧)]𝐶5

}

{
𝑀2(𝑧) = 𝐾𝑏2𝜃(𝑥)

′ = [𝜉𝑝2𝐾𝑏2 cosh(√𝜉𝑧)]𝐶2 + [𝜉𝑝2𝐾𝑏2 sinh(√𝜉𝑧)]𝐶3

−[𝛽𝑝2𝐾𝑏2 cos(√𝛽𝑧)]𝐶4 − [𝛽𝑝2𝐾𝑏2 sin(√𝛽𝑧)]𝐶5
}

{
𝑉(𝑧) = (𝐾𝑠1 + 𝐾𝑠2 − 𝑞)𝑢(𝑥)

′ − 𝑛𝐾𝑠1𝑤(𝑥) − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(𝑥) = 𝑅1𝐶1 +𝑅2 sinh(√𝜉𝑧)𝐶2

+𝑅2 cosh(√𝜉𝑧)𝐶3 − 𝑅3 sin(√𝛽𝑧)𝐶4 + 𝑅4 cos(√𝛽𝑧)𝐶5
}
}
 
 
 
 

 
 
 
 

 

( 1471 ) 

Where: 

{
 
 

 
 

𝑅1 = (𝐾𝑠1 + 𝐾𝑠2 − 𝑞) − 𝑛𝐾𝑠1𝑝3 − (𝐾𝑠2 −𝑚𝐾𝑠1)𝑝4

𝑅2 = (𝐾𝑠1 + 𝐾𝑠2 − 𝑞)√𝜉 − 𝑛𝐾𝑠1√𝜉𝑝1 − (𝐾𝑠2 −𝑚𝐾𝑠1)√𝜉𝑝2

𝑅3 = −(𝐾𝑠1 + 𝐾𝑠2 − 𝑞)√𝜉 + 𝑛𝐾𝑠1√𝜉𝑝1 + (𝐾𝑠2 −𝑚𝐾𝑠1)√𝜉𝑝2

𝑅4 = (𝐾𝑠1 + 𝐾𝑠2 − 𝑞)√𝜉 + 𝑛𝐾𝑠1√𝜉𝑝1 + (𝐾𝑠2 −𝑚𝐾𝑠1)√𝜉𝑝2 }
 
 

 
 

 

( 1472 ) 

Writing the equations in matrix form: 

{
  
 

  
 
𝑢𝑖(𝑧𝑖)

𝜓𝑖(𝑧𝑖)

𝜃𝑖(𝑧𝑖)

𝑀1i(𝑧𝑖)

𝑀2i(𝑧𝑖)

𝑉𝑖(𝑧𝑖) }
  
 

  
 

= 𝐾𝑖(𝑧𝑖)

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

 

( 1473 ) 

Where: 
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𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
 
 
 1 𝑧 cosh(√𝜉𝑧) sinh(√𝜉𝑧) cos(√𝛽𝑧) sin(√𝛽𝑧)

0 𝑝3 √𝜉𝑝1 sinh(√𝜉𝑧) √𝜉𝑝1 cosh(√𝜉𝑧) −√𝛽𝑝1 sin(√𝛽𝑧) −√𝛽𝑝1 cos(√𝛽𝑧)

0 𝑝4 √𝜉𝑝2 sinh(√𝜉𝑧) √𝜉𝑝2 cosh(√𝜉𝑧) −√𝛽𝑝2 sin(√𝛽𝑧) −√𝛽𝑝2 cos(√𝛽𝑧)

0 0 𝜉𝑝1𝐾𝑏1 cosh(√𝜉𝑧) 𝜉𝑝1𝐾𝑏1 sinh(√𝜉𝑧) −𝛽𝑝1𝐾𝑏1 cos(√𝛽𝑧) −𝛽𝑝1𝐾𝑏1 sin(√𝛽𝑧)

0 0 𝜉𝑝2𝐾𝑏2 cosh(√𝜉𝑧) 𝜉𝑝2𝐾𝑏2 sinh(√𝜉𝑧) −𝛽𝑝2𝐾𝑏2 cos(√𝛽𝑧) −𝛽𝑝2𝐾𝑏2 sin(√𝛽𝑧)

0 𝑅1 𝑅2 sinh(√𝜉𝑧) 𝑅2 sinh(√𝜉𝑧) −𝑅3 sin(√𝛽𝑧) 𝑅4 cos(√𝛽𝑧) ]
 
 
 
 
 
 
 
 

𝑖

 

 ( 1474 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the base to the top of the beam and expressing the equation between 

the product symbol: 

{
  
 

  
 
𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)

𝑀1n(0)

𝑀2n(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑘(0)

𝑛

𝑘=1

{
  
 

  
 
𝑢1(ℎ1)

𝜓1(ℎ1)

𝜃1(ℎ1)

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

= t

{
  
 

  
 
𝑢1(ℎ1)

𝜓1(ℎ1)

𝜃1(ℎ1)

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

 

( 1475 ) 

Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1476 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝑤(1) = 0

𝜃(1) = 0

𝑤(0)
′ = 0

𝜃(0)
′ = 0

(𝐾𝑠1 + 𝐾𝑠2 − 𝑞)𝑢(0)
′ − 𝑛𝐾𝑠1𝑤(0) − (𝐾𝑠2 −𝑚𝐾𝑠1)𝜃(0) = 0}

 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝜓1(ℎ1) = 0

𝜃1(ℎ1) = 0
𝑀1𝑛 (0) = 0

𝑀2𝑛 (0) = 0

𝑉𝑛 (0) = 0 }
  
 

  
 

 

( 1477 ) 

Replacing: 
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{
 
 

 
 
𝑢𝑛(0)

𝜓𝑛(0)

𝜃𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

 

( 1478 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀1(ℎ1)

𝑀2(ℎ1)

𝑉1(ℎ1)
} 

( 1479 ) 

Which has a different solution than the trivial if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the critical loads of the beam. 
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4.3.12 Modified Generalized Parallel Coupling of Two Beams of Two Field (GCTB) 

4.3.12.1 Case 1 

The potential energy of the two-field GCTB model is expressed as follows: 

𝑉 =
1

2
∫ [𝐾𝑏1𝑤(𝑥)

′ 2
+𝐾𝑏2𝑢(𝑥)

′′ 2
]

𝐻

0

𝑑𝑥+
1

2
∫ 𝐾𝑠1[(𝑚 + 1)𝑢(𝑥)

′ − 𝑛𝑤(𝑥)]
2

𝐻

0

𝑑𝑥 
( 1480 ) 

Where: 

{𝐾𝑏1 = 𝐸(𝐴2 +
𝐴2
2

𝐴1
) , 𝐾𝑏2 = 𝐸(𝐼1 + 𝐼2), 𝐾𝑠1 = 𝐺𝑒𝑞𝑡𝑤𝑙𝑏} 

( 1481 ) 

The work done by the external force is expressed as: 

𝑊 = −𝑓(𝑥)𝑑𝑙 = −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1482 ) 

Consequently, the total potential energy of the model is expressed as: 

𝒰 =
1

2
∫ {𝐾𝑏1𝑤(𝑥)

′ 2
+𝐾𝑏2𝑢(𝑥)

′′ 2
+ 𝐾𝑠1[(𝑚 + 1)𝑢(𝑥)

′ − 𝑛𝑤(𝑥)]
2
}

𝐻

0

𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1483 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ {𝐾𝑏1𝑤(𝑥)
′ 𝛿𝑤(𝑥)

′ +𝐾𝑏2𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′′ + 𝐾𝑠1[(𝑚 + 1)𝑢(𝑥)
′ − 𝑛𝑤(𝑥)](𝑚 + 1)𝛿𝑢(𝑥)

′
𝐻

0

− 𝐾𝑠1[(𝑚 + 1)𝑢(𝑥)
′ − 𝑛𝑤(𝑥)]𝑛𝛿𝑤(𝑥) − 𝑓(𝑥)𝑢(𝑥)

′ 𝛿𝑢(𝑥)
′ }𝑑𝑥

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1484 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 
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𝛿𝒰 = 𝐾𝑏1[𝑤(𝑥)
′ 𝛿𝑤(𝑥)]0

𝐻
+𝐾𝑏2[𝑢(𝑥)

′′ 𝛿𝑢(𝑥)
′ ]

0

𝐻

+ {{−𝐾𝑏2𝑢(𝑥)
′′′ + [(𝑚+ 1)2𝐾𝑠1 − 𝑓(𝑥)]𝑢(𝑥)

′ − 𝑛(𝑚+ 1)𝐾𝑠1𝑤(𝑥)}𝛿𝑢(𝑥)}
0

𝐻

+∫ {−𝐾𝑏1𝑤(𝑥)
′′ −𝑛(𝑚+ 1)𝐾𝑠1𝑢(𝑥)

′ + 𝑛2𝐾𝑠1𝑤(𝑥)}𝛿𝑤(𝑥)

𝐻

0

+∫ {𝐾𝑏2𝑢(𝑥)
′′′′ − [(𝑚+ 1)2𝐾𝑠1 − 𝑓(𝑥)]𝑢(𝑥)

′′ + 𝑛(𝑚+ 1)𝐾𝑠1𝑤(𝑥)
′

𝐻

0

+ 𝑓
(𝑥)
′ 𝑢(𝑥)

′ }𝛿𝑢(𝑥) −
1

2
∫ 𝑓

(𝑥)
′
𝑢(𝑥)
′2 𝛿𝑓(𝑥)𝑑𝑥

𝐻

0

 
( 1485 ) 

Setting the terms equal to zero, the following equations result: 

{
−𝐾𝑏1𝑤(𝑥)

′′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑢(𝑥)
′ + 𝑛2𝐾𝑠1𝑤(𝑥) = 0

𝐾𝑏2𝑢(𝑥)
′′′′ − [(𝑚 + 1)2𝐾𝑠1 − 𝑓(𝑥)]𝑢(𝑥)

′′ + 𝑛(𝑚 + 1)𝐾𝑠1𝑤(𝑥)
′ + 𝑓(𝑥)

′ 𝑢(𝑥)
′ = 0

} 
( 1486 ) 

And boundary conditions: 

{

𝑤(0)
′ = 0

𝑢(0)
′′ = 0

𝐾𝑏2𝑢(0)
′′′ − [(𝑚 + 1)2𝐾𝑠1 − 𝑓(0)]𝑢(0)

′ + 𝑛(𝑚 + 1)𝐾𝑠1𝑤(0) = 0

} 

( 1487 ) 

Integrating the equation once and evaluating at 𝑥=0: 

𝐾𝑏2𝑢(𝑥)
′′′ − [(𝑚 + 1)2𝐾𝑠1 − 𝑓(𝑥)]𝑢(𝑥)

′ + 𝑛(𝑚 + 1)𝐾𝑠1𝑤(𝑥) = 0 ( 1488 ) 

We have a new system of coupled differential equations: 

{
−𝐾𝑏1𝑤(𝑥)

′′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑢(𝑥)
′ + 𝑛2𝐾𝑠1𝑤(𝑥) = 0

𝐾𝑏2𝑢(𝑥)
′′′ − [(𝑚 + 1)2𝐾𝑠1 − 𝑓(𝑥)]𝑢(𝑥)

′ + 𝑛(𝑚 + 1)𝐾𝑠1𝑤(𝑥) = 0
} 

( 1489 ) 

Using the method of coefficients for the solution of the system of equations: 

[
−𝑛(𝑚 + 1)𝐾𝑠1𝐷 −𝐾𝑏1𝐷

2 + 𝑛2𝐾𝑠1
𝐾𝑏2𝐷

3 − [(𝑚 + 1)2𝐾𝑠1 − 𝑓(𝑥)]𝐷 𝑛(𝑚 + 1)𝐾𝑠1
] {
𝑢(𝑥)
𝑤(𝑥)

} = {
0
0
} 

The determinant is equal to zero (the coefficient matrix is singular): 
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𝐾𝑏1𝐾𝑏2
𝐾𝑠1

𝑢(𝑥)
′′′′′ − [(𝑚 + 1)2𝐾𝑏1 + 𝑛

2𝐾𝑏2]𝑢(𝑥)
′′′ + 𝑓(𝑥) [

𝐾𝑏1
𝐾𝑠1

𝑢(𝑥)
′′′ − 𝑢(𝑥)

′ ] = 0 
( 1490 ) 

Reordering: 

𝑢(𝑥)
′′′′′ −

𝐾𝑠1
𝐾𝑏2

[(𝑚 + 1)2 + 𝑛2
𝐾𝑏2
𝐾𝑏1

] 𝑢(𝑥)
′′′ +

𝑓(𝑥)

𝐾𝑏2
[𝑢(𝑥)
′′′ −

𝐾𝑠1
𝐾𝑏1

𝑢(𝑥)
′ ] = 0 

( 1491 ) 

A fourth order differential equation is obtained, where the critical load results from the smallest 

eigenvalue. Normalizing the differential equation by the variable z=x/H: 

𝑢(𝑧)
′′′′′ −

𝐾𝑠1
𝐾𝑏2

[(𝑚 + 1)2 + 𝑛2
𝐾𝑏2
𝐾𝑏1

]𝐻2𝑢(𝑧)
′′′ +

𝑓(𝑧)𝐻
2

𝐾𝑏2
[𝑢(𝑧)
′′′ −

𝐾𝑠1𝐻
2

𝐾𝑏1
𝑢(𝑧)
′ ] = 0 

( 1492 ) 

Where: 

𝑓(𝑧) = 𝑞𝛼(𝑧) ( 1493 ) 

We define: 

{𝛼 = 𝐻√
𝐾𝑠1
𝐾𝑏2

, 𝜅 = √(𝑚 + 1)2 + 𝑛2
𝐾𝑏2
𝐾𝑏1

, 𝜆 =
𝑞𝐻3

𝐾𝑏2
} 

( 1494 ) 

Rewriting: 

𝑢(𝑧)
′′′′′ − (𝛼𝜅)2𝑢(𝑧)

′′′ + 𝜆𝛼(𝑧) {𝑢(𝑧)
′′′ − 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] 𝑢(𝑧)

′ } = 0 
( 1495 ) 

However, the axial extensibility function is of a lesser degree: 

𝑤(𝑧)
′′′′ − (𝛼𝜅)2𝑤(𝑧)

′′ + 𝜆𝛼(𝑧) {𝑤(𝑧)
′′ − 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
]𝑤(𝑧)} = 0 

( 1496 ) 

Expressing the boundary conditions as a function of 𝑤(𝑧): 
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{
 
 

 
 
𝑤(1) = 0

𝑤(0)
′ = 0

𝑤(1)
′′ = 0

𝑤(0)
′′′ = 0}

 
 

 
 

 

( 1497 ) 

 Uniformly Distributed Load 

The stability of the two-field GCTB, the governing differential equation is of the form: 

[
𝑑4

𝑑𝑧4
− (𝛼𝜅)2

𝑑2

𝑑𝑧2
]𝑤(𝑧) − 𝜆 {−𝛼(𝑧) {

𝑑2

𝑑𝑧2
− 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
]}}𝑤(𝑧) = 0 

( 1498 ) 

Multiplying the equation by {𝑤(𝑧)
′′ − 𝛼2 [

𝜅2−(𝑚+1)2

𝑛2
]𝑤(𝑧)} and integrating from 0 to 1 : 

∫ {𝑤(𝑧)
′′ 𝑤(𝑧)

′′′′ − (𝛼𝜅)2𝑤′′(𝑧)
2 − 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
]𝑤(𝑧)𝑤(𝑧)

′′′′
1

0

+ 𝛼2 [
𝜅2 − (𝑚 + 1)2

𝑛2
] (𝛼𝜅)2𝑤(𝑧)𝑤(𝑧)

′′ } 𝑑𝑧

+ 𝜆∫ 𝛼(𝑧) {𝑤(𝑧)
′′ − 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
]𝑤(𝑧)}

2

𝑑𝑧
1

0

= 0 
( 1499 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

−∫ {𝑤′′′(𝑧)
2
+ 𝛼2 [

2𝜅2 − (𝑚 + 1)2

𝑛2
]𝑤′′(𝑧)

2
+ 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] (𝛼𝜅)2𝑤′(𝑧)

2 }
1

0

𝑑𝑧

+ 𝜆∫ 𝛼(𝑧) {𝑤(𝑧)
′′ − 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
]𝑤(𝑧)}

2

𝑑𝑧
1

0

= 0 
( 1500 ) 

Solving the parameter 𝛾: 

𝜆 =
∫ {𝑤′′′(𝑧)

2
+ 𝛼2 [

2𝜅2 − (𝑚 + 1)2

𝑛2
]𝑤′′(𝑧)

2
+ 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] (𝛼𝜅)2𝑤′(𝑧)

2 }
1

0
𝑑𝑧

∫ 𝛼(𝑧) {𝑤(𝑧)
′′ − 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
]𝑤(𝑧)}

2

𝑑𝑧
1

0

 

( 1501 ) 

This Rayleigh ratio represents an approximation of the upper limit of the critical load, and it is 

exact if and only if the exact equilibrium curve 𝑤(𝑧) is used to calculate 𝜆. 
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For the case of a uniformly distributed load, the function 𝛼(𝑧) results in: 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 1502 ) 

The Rayleigh quotient becomes: 

𝜆 =
∫ {𝜃′′′(𝑧)

2
+ 𝛼2 [

2𝜅2 − (𝑚 + 1)2

𝑛2
] 𝜃′′(𝑧)

2
+ 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] (𝛼𝜅)2𝜃′(𝑧)

2
}𝑑𝑧

1

0

∫ 𝑧 {𝜃(𝑧)
′′ − 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] 𝜃(𝑧)}

2

𝑑𝑧
1

0

 

( 1503 ) 

Taking into account the boundary conditions. We consider two simple polynomials of different 

degrees that satisfy the boundary condition: 

𝜙1
1 = 1 −

6

5
𝑧2 +

1

5
𝑧4, 𝜙2

1 = 1 −
10

9
𝑧2 +

1

9
𝑧5 

( 1504 ) 

Taking a linear combination of both terms: 

𝜃(𝑧) = 𝐴𝜙1
1 + 𝐵𝜙2

1 = 𝐴(1 −
6

5
𝑧2 +

1

5
𝑧4) + 𝐵 (1 −

10

9
𝑧2 +

1

9
𝑧5) 

( 1505 ) 

We expand the integrals and substitute into the Rayleigh quotient: 

𝑈 = ∫ {𝜃′′′(𝑧)
2
+ 𝛼2 [

2𝜅2 − (𝑚 + 1)2

𝑛2
]𝜃′′(𝑧)

2
+ 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] (𝛼𝜅)2𝜃′(𝑧)

2
}𝑑𝑧

1

0

− 𝜆∫ 𝑧 {𝜃(𝑧)
′′ − 𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
]𝜃(𝑧)}

2

𝑑𝑧
1

0

 
( 1506 ) 

Expanding the integrals and joining common terms: 

𝑈 = 𝐴2(𝑎1 − 𝜆𝑎2) + 𝐵
2(𝑏1 − 𝜆𝑏2) + 𝐴𝐵[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] ( 1507 ) 

Where: 
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑎1 = 7.68 + 3.072 {𝛼

2 [
2𝜅2 − (𝑚 + 1)2

𝑛2
]} + 1.2434 {𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] (𝛼𝜅)2}

𝑎2 = 0.96 + 0.1507 {𝛼
2 [
𝜅2 − (𝑚 + 1)2

𝑛2
]}

2

− 1.3166 {𝛼2 [
𝜅2 − (𝑚 + 1)2

𝑛2
]}

𝑏1 = 8.8889 + 3.1746 {𝛼
2 [
2𝜅2 − (𝑚 + 1)2

𝑛2
]} + 1.2689 {𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] (𝛼𝜅)2}

𝑏2 = 1.1111 + 0.1555 {𝛼
2 [
𝜅2 − (𝑚 + 1)2

𝑛2
]}

2

− 1.5089 {𝛼2 [
𝜅2 − (𝑚 + 1)2

𝑛2
]}

(𝑎𝑏)1 = 16 + 6.2222 {𝛼
2 [
2𝜅2 − (𝑚 + 1)2

𝑛2
]} + 2.5111 {𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] (𝛼𝜅)2}

(𝑎𝑏)2 = 2.0571 + 0.3062 {𝛼
2 [
𝜅2 − (𝑚 + 1)2

𝑛2
]}

2

− 3.1030 {𝛼2 [
𝜅2 − (𝑚 + 1)2

𝑛2
]}

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

( 1508 ) 

The condition for the critical load to be the minimum is expressed as: 

{

𝜕𝑈

𝜕𝐴
= 0 → 2(𝑎1 − 𝜆𝑎2)𝐴 + [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]𝐵

𝜕𝑈

𝜕𝐵
= 0 → [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]𝐴 + 2(𝑏1 − 𝜆𝑏2)𝐵

} 

( 1509 ) 

Expressing in matrix form: 

[
2(𝑎1 − 𝜆𝑎2) [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]

[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] 2(𝑏1 − 𝜆𝑏2)
] {
𝐴
𝐵
} = {

0
0
} 

( 1510 ) 

For a nontrivial solution (a and b cannot be equal to zero simultaneously), the determinant of the 

coefficient matrix for a and b must be equal to zero; namely: 

|
2(𝑎1 − 𝜆𝑎2) [(𝑎𝑏)1 − 𝜆(𝑎𝑏)2]

[(𝑎𝑏)1 − 𝜆(𝑎𝑏)2] 2(𝑏1 − 𝜆𝑏2)
| = 0 

( 1511 ) 

Operating the determinant, we have: 

[4𝑎2𝑏2 − (𝑎𝑏)2
2]𝜆2 + [2(𝑎𝑏)1(𝑎𝑏)2 − 4(𝑎1𝑏2 + 𝑎2𝑏1)]𝜆 + [4𝑎1𝑏1 − (𝑎𝑏)1

2] = 0 ( 1512 ) 

The minimum eigenvalue is obtained from the minimum root of the quadratic equation. 

𝜆 =
𝑞𝐻3

𝐾𝑏2
→ 𝑞𝑐𝑟𝐻 = 𝜆

𝐾𝑏2
𝐻2

 
( 1513 ) 
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To obtain a new polynomial of higher degree and that takes into account the eigenvalue calculated 

in the previous iteration, we will integrate the resulting differential equation of the two-field GCTB 

beam model four times: 

The first polynomial to be considered will be the one with the highest degree of the previous 

iteration: 

𝜙1
2 = 1−

10

9
𝑧2 +

1

9
𝑧5 

( 1514 ) 

To obtain a new polynomial of higher degree and that takes into account the eigenvalue calculated 

in the previous iteration, we will integrate the resulting differential equation of the two-field GCTB 

beam model four times: 

𝜃(𝑧) = (𝛼𝜅)
2∬𝜃(𝑧)𝑑𝑧 − 𝜆⨌𝛼(𝑧)𝜃(𝑧)

′′ 𝑑𝑧 + 𝜆𝛼2[𝜅2 − (𝑚 + 1)2]⨌𝛼(𝑧)𝜃(𝑧)𝑑𝑧 + 𝐶3𝑧
3

+ 𝐶2𝑧
2 + 𝐶1𝑧 + 𝐶0  ( 1515 ) 

For the case of a uniform load: 

𝜃(𝑧) = (𝛼𝜅)
2∬𝜃(𝑧)𝑑𝑧 − 𝜆⨌𝑧𝜃(𝑧)

′′ 𝑑𝑧 + 𝜆𝛼2[𝜅2 − (𝑚 + 1)2]⨌𝑧𝜃(𝑧)𝑑𝑧 + 𝐶3𝑧
3 + 𝐶2𝑧

2

+ 𝐶1𝑧 + 𝐶0 ( 1516 ) 

When evaluating the boundary conditions, the constants 𝐶0, 𝐶1, 𝐶2 and 𝐶3 are determined and the 

new polynomial to be used in the second iteration is determined. 

Taking a linear combination of both terms: 

𝜃(𝑧) = 𝐴𝜙1
2 +𝐵𝜙2

2 = 𝐴𝜙2
1 +𝐵𝜙2

2 ( 1517 ) 

A closer approximation to the exact value can be achieved by repeating the two iteration steps, 

resulting in polynomials of higher and higher degree. 

 Point Load at x=0 (z=0) 

For the case of a point load applied at x=H (z=1), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1518 ) 
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Substituting into the differential equation: 

𝜃(𝑧)
′′′′ − (𝛼𝜅)2𝜃(𝑧)

′′ +
𝜆

𝐻
{𝜃(𝑧)

′′ − 𝛼2 [
𝜅2 − (𝑚 + 1)2

𝑛2
] 𝜃(𝑧)} = 0 

( 1519 ) 

The expression for 𝜃(𝑧) can be derived as: 

𝜃(𝑧) = 𝐶1 cosh(√𝜉𝑧) + 𝐶2 sinh(√𝜉𝑧) + 𝐶3 cos(√𝛽𝑧) + 𝐶4 sin(√𝛽𝑧) ( 1520 ) 

Where: 

{
 
 
 

 
 
 

𝜉 =

− [
𝜆
𝐻
− (𝛼𝜅)2] + √[

𝜆
𝐻
− (𝛼𝜅)2]

2

+ 4
𝜆
𝐻
𝛼2 [

𝜅2 − (𝑚 + 1)2

𝑛2
]

2

𝛽 =

[
𝜆
𝐻 −

(𝛼𝜅)2] + √[
𝜆
𝐻 −

(𝛼𝜅)2]
2

+ 4
𝜆
𝐻 𝛼

2 [
𝜅2 − (𝑚 + 1)2

𝑛2
]

2 }
 
 
 

 
 
 

 

( 1521 ) 

The linear algebraic system resulting from the boundary conditions, written in matrix form, is: 

[
 
 
 
 cosh√𝜉 sinh√𝜉 cos√𝛽 sin√𝛽

0 𝜉1/2 0 𝛽1/2

𝜉 cosh√𝜉 𝜉 sinh√𝜉 −𝛽 cos√𝛽 −𝛽 sin√𝛽

0 𝜉3/2 0 −𝛽3/2 ]
 
 
 
 

{

𝐶1
𝐶2
𝐶3
𝐶4

} = 0 

( 1522 ) 

Which has a solution different from the trivial one if the determinant is equal to zero (the matrix 

of coefficients is singular), that is, for: 

𝐶𝑜𝑠√𝛽 = 0 → √𝛽 = (2𝑛 − 1)
𝜋

2
 / 𝑛 = 1, 2, 3… 

( 1523 ) 

i.e., 

[
𝜆
𝐻 −

(𝛼𝜅)2] + √[
𝜆
𝐻 −

(𝛼𝜅)2]
2

+ 4
𝜆
𝐻𝛼

2 [
𝜅2 − (𝑚 + 1)2

𝑛2
]

2
= (2𝑛 − 1)2

𝜋2

4
 

( 1524 ) 

After some simple manipulations: 
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𝜆

𝐻
= (2𝑛 − 1)2

𝜋2

4
+

1

4 [
𝜅2 − (𝑚 + 1)2

𝑛2
]

(2𝑛 − 1)2𝜋2
+
1
𝛼2

 

( 1525 ) 

Replacing by its characteristic rigidities: 

𝑞𝑐𝑟 = (2𝑛 − 1)
2
𝜋2𝐾𝑏2
4𝐻2

+
1

4𝐻2

(2𝑛 − 1)2𝜋2𝐾𝑏1
+

1
𝐾𝑠1

 

( 1526 ) 

Sorting properly: 

𝑞𝑐𝑟 = (2𝑛 − 1)
2
𝜋2𝐾𝑏2
4𝐻2

+ {[(2𝑛 − 1)2
𝜋2𝐾𝑏1
4𝐻2

]

−1

+𝐾𝑠1
−1}

−1

 

( 1527 ) 

For the case when 𝑛 = 1, we have: 

𝑞𝑐𝑟 =
𝜋2𝐾𝑏2
4𝐻2

+ [(
𝜋2𝐾𝑏1
4𝐻2

)

−1

+ 𝐾𝑠1
−1]

−1

 

( 1528 ) 

i.e., 

𝑞𝑐𝑟 = 𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ò𝑛 𝑙𝑜𝑐𝑎𝑙 + [𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ò𝑛 𝑔𝑙𝑜𝑏𝑎𝑙
−1 + 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒

−1]
−1

 ( 1529 ) 

Since the resulting critical load is independent of some approximation function, it can be 

considered exact and identical to the one that would be obtained by applying Föppl's theorem. 

4.3.12.2 Case 2 

 Calculation of the Transfer Matrix 

According to the coupled differential equations: 

{
−𝐾𝑏1𝑤(𝑥)

′′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑢(𝑥)
′ + 𝑛2𝐾𝑠1𝑤(𝑥) = 0

𝐾𝑏2𝑢(𝑥)
′′′′ − [(𝑚 + 1)2𝐾𝑠1 − 𝑞]𝑢(𝑥)

′′ + 𝑛(𝑚 + 1)𝐾𝑠1𝑤(𝑥)
′ = 0

} 
( 1530 ) 

Using the method of coefficients: 
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[
−𝑛(𝑚 + 1)𝐾𝑠1𝐷 −𝐾𝑏1𝐷

2 + 𝑛2𝐾𝑠1
𝐾𝑏2𝐷

4 − [(𝑚 + 1)2𝐾𝑠1 − 𝑞]𝐷
2 𝑛(𝑚 + 1)𝐾𝑠1𝐷

] {
𝑢(𝑥)
𝑤(𝑥)

} = {
0
0
} 

( 1531 ) 

To avoid trivial solutions, the determinant must be equal to zero, that is: 

𝐷2 {𝐷4 − {
𝐾𝑠1
𝐾𝑏2

[(𝑚 + 1)2 + 𝑛2
𝐾𝑏2
𝐾𝑏1

] −
𝑞

𝐾𝑏2
}𝐷2 −

𝐾𝑠1𝑞

𝐾𝑏1𝐾𝑏2
} = 0 

( 1532 ) 

Rewriting: 

𝐷2 {𝐷4 − [(𝛼∗𝜅)2 − 𝜆]𝐷2 − {𝛼∗2 [
𝜅2 − (𝑚 + 1)2

𝑛2
] 𝜆}} = 0 

( 1533 ) 

Where: 

{𝛼∗ = √
𝐾𝑠1
𝐾𝑏2

, 𝜅 = √(𝑚 + 1)2 + 𝑛2
𝐾𝑏2
𝐾𝑏1

, 𝜆 =
𝑞

𝐾𝑏2
} 

( 1534 ) 

The expression for 𝑢(𝑧) and 𝑤(𝑧) is proposed: 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(√𝜉𝑧) + 𝐶3 sinh(√𝜉𝑧) + 𝐶4 cos(√𝛽𝑧) + 𝐶5 sin(√𝛽𝑧)

𝑤(𝑧) = 𝐶6 + 𝐶7𝑧 + 𝐶8 cosh(√𝜉𝑧) + 𝐶9 sinh(√𝜉𝑧) + 𝐶10 cos(√𝛽𝑧) + 𝐶11 sin(√𝛽𝑧)
} 

( 1535 ) 

Where: 

{
 
 

 
 

𝜉 =
[(𝛼∗𝜅)2 − 𝜆] + √[(𝛼∗𝜅)2 − 𝜆]2 + 4𝛼∗2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] 𝜆

2

𝛽 =
−[(𝛼∗𝜅)2 − 𝜆] + √[(𝛼∗𝜅)2 − 𝜆]2 + 4𝛼∗2 [

𝜅2 − (𝑚 + 1)2

𝑛2
] 𝜆

2 }
 
 

 
 

 

( 1536 ) 

Expressing the coefficients of 𝜓(𝑧) and 𝜃(𝑧) as a function of the coefficients of 𝑢(𝑧): 

{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cosh(√𝜉𝑧) + 𝐶3 sinh(√𝜉𝑧) + 𝐶4 cos(√𝛽𝑧) + 𝐶5 sin(√𝛽𝑧)

𝑤(𝑧) = 𝑝3𝐶1 + 𝑝1 sinh(√𝜉𝑧)𝐶2 + 𝑝1 cosh(√𝜉𝑧)𝐶3 − 𝑝2 sin(√𝛽𝑧)𝐶4 + 𝑝2 cos(√𝛽𝑧)𝐶5
} 

( 1537 ) 

Where: 
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{𝑝
1
=
𝑛(𝑚+ 1)𝐾𝑠1√𝜉

𝑛2𝐾𝑠1 − 𝜉𝐾𝑏1
, 𝑝
2
=
𝑛(𝑚 + 1)𝐾𝑠1√𝛽

𝑛2𝐾𝑠1 + 𝛽𝐾𝑏1
, 𝑝
3
= (

𝑚 + 1

𝑛
)} 

( 1538 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 

{
 
 
 
 

 
 
 
 {

𝑀1(𝑧) = 𝐾𝑏1𝑤(𝑥)
′ = 𝑝1√𝜉𝐾𝑏1 cosh(√𝜉𝑧)𝐶2 + 𝑝1√𝜉𝐾𝑏1 sinh(√𝜉𝑧)𝐶3

−𝑝2√𝛽𝐾𝑏1 cos(√𝛽𝑧)𝐶4 − 𝑝2√𝛽𝐾𝑏1 sin(√𝛽𝑧)𝐶5
}

{
𝑀2(𝑧) = 𝐾𝑏2𝑢(𝑥)

′′ = 𝜉𝐾𝑏2 cosh(√𝜉𝑧)𝐶2 + 𝜉𝐾𝑏2 sinh(√𝜉𝑧)𝐶3

−𝛽𝐾𝑏2 cos(√𝛽𝑧)𝐶4 − 𝛽𝐾𝑏2 sin(√𝛽𝑧)𝐶5
}

{
𝑉(𝑧) = −𝐾𝑏2𝑢(𝑥)

′′′ + [(𝑚 + 1)2𝐾𝑠1 − 𝑞]𝑢(𝑥)
′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑤(𝑥) = 𝑝4𝐶1 + 𝑝5 sinh(√𝜉𝑧)𝐶2

𝑝5 cosh(√𝜉𝑧)𝐶3 + 𝑝6 sin(√𝛽𝑧)𝐶4 + 𝑝7 cos(√𝛽𝑧)𝐶5
}
}
 
 
 
 

 
 
 
 

 

( 1539 ) 

Where: 

{
  
 

  
 

𝑝
4
= (𝑚 + 1)𝐾𝑠1[(𝑚 + 1) − 𝑛𝑝3] − 𝑞

𝑝
5
= −𝐾𝑏2𝜉

3
2 + [(𝑚+ 1)2𝐾𝑠1 − 𝑞]𝜉

1
2 − 𝑛(𝑚 + 1)𝐾𝑠1𝑝1

𝑝
6
= −𝐾𝑏2𝛽

3
2 + [(𝑚+ 1)2𝐾𝑠1 − 𝑞]𝛽

1
2 + 𝑛(𝑚 + 1)𝐾𝑠1𝑝2

𝑝
7
= 𝐾𝑏2𝛽

3
2 + [(𝑚+ 1)2𝐾𝑠1 − 𝑞]𝛽

1
2 − 𝑛(𝑚 + 1)𝐾𝑠1𝑝2 }

  
 

  
 

 

( 1540 ) 

Writing the equations in matrix form: 

{
  
 

  
 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑤𝑖(𝑧𝑖)

𝑀1i(𝑧𝑖)

𝑀2i(𝑧𝑖)

𝑉𝑖(𝑧𝑖) }
  
 

  
 

= 𝐾𝑖(𝑧𝑖)

{
 
 

 
 
𝐶0
𝐶1
𝐶2
𝐶3
𝐶4
𝐶5}
 
 

 
 

 

( 1541 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 
 
 
 
 1 𝑧 cosh(√𝜉𝑧) sinh(√𝜉𝑧) cos(√𝛽𝑧) sin(√𝛽𝑧)

0 1 √𝜉 sinh(√𝜉𝑧) √𝜉 cosh(√𝜉𝑧) −√𝛽 sin(√𝛽𝑧) √𝛽 cos(√𝛽𝑧)

0 𝑝3 𝑝1 sinh(√𝜉𝑧) 𝑝1 cosh(√𝜉𝑧) −𝑝2 sin(√𝛽𝑧) 𝑝2 cos(√𝛽𝑧)

0 0 𝑝1√𝜉𝐾𝑏1 cosh(√𝜉𝑧) 𝑝1√𝜉𝐾𝑏1 sinh(√𝜉𝑧) −𝑝2√𝛽𝐾𝑏1 cos(√𝛽𝑧) −𝑝2√𝛽𝐾𝑏1 sin(√𝛽𝑧)

0 0 𝜉𝐾𝑏2 cosh(√𝜉𝑧) 𝜉𝐾𝑏2 sinh(√𝜉𝑧) −𝛽𝐾𝑏2 cos(√𝛽𝑧) −𝛽𝐾𝑏2 sin(√𝛽𝑧)

0 𝑝4 𝑝5 sinh(√𝜉𝑧) 𝑝5 cosh(√𝜉𝑧) 𝑝6 sin(√𝛽𝑧) +𝑝7 cos(√𝛽𝑧) ]
 
 
 
 
 
 
 
 

𝑖
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 ( 1542 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the base to the top of the beam and expressing the equation between 

the product symbol: 

{
  
 

  
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑤𝑛(0)

𝑀1n(0)

𝑀2n(0)

𝑉𝑛(0) }
  
 

  
 

=∏𝑇𝑘(0)

𝑛

𝑘=1

{
  
 

  
 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑤1(ℎ1)

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

= t

{
  
 

  
 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑤1(ℎ1)

𝑀11(ℎ1)

𝑀21(ℎ1)

𝑉1(ℎ1) }
  
 

  
 

 

( 1543 ) 

Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1544 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 6x6 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 
 

 
 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝑤(1) = 0

𝑤(0)
′ = 0

𝑢(0)
′′ = 0

−𝐾𝑏2𝑢(0)
′′′ + [(𝑚 + 1)2𝐾𝑠1 − 𝑞]𝑢(0)

′ − 𝑛(𝑚 + 1)𝐾𝑠1𝑤(0) = 0}
 
 
 

 
 
 

→

{
  
 

  
 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑤1(ℎ1) = 0

𝑀1n(0) = 0

𝑀2n(0) = 0

𝑉𝑛(0) = 0 }
  
 

  
 

 

( 1545 ) 

Replacing: 

{
 
 

 
 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑤𝑛(0)

0
0
0 }

 
 

 
 

=

[
 
 
 
 
 
𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4 𝑡1,5 𝑡1,6
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4 𝑡2,5 𝑡2,6
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4 𝑡3,5 𝑡3,6
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,1 𝑡5,2 𝑡5,3 𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,1 𝑡6,2 𝑡6,3 𝑡6,4 𝑡6,5 𝑡6,6]

 
 
 
 
 

{
 
 

 
 

0
0
0

𝑀1(ℎ1)

𝑀2(ℎ1)

𝑉1(ℎ1) }
 
 

 
 

 

( 1546 ) 
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Solving for bending moment and shear force at the base of the model: 

{
0
0
0
} = [

𝑡4,4 𝑡4,5 𝑡4,6
𝑡5,4 𝑡5,5 𝑡5,6
𝑡6,4 𝑡6,5 𝑡6,6

] {

𝑀1(ℎ1)

𝑀2(ℎ1)

𝑉1(ℎ1)
} 

( 1547 ) 

Which has a different solution than the trivial if the determinant is equal to zero (the matrix of 

coefficients is singular). Solving the critical loads of the beam. 
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4.3.13 Generalized Parallel Coupling of Two Beams of a Field (GCTB) 

4.3.13.1 Case 1 

The potential energy of the GCTB model of a field is: 

𝑉 =
1

2
∫ [𝐾𝑏𝑢(𝑥)

′′ 2
+ (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′2 ]
𝐻

0

𝑑𝑥 
( 1548 ) 

Where:  

{𝐾𝑏 = 𝐸(𝐼1 + 𝐼2), 𝐾𝑠 = 𝐺𝑒𝑞𝑡𝑤𝑙𝑏} ( 1549 ) 

The work done by the external force is expressed as: 

𝑊 = −𝑓(𝑥)𝑑𝑙 = −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1550 ) 

Consequently, the total potential energy of the model is expressed as: 

𝒰 =
1

2
∫ [𝐾𝑏𝑢(𝑥)

′′ 2
+ (𝑚 + 1)2𝐾𝑠𝑢(𝑥)

′2 ]
𝐻

0

𝑑𝑥 −
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′ 2
𝐻

0

𝑑𝑥 
( 1551 ) 

Closed-form solutions of the model are achieved by solving the differential system that arises from 

the stationarity of the equation. Stationarity due to equilibrium implies: 

𝛿𝒰 = ∫ [𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′′ + (𝑚 + 1)2𝐾𝑠𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ − 𝑓(𝑥)𝑢(𝑥)
′ 𝛿𝑢(𝑥)

′ ]𝑑𝑥
𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1552 ) 

After integrating by parts and replacing it in the equation, we order the common terms: 

𝛿𝒰 = [𝐾𝑏𝑢(𝑥)
′′ 𝛿𝑢(𝑥)

′ ]
0

𝐻
+ {{−𝐾𝑏𝑢(𝑥)

′′′ + [(𝑚+ 1)2𝐾𝑠 − 𝑓(𝑥)]𝑢(𝑥)
′ }𝛿𝑢(𝑥)}

0

𝐻

+∫ [𝐾𝑏𝑢(𝑥)
′′′′ − (𝑚+ 1)2𝐾𝑠𝑢(𝑥)

′′ + 𝑓(𝑥)
′ 𝑢(𝑥)

′ + 𝑓(𝑥)𝑢(𝑥)
′′ ]𝛿𝑢(𝑥)𝑑𝑥

𝐻

0

−
1

2
∫ 𝑓(𝑥)𝑢(𝑥)

′2 𝛿𝑓(𝑥)𝑑𝑥
𝐻

0

 
( 1553 ) 

Setting the terms equal to zero, the following equation results: 
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𝐾𝑏𝑢(𝑥)
′′′′ − (𝑚+ 1)2𝐾𝑠𝑢(𝑥)

′′ + 𝑓(𝑥)
′ 𝑢(𝑥)

′ + 𝑓(𝑥)𝑢(𝑥)
′′ = 0 ( 1554 ) 

And boundary conditions: 

{
𝑢(0)
′′ = 0

−𝐾𝑏𝑢(0)
′′′ + [(𝑚+ 1)2𝐾𝑠 − 𝑓(0)]𝑢(0)

′ = 0
} 

( 1555 ) 

Integrating the equation once and evaluating at 𝑥 = 0: 

𝐾𝑏𝑢(𝑥)
′′′ − [(𝑚+ 1)2𝐾𝑠 − 𝑓(𝑥)]𝑢(𝑥)

′ = 0 ( 1556 ) 

A third order differential equation is obtained, where the critical load results from the smallest 

eigenvalue. Normalizing the differential equation by the variable 𝑧 = 𝑥/𝐻: 

𝑢(𝑧)
′′′ −

(𝑚+ 1)2𝐾𝑠 − 𝑓(𝑧)

𝐾𝑏
𝐻2𝑢(𝑧)

′ = 0 
( 1557 ) 

The equation can be rewritten as: 

𝑢(𝑧)
′′′ − 𝛼2𝑢(𝑧)

′ + 𝜆𝛼(𝑧)𝑢(𝑧)
′ = 0 ( 1558 ) 

Where: 

{𝛼 = 𝐻√
(𝑚+ 1)2𝐾𝑠

𝐾𝑏
, 𝜆 =

𝑞𝐻3

𝐾𝑏2
} 

( 1559 ) 

 Uniformly Distributed Load 

The stability of the beam GCTB of a field, the governing differential equation is of the form: 

(
𝑑3

𝑑𝑧3
− 𝛼2

𝑑

𝑑𝑧
)𝑢(𝑧) − 𝜆 [−𝛼(𝑧)

𝑑

𝑑𝑧
]𝑢(𝑧) = 0 

( 1560 ) 

Multiplying the equation by 𝑢(𝑧)
′  and integrating from 0 to 1: 

∫ [𝑢(𝑧)
′ 𝑢(𝑧)

′′′ − 𝛼2𝑢′(𝑧)
2 ]𝑑𝑧

1

0

+ 𝜆∫ 𝛼(𝑧)[𝑢(𝑧)
′ ]

2
𝑑𝑧

1

0

= 0 
( 1561 ) 
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After integrating by parts and replacing it in the equation, we order the common terms: 

∫ [−𝑢′′(𝑧)
2
− 𝛼2𝑢′(𝑧)

2 ]𝑑𝑧
1

0

+ 𝜆∫ 𝛼(𝑧)[𝑢(𝑧)
′ ]

2
𝑑𝑧

1

0

= 0 
( 1562 ) 

Clearing the parameter 𝜆: 

𝜆 =
∫ [𝑢′′(𝑧)

2
+ 𝛼2𝑢′(𝑧)

2 ]𝑑𝑧
1

0

∫ 𝛼(𝑧)𝑢′(𝑧)
2 𝑑𝑧

1

0

 

( 1563 ) 

Where 𝜆 is the Rayleigh quotient. For the case of a uniformly distributed load, the function 𝛼(𝑧) 

results in: 

𝛼(𝑧) = 𝑧 → 𝑓(𝑧) = 𝑞𝑧 ( 1564 ) 

The Rayleigh quotient becomes: 

𝜆 =
∫ [𝑢′′(𝑧)

2
+ 𝛼2𝑢′(𝑧)

2 ]𝑑𝑧
1

0

∫ 𝑧𝑢′(𝑧)
2 𝑑𝑧

1

0

 

( 1565 ) 

Taking into account the boundary conditions. We consider two simple polynomials of different 

degrees that satisfy the boundary condition: 

𝜙1
1 = 1−

4

3
𝑧 +

1

3
𝑧4 , 𝜙2

1 = 1 −
5

4
𝑧 +

1

4
𝑧5 

( 1566 ) 

Taking a linear combination of both terms: 

𝑢(𝑧) = 𝐴𝜙1
1 +𝐵𝜙2

1 = 𝐴(1 −
4

3
𝑧 +

1

3
𝑧4) + 𝐵 (1 −

5

4
𝑧 +

1

4
𝑧5) 

( 1567 ) 

We expand the integrals and substitute into the Rayleigh quotient: 

𝒰 = ∫ [𝑢′′(𝑧)
2
+ 𝛼2𝑢′(𝑧)

2 ]𝑑𝑧
1

0

− 𝜆∫ 𝑧[𝑢(𝑧)
′ ]

2
𝑑𝑧

1

0

 
( 1568 ) 

Expanding the integrals and grouping common terms: 



 

 

424 

𝒰 = 𝐴2[(3.2 + 1.1429𝛼2) − 0.4𝜆] + 𝐵2[(3.5714 + 1.1111𝛼2) − 0.4167𝜆]

+ 𝐴𝐵[(6.6667 + 2.25𝛼2) − 0.8148𝜆] ( 1569 ) 

The condition for the critical load to be the minimum is expressed as: 

{

𝜕𝒰

𝜕𝐴
= 0 → [(6.4 + 2.2858𝛼2) − 0.8𝜆]𝐴 + [(6.6667 + 2.25𝛼2) − 0.8148𝜆]𝐵 = 0

𝜕𝒰

𝜕𝐵
= 0 → [(6.6667 + 2.25𝛼2) − 0.8148𝜆]𝐴 + [(7.1428 + 2.2222𝛼2) − 0.8334𝜆]𝐵 = 0

} 

( 1570 ) 

Expressing in matrix form: 

[
(6.4 + 2.2858𝛼2) − 0.8𝜆 (6.6667 + 2.25𝛼2) − 0.8148𝜆

(6.6667 + 2.25𝛼2) − 0.8148𝜆 (7.1428 + 2.2222𝛼2) − 0.8334𝜆
] {
𝐴
𝐵
} = {

0
0
} 

( 1571 ) 

For a nontrivial solution (a and b cannot be equal to zero simultaneously), the determinant of the 

coefficient matrix for a and b must be equal to zero. Operating the determinant: 

𝜆2 − (66.8571 + 5.7857𝛼2)𝜆 + (6.1473𝛼4 + 200.0205𝛼2 + 462.4561) = 0 ( 1572 ) 

The minimum eigenvalue is obtained from the minimum root of the quadratic equation. 

𝜆1 = (33.4286 + 2.8929𝛼
2) − √2.2213𝛼4 − 6.6123𝛼2 + 655.0133

𝑞𝑐𝑟𝐻 = 𝜆1
𝐾𝑏
𝐻2

→ 𝑞𝑐𝑟𝐻 = 𝜆1
𝐾𝑏
𝐻2

 

( 1573 ) 

Which is the first approximation to the value of the critical load of the beam. 

 2nd Iteration: 

The first polynomial to be considered will be the one with the highest degree of the previous 

iteration: 

𝜙1
2 = 1−

5

4
𝑧 +

1

4
𝑧5 

( 1574 ) 

To obtain a new polynomial of higher degree and that takes into account the eigenvalue calculated 

in the previous iteration, we will integrate the differential equation resulting from the beam model 

three times: 
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𝑢(𝑧) =∬ 𝛼2𝑢(𝑧)𝑑𝑧
𝑧

0

− 𝜆∭ 𝛼(𝑧)𝑢(𝑧)
′ 𝑑𝑧𝑑𝑧

𝑧

0

+ 𝐶2𝑧
2 + 𝐶1𝑧 + 𝐶0 

( 1575 ) 

For the case of a uniform load: 

𝑢(𝑧) =∬ 𝛼2𝑢(𝑧)𝑑𝑧
𝑧

0

− 𝜆∭ 𝑧𝑢(𝑧)
′ 𝑑𝑧𝑑𝑧

𝑧

0

+ 𝐶2𝑧
2 + 𝐶1𝑧 + 𝐶0 

( 1576 ) 

When evaluating the boundary conditions, the constants 𝐶0, 𝐶1, 𝐶2 and 𝐶3 are determined and the 

new polynomial 𝜙2
2 to be used in the second iteration is determined. 

Taking a linear combination of both terms: 

𝑢(𝑧) = 𝐴𝜙1
2 + 𝐵𝜙2

2 ( 1577 ) 

Solving similarly to iteration 1, the new eigenvalue 𝜆2 is obtained. A closer approximation to the 

exact value can be achieved by repeating the two iteration steps, resulting in polynomials of higher 

and higher degree. Numerically it is observed that with a third iteration the approximation can be 

considered exact. 

 Point load at x=0 (z=0) 

For the case of a point load applied at x=0 (z=0), the function 𝛼(𝑧): 

𝛼(𝑧) = 1 → 𝑓(𝑧) = 𝑞 ( 1578 ) 

Substituting into the differential equation: 

𝑢(𝑧)
′′′ + (𝜆 𝐻⁄ − 𝛼2)𝑢(𝑧)

′ = 0 ( 1579 ) 

The expression for 𝑢(𝑧) can be derived as: 

𝑢(𝑧) = 𝐶0 + 𝐶1𝐶𝑜𝑠 (√𝜆 𝐻⁄ − 𝛼2𝑧) + 𝐶2𝑆𝑒𝑛 (√𝜆 𝐻⁄ − 𝛼2𝑧) 
( 1580 ) 

The linear algebraic system resulting from the boundary conditions, written in matrix form, is: 
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[
 
 
 
 1 cos (√𝜆 𝐻⁄ − 𝛼2) sin (√𝜆 𝐻⁄ − 𝛼2)

0 − sin(√𝜆 𝐻⁄ − 𝛼2) cos (√𝜆 𝐻⁄ − 𝛼2)

0 cos (√𝜆 𝐻⁄ − 𝛼2) 0 ]
 
 
 
 

{
𝐶0
𝐶1
𝐶2

} = 0 

( 1581 ) 

Which has a different solution than the trivial one (𝐶0 = 𝐶1 = 𝐶2 = 0) if the determinant is equal 

to zero (the matrix of coefficients is singular), that is: 

𝐶𝑜𝑠 (√𝜆 𝐻⁄ − 𝛼2) = 0 → √𝜆 𝐻⁄ − 𝛼2 = (2𝑛 − 1)
𝜋

2
 / 𝑛 = 1, 2, 3 … 

( 1582 ) 

Solving, it is found that the critical load is: 

𝑞𝑐𝑟 = (𝑚 + 1)2𝐾𝑠 + (2𝑛 − 1)
2
𝜋2

4

𝐾𝑏
𝐻2

 
( 1583 ) 

For the case when 𝑛 = 1, we have: 

𝑞𝑐𝑟 = (𝑚 + 1)2𝐾𝑠 +
𝜋2𝐾𝑏
4𝐻2

= 𝑞𝑐𝑟,𝑓𝑙𝑒𝑥𝑖ó𝑛 + 𝑞𝑐𝑟,𝑐𝑜𝑟𝑡𝑒 
( 1584 ) 

Since the resulting critical load is independent of some approximation function, it can be 

considered exact and identical to the one that would be obtained by applying Föppl's theorem. 

4.3.13.2 Case 2 

 Calculation of the Transfer Matrix 

According to fourth degree differential equations: 

𝐾𝑏𝑢(𝑥)
′′′′ + [𝑞 − (𝑚 + 1)2𝐾𝑠]𝑢(𝑥)

′′ = 0 
( 1585 ) 

Using the method of coefficients: 

𝐷2(𝐷2 + 𝜉2) = 0 

The expression for 𝑢(𝑧) and 𝑢′(𝑧) is proposed: 
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{
𝑢(𝑧) = 𝐶0 + 𝐶1𝑧 + 𝐶2 cos(√𝜉𝑧) + 𝐶3 sin(√𝜉𝑧)

𝑢(𝑧)
′ = 𝐶1 − 𝐶2√𝜉 sin(√𝜉𝑧) + 𝐶3√𝜉 cos(√𝜉𝑧)

} 
( 1586 ) 

Where: 

{𝜉 =
𝑞

𝐾𝑏
− 𝛼∗2, 𝛼∗ = √

(𝑚 + 1)2𝐾𝑠
𝐾𝑏

} 

( 1587 ) 

Internal forces such as bending moment and shear force associated with lateral displacement result 

in: 

{
𝑀(𝑧) = 𝐾𝑏𝑢(𝑥)

′′ = −[𝜉𝐾𝑏 cos(√𝜉𝑧)]𝐶2 − [𝜉𝐾𝑏 sin(√𝜉𝑧)]𝐶3

𝑉(𝑧) = 𝐾𝑏𝑢(𝑥)
′′′ + [𝑞 − (𝑚+ 1)2𝐾𝑠]𝑢(𝑥)

′ = [𝑞 − (𝑚+ 1)2𝐾𝑠]𝐶1
} 

( 1588 ) 

Writing the equations in matrix form: 

{
 

 
𝑢𝑖(𝑧𝑖)

𝑢𝑖
′(𝑧𝑖)

𝑀𝑖(𝑧𝑖)
𝑉𝑖(𝑧𝑖)}

 

 
= 𝐾𝑖(𝑧𝑖) {

𝐶0
𝐶1
𝐶2
𝐶3

} 

( 1589 ) 

Where: 

𝐾𝑖(𝑧𝑖) =

[
 
 
 
 1 𝑧𝑖 cos(√𝜉𝑧) sin(√𝜉𝑧)

0 1 −√𝜉 sin(√𝜉𝑧) √𝜉 cos(√𝜉𝑧)

0 0 −𝜉𝐾𝑏 cos(√𝜉𝑧) −𝜉𝐾𝑏 sin(√𝜉𝑧)

0 𝑞 − (𝑚+ 1)2𝐾𝑠 0 0 ]
 
 
 
 

𝑖

 

( 1590 ) 

 Stability Analysis Under Point Loads Applied at Floor Level 

Applying sequentially from the base to the top of the beam and expressing the equation between 

the product symbol: 

{
 

 
𝑢𝑛(0)

𝑢𝑛
′ (0)

𝑀𝑛(0)

𝑉𝑛(0) }
 

 
=∏𝑇𝑘(0)

𝑛

𝑘=1
{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
= t

{
 

 
𝑢1(ℎ1)

𝑢1
′ (ℎ1)

𝑀1(ℎ1)

𝑉1(ℎ1)}
 

 
 

( 1591 ) 
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Where: 

t =∏𝑇𝑘(0)

𝑛

𝑘=1

 

( 1592 ) 

This equation expresses the relationship between the forces and displacements of the top and 

bottom of the beam. An important point to note is that the size of the transfer matrix is 4x4 and 

remains constant across all floors. 

According to the boundary conditions defined in case 1: 

{
 
 

 
 

𝑢(1) = 0

𝑢(1)
′ = 0

𝐾𝑏𝑢(0)
′′ = 0

𝐾𝑏𝑢(0)
′′′ + [𝑞 − (𝑚+ 1)2𝐾𝑠]𝑢(0)

′ = 0}
 
 

 
 

→

{
 

 
𝑢1(ℎ1) = 0

𝑢1
′ (ℎ1) = 0

𝑀𝑛(0) = 0

𝑉𝑛(0) = 0 }
 

 
 

( 1593 ) 

Replacing: 

{

𝑢𝑛(0)

𝜃𝑛(0)

0
0

} = [

𝑡1,1 𝑡1,2 𝑡1,3 𝑡1,4
𝑡2,1 𝑡2,2 𝑡2,3 𝑡2,4
𝑡3,1 𝑡3,2 𝑡3,3 𝑡3,4
𝑡4,1 𝑡4,2 𝑡4,3 𝑡4,4

] {

0
0

𝑀1(ℎ1)

𝑉1(ℎ1)

} 

( 1594 ) 

Solving for bending moment and shear force at the base of the model: 

{
0
0
} = [

𝑡3,3 𝑡3,4
𝑡4,3 𝑡4,4

] {
𝑀1(ℎ1)

𝑉1(ℎ1)
} 

( 1595 ) 

Which has a different solution than the trivial if the determinant is equal to zero (the coefficient 

matrix is singular). Solving the critical loads of the beam. 
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4.4 EQUIVALENT REPLACEMENT BEAM OF TALL BUILDING 

Figures 97 and 98 show how the building is modeled as a system of structural elements joined by 

inextensible fixed bars that represent the rigid diaphragm. Two options are presented for modeling 

the building: a sandwich equivalent replacement beam and a generalized sandwich equivalent 

replacement beam. 

 

Figure 97. Structural elements and the equivalent sandwich beam replacement beam. 

 

Figure 98. Structural elements and the generalized sandwich girder equivalent replacement 

beam. 
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As defined in previous chapters, a structural system can be outlined by an appropriate replacement 

beam. However, it is more complex to map the entire tall building using a single suitable 

replacement beam connecting all the lateral load-resisting structural systems. Six strategies are 

presented to solve this problem: 

4.4.1.1 Strategy 1 

In this strategy, each structural system is considered as a “Sandwich Beam” replacement beam and 

the equivalent stiffness properties of the overall replacement beam of the building are obtained by 

directly adding the stiffness properties of each structural system. The following relationships are 

suggested: 

𝐾𝑏1 = ∑𝐾𝑏1𝑘

𝑛

𝑘=1

, 𝐾𝑏2 = ∑𝐾𝑏2𝑘

𝑛

𝑘=1

, 𝐾𝑠1 = ∑𝐾𝑠1𝑘

𝑛

𝑘=1

 

( 1596 ) 

4.4.1.2 Strategy 2 

In this strategy, each structural system is considered as a “Generalized Sandwich Beam” type 

replacement beam and the equivalent stiffness properties of the overall replacement beam of the 

building are obtained by directly adding the stiffness properties of each structural system. The 

following relationships are suggested: 

𝐾𝑏1 = ∑𝐾𝑏1𝑘

𝑛

𝑘=1

, 𝐾𝑏2 = ∑𝐾𝑏2𝑘

𝑛

𝑘=1

, 𝐾𝑠1 = ∑𝐾𝑠1𝑘

𝑛

𝑘=1

, 𝐾𝑠1 = ∑𝐾𝑠2𝑘

𝑛

𝑘=1

 

( 1597 ) 

4.4.1.3 Strategy 3 

Potzta (2002) considered each structural system as a “sandwich beam” type replacement beam and 

proposed the global replacement beam of the building based on an energy formulation. The 

proposed replacement beam considers n resistant structural elements, where the kth element has 

stiffnesses 𝐾𝑏1𝑘 , 𝐾𝑠1𝑘  and 𝐾𝑏2𝑘  and the stiffnesses of the sandwich beam that replaces the building 

structure are indicated by 𝐾𝑏1, 𝐾𝑠1 and 𝐾𝑏2. 
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Following Potzta (2002), the equivalent stiffnesses of the replacement beam are derived from the 

strain energy balance of the equivalent sandwich beam: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+ 𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
+𝐾𝑏2𝑢(𝑥)

′′ 2
}

𝐻

0

𝑑𝑥 
( 1598 ) 

From the energetic derivation of the equations of motion, the following property is derived: 

𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)
′ ] − 𝐾𝑏1𝜃(𝑥)

′′ = 0 ( 1599 ) 

From the sum of the strain energies of each structural system: 

1

2
∫ {𝐾𝑏1𝜃(𝑥)

′ 2
+𝐾𝑠1[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
+ 𝐾𝑏2𝑢(𝑥)

′′ 2
}

𝐻

0

𝑑𝑥

=
1

2
∫∑[𝐾𝑏1𝑘𝜃(𝑥)

′ 2
+ 𝐾𝑠1𝑘[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
+𝐾𝑏2𝑘𝑢(𝑥)

′′ 2
]

𝑛

𝑘=1

𝑑𝑥 

( 1600 ) 

Applying a sinusoidal displacement: 

𝑢(𝑥) = 𝑢0 sin(
𝜋

𝐻
𝑥)

𝜃(𝑥) = 𝜃0 cos (
𝜋

𝐻
𝑥)

 

( 1601 ) 

From the property derived from the energetic derivation: 

𝜃0 =
(
𝜋
𝐻
)

1 + (
𝜋
𝐻
)
2𝐾𝑏1
𝐾𝑠1

𝑢0 

( 1602 ) 

Replacing and integrating in the equivalence of strain energies, we obtain: 

4

𝑢0
2 (
𝜋
𝐻
)
4𝑉 = 𝐾𝑏2 +

𝐾𝑏1

1 + (
𝜋
𝐻
)
2𝐾𝑏1
𝐾𝑠1

= ∑[𝐾𝑏2𝑘 +
𝐾𝑏1𝑘

1 + (
𝜋
𝐻
)
2𝐾𝑏1𝑘
𝐾𝑠1𝑘

]

𝑛

𝑘=1

 

( 1603 ) 

Applying Taylor series with respect to (
1

𝐻
)
2

 approximately at (
1

𝐻0
)
2

: 
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𝐾𝑏2 +∑
𝐾𝑏1 (−𝜋

2𝐾𝑏1
𝐾𝑠1

)
𝑖

[1 + (
𝜋
𝐻0
)
2𝐾𝑏1
𝐾𝑠1

]
𝑖+1

(
1

𝑙2
−
1

𝑙0
2)

𝑖∞

𝑖=0

=∑

{
 

 

𝐾𝑏2𝑘 +∑
𝐾𝑏1𝑘 (−𝜋

2𝐾𝑏1𝑘
𝐾𝑠1𝑘

)
𝑖

[1 + (
𝜋
𝐻0
)
2𝐾𝑏1𝑘
𝐾𝑠1𝑘

]
𝑖+1

(
1

𝑙2
−
1

𝑙0
2)

𝑖∞

𝑖=0
}
 

 𝑛

𝑘=1

 

( 1604 ) 

Considering the first three terms of the series; is obtained: 

𝐾𝑏2 +
𝐾𝑏1

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

= ∑

[
 
 
 
𝐾𝑏2𝑘 +

𝐾𝑏1𝑘

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘 ]

 
 
 𝑛

𝑘=1

𝐾𝑏1

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

]

2 (𝜋
2
𝐾𝑏1
𝐾𝑠1

) = ∑

{
 
 

 
 

𝐾𝑏1𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

]

2 (𝜋
2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

)

}
 
 

 
 𝑛

𝑘=1

𝐾𝑏1

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

]

3 (𝜋
2
𝐾𝑏1
𝐾𝑠1

)
2

= ∑

{
 
 

 
 

𝐾𝑏1𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

]

3 (𝜋
2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

)
2

}
 
 

 
 𝑛

𝑘=1

 

( 1605 ) 

Simultaneously solving the equations, we obtain: 

𝐾𝑏1 =
1

𝐶
𝐵2
−
1
𝑙0
2
𝐶2

𝐵3

, 𝐾𝑏2 = 𝐴 −
𝐵2

𝐶
,𝐾𝑠1 = 𝜋

2
𝐵3

𝐶2
 

( 1606 ) 

Where: 

𝐴 = ∑

[
 
 
 𝐾𝑏1𝑘

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘 ]

 
 
 𝑛

𝑘=1

𝐵 = ∑

{
 
 

 
 

𝐾𝑏0𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

]

2 . 𝜋
2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

}
 
 

 
 𝑛

𝑘=1

𝐶 = ∑

{
 
 

 
 

𝐾𝑏0𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

]

3 . (𝜋
2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

)
2

}
 
 

 
 𝑛

𝑘=1

 

( 1607 ) 
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4.4.1.4 Strategy 4 

Considering each structural element as a "generalized sandwich beam" type replacement beam, 

the global replacement beam of the building is proposed based on an energy formulation. The 

proposed replacement beam considers n resistant structural elements, where the kth element has 

stiffnesses 𝐾𝑏1𝑘 , 𝐾𝑠1𝑘 , 𝐾𝑏2𝑘  and 𝐾𝑠2𝑘  and the stiffnesses of the sandwich beam that replaces the 

building structure are indicated by 𝐾𝑏1, 𝐾𝑠1, 𝐾𝑏2 and 𝐾𝑠2. 

The equivalent stiffnesses of the replacement beam are derived from the strain energy balance of 

the equivalent generalized sandwich beam: 

𝑉 =
1

2
∫ {𝐾𝑏1𝜓

′2 + 𝐾𝑠1[𝑢(𝑥)
′ − 𝜓(𝑥)]

2
+𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥 
( 1608 ) 

From the energetic derivation of the equations of motion, the following property is derived: 

{
𝐾𝑏1𝜓(𝑥)

′′ +𝐾𝑠1[𝑢(𝑥)
′ −𝜓(𝑥)] = 0

𝐾𝑏2𝜃(𝑥)
′′ +𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)] = 0
} 

( 1609 ) 

From the sum of the strain energies of each structural system: 

1

2
∫ {𝐾𝑏1𝜓

′2 +𝐾𝑠1[𝑢(𝑥)
′ −𝜓(𝑥)]

2
+ 𝐾𝑏2𝜃(𝑥)

′ 2
+ 𝐾𝑠2[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝐻

0

𝑑𝑥

=
1

2
∫∑{𝐾𝑏1𝑘𝜓

′2 + 𝐾𝑠1𝑘[𝑢(𝑥)
′ −𝜓(𝑥)]

2
+ 𝐾𝑏2𝑘𝜃(𝑥)

′ 2
+𝐾𝑠2𝑘[𝑢(𝑥)

′ − 𝜃(𝑥)]
2
}

𝑛

𝑘=1

𝑑𝑥 

( 1610 ) 

Applying a sinusoidal displacement: 

{
 
 

 
 𝑢(𝑥) = 𝑢0 sin(

𝜋

𝐻
𝑥)

𝜑(𝑥) = 𝜑0 cos (
𝜋

𝐻
𝑥)

𝜃(𝑥) = 𝜃0 cos (
𝜋

𝐻
𝑥)}
 
 

 
 

 

( 1611 ) 

From the property derived from the energetic derivation: 
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{
 
 
 

 
 
 
𝜑0 =

(
𝜋
𝐻
)

1 + (
𝜋
𝐻
)
2𝐾𝑏1
𝐾𝑠1

𝑢0

𝜃0 =
(
𝜋
𝐻
)

1 + (
𝜋
𝐻
)
2𝐾𝑏2
𝐾𝑠2

𝑢0

}
 
 
 

 
 
 

 

( 1612 ) 

Replacing and integrating in the equivalence of strain energies, we obtain: 

4

𝑢0
2 (
𝜋
𝐻
)
4 𝑉 =

𝐾𝑏1

1 + (
𝜋
𝐻
)
2𝐾𝑏1
𝐾𝑠1

+
𝐾𝑏2

1 + (
𝜋
𝐻
)
2𝐾𝑏2
𝐾𝑠2

= ∑[
𝐾𝑏1𝑘

1 + (
𝜋
𝐻
)
2𝐾𝑏1𝑘
𝐾𝑠1𝑘

+
𝐾𝑏2𝑘

1 + (
𝜋
𝐻
)
2𝐾𝑏2𝑘
𝐾𝑠2𝑘

]

𝑛

𝑘=1

 

( 1613 ) 

Applying Taylor series with respect to (
1

𝐻
)
2

 approximately at (
1

𝐻0
)
2

: 

∑
𝐾𝑏1 (−𝜋

2 𝐾𝑏1
𝐾𝑠1

)
𝑖

[1 + (
𝜋
𝐻0
)
2𝐾𝑏1
𝐾𝑠1

]
𝑖+1 (

1

𝑙2
−
1

𝑙0
2)

𝑖∞

𝑖=0

+∑
𝐾𝑏2 (−𝜋

2𝐾𝑏2
𝐾𝑠2

)
𝑖

[1 + (
𝜋
𝐻0
)
2𝐾𝑏2
𝐾𝑠2

]
𝑖+1 (

1

𝑙2
−
1

𝑙0
2)

𝑖∞

𝑖=0

= ∑

{
 

 

∑
𝐾𝑏1𝑘 (−𝜋

2 𝐾𝑏1𝑘
𝐾𝑠1𝑘

)
𝑖

[1 + (
𝜋
𝐻0
)
2𝐾𝑏1𝑘
𝐾𝑠1𝑘

]
𝑖+1 (

1

𝑙2
−
1

𝑙0
2)

𝑖∞

𝑖=0

+∑
𝐾𝑏2𝑘 (−𝜋

2𝐾𝑏2𝑘
𝐾𝑠2𝑘

)
𝑖

[1 + (
𝜋
𝐻0
)
2𝐾𝑏2𝑘
𝐾𝑠2𝑘

]
𝑖+1 (

1

𝑙2
−
1

𝑙0
2)

𝑖∞

𝑖=0
}
 

 𝑛

𝑘=1

 

 ( 1614 ) 

Considering the first four terms of the series; is obtained: 

{
 

 𝐾𝑏1

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

+
𝐾𝑏2

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2
𝐾𝑠2

= ∑

[
 
 
 𝐾𝑏1𝑘

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

+
𝐾𝑏2𝑘

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2𝑘
𝐾𝑠2𝑘 ]

 
 
 𝑛

𝑘=1
}
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{
 
 

 
 

𝐾𝑏1

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

]

2 (𝜋
2
𝐾𝑏1
𝐾𝑠1

) +
𝐾𝑏2

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2
𝐾𝑠2

]

2 (𝜋
2
𝐾𝑏2
𝐾𝑠2

)

= ∑

{
 
 

 
 

𝐾𝑏1𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

]

2 (𝜋
2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

) +
𝐾𝑏2𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2𝑘
𝐾𝑠2𝑘

]

2 (𝜋
2
𝐾𝑏2𝑘
𝐾𝑠2𝑘

)

}
 
 

 
 𝑛

𝑘=1

}
 
 

 
 

 

{
 
 

 
 

𝐾𝑏1

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

]

3 (𝜋
2
𝐾𝑏1
𝐾𝑠1

)
2

+
𝐾𝑏2

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2
𝐾𝑠2

]

3 (𝜋
2
𝐾𝑏2
𝐾𝑠2

)
2

= ∑

{
 
 

 
 

𝐾𝑏1𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

]

3 (𝜋
2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

)
2

+
𝐾𝑏2𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2𝑘
𝐾𝑠2𝑘

]

3 (𝜋
2
𝐾𝑏2𝑘
𝐾𝑠2𝑘

)
2

}
 
 

 
 𝑛

𝑘=1

}
 
 

 
 

 

{
 
 

 
 

𝐾𝑏1

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

]

4 (𝜋
2
𝐾𝑏1
𝐾𝑠1

)
3

+
𝐾𝑏2

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2
𝐾𝑠2

]

4 (𝜋
2
𝐾𝑏2
𝐾𝑠2

)
3

= ∑

{
 
 

 
 

𝐾𝑏1𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

]

4 (𝜋
2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

)
3

+
𝐾𝑏2𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2𝑘
𝐾𝑠2𝑘

]

4 (𝜋
2
𝐾𝑏2𝑘
𝐾𝑠2𝑘

)
3

}
 
 

 
 𝑛

𝑘=1

}
 
 

 
 

 

 ( 1615 ) 

i.e., 
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝐾𝑏1

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

+
𝐾𝑏2

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2
𝐾𝑠2

= 𝐴

𝐾𝑏1

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

]

2 (𝜋
2
𝐾𝑏1
𝐾𝑠1

) +
𝐾𝑏2

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2
𝐾𝑠2

]

2 (𝜋
2
𝐾𝑏2
𝐾𝑠2

) = 𝐵

𝐾𝑏1

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

]

3 (𝜋
2
𝐾𝑏1
𝐾𝑠1

)
2

+
𝐾𝑏2

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2
𝐾𝑠2

]

3 (𝜋
2
𝐾𝑏2
𝐾𝑠2

)
2

= 𝐶

𝐾𝑏1

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1
𝐾𝑠1

]

4 (𝜋
2
𝐾𝑏1
𝐾𝑠1

)
3

+
𝐾𝑏2

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2
𝐾𝑠2

]

4 (𝜋
2
𝐾𝑏2
𝐾𝑠2

)
3

= 𝐷

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

( 1616 ) 

Where: 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝐴 =∑[
𝐾𝑏1𝑘

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

+
𝐾𝑏2𝑘

1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2𝑘
𝐾𝑠2𝑘

]

𝑛

𝑘=1

𝐵 =∑

{
 
 

 
 

𝐾𝑏1𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

]
2 . 𝜋

2
𝐾𝑏1𝑘

𝐾𝑠1𝑘
+

𝐾𝑏2𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2𝑘
𝐾𝑠2𝑘

]
2 . 𝜋

2
𝐾𝑏2𝑘

𝐾𝑠2𝑘

}
 
 

 
 𝑛

𝑘=1

𝐶 =∑

{
 
 

 
 

𝐾𝑏1𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

]
3 . (𝜋

2
𝐾𝑏1𝑘

𝐾𝑠1𝑘
)
2

+
𝐾𝑏2𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2𝑘
𝐾𝑠2𝑘

]
2 . 𝜋

2
𝐾𝑏2𝑘

𝐾𝑠2𝑘

}
 
 

 
 𝑛

𝑘=1

𝐷 =∑

{
 
 

 
 

𝐾𝑏1𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏1𝑘
𝐾𝑠1𝑘

]
4 . (𝜋

2
𝐾𝑏1𝑘

𝐾𝑠1𝑘
)
3

+
𝐾𝑏2𝑘

[1 + (
1
𝐻0
)
2

𝜋2
𝐾𝑏2𝑘
𝐾𝑠2𝑘

]
4 . (𝜋

2
𝐾𝑏2𝑘

𝐾𝑠2𝑘
)
3

}
 
 

 
 𝑛

𝑘=1

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

( 1617 ) 

The equivalent characteristic stiffnesses can be obtained after numerically solving the system of 

equations. 

4.4.1.5 Strategy 5 

Following the methodology proposed by Zalka (2020), each structural system is modeled 

differently as proposed in this research project. 
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The external load is distributed according to the stiffness of each structural element: 

𝑞𝑖(𝑧) = 𝑝𝑖 . 𝑓(𝑧) ( 1618 ) 

Where 𝑓(𝑧) is the total external load acting on the building and 𝑞𝑖 is the external load allocator to 

the individual structural elements. Since the field is linear elastic, this load distributor can be used 

in both forces and moments. The value of the load sharer is defined as: 

𝑝𝑖 =
𝑆𝑖

∑ 𝑆𝑖
𝑛
𝑖=1

 
( 1619 ) 

Where 𝑆𝑖 is the lateral stiffness of the i-th structural element. The lateral stiffness of a structural 

element is defined as: 

𝑆𝑖 =
1

𝑦𝑖(𝐻)
 

( 1620 ) 

Where 𝑦𝑖(𝐻) is the maximum upper lateral displacement of the i-th structural element. 

Whichever structural element is chosen to evaluate the lateral displacement of the building, the 

result will be the same. Therefore, it seems practical to choose a shear wall as the ith structural 

element, since its equation is simpler. It is important to clarify that, however, to calculate the 

external load spreader in the structural element, it is necessary to determine the maximum 

deflection of each structural element of the bracing system, and, therefore, it is necessary to solve 

the lateral displacement of all the structural elements present in the building. 

The method is simple and easy to apply. The drawback is that it is not possible to take into account 

the direct interaction between the structural elements and, therefore, this complex interaction is 

ignored. 

4.4.1.6 Strategy 6 

The proposed replacement beam considers n load-resistant lateral subsystems, where the kth 

“Sandwich Beam” type elements have stiffnesses 𝐾𝑏1𝑘 , 𝐾𝑏2𝑘  and 𝐾𝑠1𝑘; and the j-th “Bending 

Beam (EBB)” type element has only local bending stiffness 𝐾𝑏1,𝑗. 
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The equivalent stiffnesses of the replacement beam are derived from the strain energy balance of 

the SWB and EBB beam, respectively: 

𝑉 =
1

2
∫∑{𝐾𝑏1𝑘𝜃(𝑥)

′ 2
+𝐾𝑠1𝑘[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
+ 𝐾𝑏2𝑘𝑢(𝑥)

′′ 2
}

𝑛1

𝑘=1

𝑑𝑥 +
1

2
∫ ∑[𝐾𝑏2𝑗𝑢(𝑥)

′′ 2
]

𝑛2

𝑗=1

𝐻

0

𝑑𝑥 

( 1621 ) 

Sorting properly: 

𝑉 =
1

2
∫∑ {𝐾𝑏1𝑘𝜃(𝑥)

′ 2
+ 𝐾𝑠1𝑘[𝜃(𝑥) − 𝑢(𝑥)

′ ]
2
}

𝑛1

𝑘=1

𝑑𝑥 +
1

2
∫ (∑𝐾𝑏2𝑘

𝑛1

𝑘=1

+∑𝐾𝑏2

𝑛2

𝑗=1

)𝑢(𝑥)
′′ 2

𝑑𝑥
𝐻

0

 

( 1622 ) 

In terms of energy, including the local bending strain energy of the EBB beam in the sum of the 

local bending strain energies of the SWB beams only increases the local bending stiffness of the 

members. Another important aspect is that by including the local bending stiffness of the EBB 

beam in the SWB beam, it is ensured that the interaction between both beams (direct interaction) 

is automatically taken into account. 

Following this concept, Zalka (2020) distributed the total local bending stiffness of the shear walls 

and/or cores to the coupled frames and/or shear walls based on their relative stiffness. 

𝑆𝑖 =
1

𝑦𝑖(𝐻)
 

( 1623 ) 

Where 𝑦𝑖(𝐻) is the maximum upper lateral displacement of the i-th frame and/or coupled shear 

wall. The value of the moment dealer is defined as: 

𝑝𝑖 =
𝑆𝑖

∑ 𝑆𝑖
𝑛
𝑖=1

 
( 1624 ) 

The resulting system consists of a series of frames and/or shear walls coupled with a new local 

bending stiffness (product of the distribution of the local bending stiffness of the shear walls and/or 

cores); then the procedure described in strategy 5 is followed. 



 

 

439 

4.5 STATIC STRUCTURAL ANALYSIS OF THE TALL BUILDING 

4.5.1 Lateral Displacement of the Building 

When the building is doubly symmetrical in plan, the lateral displacements are calculated directly 

from the analysis of the replacement beam with its equivalent characteristic stiffnesses calculated 

according to the appropriate strategy. 

4.5.2 Torsional Displacement of the Building 

There is an analogy known as the "Vlasov analogy" for thin-walled structures subjected to bending 

and torsion. According to this analogy, deflections, bending moments, and shear forces correspond 

to rotation, strain moments, and torsional moments, respectively. 

In order to calculate the rotation of the building we will only refer to the analogy regarding 

deflections and rotations. We establish the stiffnesses corresponding to the deflections and 

rotations: 

{
 
 

 
 𝐾𝑏1

∗ = 𝑡2 . 𝐾𝑏1
𝐾𝑏2
∗ = 𝑡2 . 𝐾𝑏2
𝐾𝑠1
∗ = 𝑡2 . 𝐾𝑠1

𝐾𝑠2
∗ = 𝑡2 . 𝐾𝑠2}

 
 

 
 

 

( 1625 ) 

Where 𝑡 is the distance from the shear center of the building to the shear center of each bracing 

element. 

It is concluded that the pure deflection analysis of a tall building can be used to perform the 

torsional analysis if the stiffnesses of the bracing elements meet their equivalent torsional stiffness. 

A drawback arises, there is no exact methodology for calculating the shear center of a building 

consisting of different structural elements. For the purposes of this research project, the Zalka 

(2020) approach will be followed: 

{�̅�0 =
∑ 𝑆𝑦,𝑖 . �̅�𝑖
𝑛
𝑖=1

∑ 𝑆𝑦,𝑖
𝑛
𝑖=1

, �̅�0 =
∑ 𝑆𝑥,𝑖 . �̅�𝑖
𝑛
𝑖=1

∑ 𝑆𝑥,𝑖
𝑛
𝑖=1

} 
( 1626 ) 
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Where �̅�𝑖, �̅�𝑖 are the perpendicular distances of the i-th shear centers to the origin of the coordinate 

system, n is the number of structural elements and 𝑆𝑖 is the stiffness of the i-th bracing element 

calculated as the inverse of the maximum deflection due to a unit load. 

 

Figure 99. Structural elements with their respective torsion arm (Zalka, 2020) 

The total torsional moment of the building is: 

𝑚 = 𝑤.𝑋𝑐 = 𝑤 (
𝐿

2
− �̅�0) 

( 1627 ) 

The shared torsional moment in the i-th unit of bracing is: 

𝑚 = 𝑞𝑤,𝑖 . 𝑚 ( 1628 ) 

Where the torsional parameter 𝑞𝑤,𝑖 fulfills the same sharing function as the translational parameter 

𝑞𝑖 used in the previous section. 

𝑞𝑤,𝑖 =
𝑆𝑤,𝑖

∑ 𝑆𝑤,𝑖
𝑓+𝑚
𝑖=1

 

( 1629 ) 
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The governing torsional stiffness of the i-th reinforcement unit is defined as: 

𝑆𝑤,𝑖 = 𝑆𝑖 . 𝑡𝑖
2 =

𝑡𝑖
2

𝑦𝑚𝑎𝑥
=
𝑡𝑖
2

𝑦𝐻
 

( 1630 ) 

Whichever structural element is chosen to evaluate the rotation of the building, the result will be 

the same. Therefore, it seems practical to choose a shear wall, since its equation is simpler. It is 

important to clarify that, however, to calculate the external load spreader in the structural element, 

it is necessary to determine the maximum deflection of each structural element of the bracing 

system, and, therefore, it is necessary to solve the lateral displacement of all the structural elements 

present in the building. 

4.5.3 Coupled Lateral-Torsional Displacement of the Building 

A well-known concept among structural engineers is that “there is no building without torsion”. 

Although it is true that this concept is relative because mathematically it can be achieved that the 

building is doubly symmetrical, the term "accidental eccentricity" that is provided in most of the 

seismic codes of the world, makes this definition absolutely true. 

When a tall building is subjected to a horizontal lateral load, the building responds in a complex 

way by developing two phenomena: pure translational displacement and rotation around the center 

of stiffness of the building. 

The fact that we are under a linear elastic behavior of the building means that, by means of the 

superposition principle, both phenomena can be separated, which allows the building to be 

analyzed under a purely lateral displacement and under a pure rotation around the center of rigidity.  
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Figure 100. Typical bracing system arrangements (Zalka, 2020). 

Where point "O" locates the center of mass and point "C" locates the center of stiffness. 

 

Figure 101. Total displacement of an asymmetrical building. a) 𝑣 =maximum displacement, b) 

𝑣0=displacement due to an applied force at its center of rigidity, and c) 𝑣𝜑=displacement due to the 

torsional moment at its center of rigidity (Zalka, 2020) 

The behavior of the building is then analyzed by transferring the horizontal lateral load located in 

the center of mass towards the center of rigidity, producing a torsional moment due to the transfer 

of the horizontal lateral force (𝑀 = 𝐹.𝑋𝑐). The horizontal load develops only lateral 

displacements while the torsional moment develops only rotation in the building (around the center 

of stiffness). 
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The maximum displacement of the building is developed at the farthest point from the center of 

rigidity and using the angle of rotation, we have: 

𝑣 = 𝑣0 + 𝑣𝜑  ( 1631 ) 

The maximum displacement is: 

𝑣𝑚𝑎𝑥 = 𝑣(𝐻) = 𝑣0(𝐻) + 𝑥𝑚𝑎𝑥 . 𝜑(𝐻) ( 1632 ) 

 

 

Figure 102. Lateral and torsional displacement of a building (Schmidts, 1998). 
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4.6 DYNAMIC STRUCTURAL ANALYSIS OF THE TALL BUILDING 

4.6.1 Lateral Period of the Building 

When the building is doubly symmetric in plan, the lateral periods are calculated directly from the 

analysis of the replacement beam with its equivalent characteristic stiffnesses calculated according 

to the appropriate strategy. 

4.6.2 Torsional Period of the Building 

The Vlasov analogy is used for the calculation of the characteristic stiffnesses and the approach of 

Zalka (2020) is adopted to calculate the shear center: 

{�̅�0 =
∑ 𝑓𝑦,𝑖

2 . �̅�𝑖
𝑛
𝑖=1

∑ 𝑓𝑦,𝑖
2𝑛

𝑖=1

, �̅�0 =
∑ 𝑓𝑥,𝑖

2 . �̅�𝑖
𝑛
𝑖=1

∑ 𝑓𝑥,𝑖
2𝑛

𝑖=1

} 
( 1633 ) 

Where 𝑓𝑖 is the frequency of the i-th bracing element. It should be noted that the distributed mass 

correction factor must be applied to the characteristic stiffnesses and the distributed mass 

corresponds to the torsional mass and is equal to the lateral mass multiplied by the radius of 

gyration squared. 

4.6.3 Lateral-Torsional Coupled Period of the Building 

Once the lateral and torsional decoupled frequencies are known, to calculate the coupled 

frequencies, Zalka (2020) proposes the following equation: 

(𝑓2)3 + 𝑎2(𝑓
2)2 + 𝑎1(𝑓

2) + 𝑎0 = 0 ( 1634 ) 

Where: 

{
 
 

 
 𝑎0 =

𝑓𝑥
2𝑓𝑦

2𝑓𝜑
2

1 − 𝑡𝑥2 − 𝑡𝑦2
, 𝑎1 =

𝑓𝑥
2𝑓𝑦

2 + 𝑓𝜑
2𝑓𝑥

2 + 𝑓𝜑
2𝑓𝑦

2

1 − 𝑡𝑥2 − 𝑡𝑦2

𝑎2 =
𝑓𝑥
2𝑡𝑥
2 + 𝑓𝑦

2𝑡𝑦
2 − 𝑓𝑥

2 − 𝑓𝑦
2 − 𝑓𝜑

2

1 − 𝑡𝑥2 − 𝑦𝑦2
, 𝑡𝑥 =

𝑥𝑐
𝑖𝑝
, 𝑡𝑦 =

𝑦𝑐
𝑖𝑝}
 
 

 
 

 

( 1635 ) 

The smallest root of the cube equation yields the torsional lateral coupled frequency of the 

building. 
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4.7 STABILITY ANALYSIS OF THE TALL BUILDING 

4.7.1 Lateral Critical Load of the Building 

When the building is doubly symmetrical in plan, the critical lateral loads are calculated directly 

from the analysis of the replacement beam with its equivalent characteristic stiffnesses calculated 

according to the appropriate strategy. 

4.7.2 Critical Torsional Load of the Building 

The Vlasov analogy is used for the calculation of the characteristic stiffnesses and the approach of 

Zalka (2020) is adopted to calculate the shear center: 

{�̅�0 =
∑ 𝑁𝑦,𝑖 . �̅�𝑖
𝑛
𝑖=1

∑ 𝑁𝑦,𝑖
𝑛
𝑖=1

, �̅�0 =
∑ 𝑁𝑥,𝑖 . �̅�𝑖
𝑛
𝑖=1

∑ 𝑁𝑥,𝑖
𝑛
𝑖=1

} 
( 1636 ) 

Where 𝑁𝑖 is the frequency of the i-th bracing element. It should be noted that the distributed mass 

correction factor must be applied to the characteristic stiffnesses and the distributed mass 

corresponds to the torsional mass and is equal to the lateral mass multiplied by the radius of 

gyration squared. 

4.7.3 Lateral-Torsional Coupled Critical Load of the Building 

Once the critical lateral and torsional uncoupled loads are known, to calculate the critical coupled 

loads, Zalka (2020) proposes the following equation: 

(𝑁)3 + 𝑏2(𝑁)
2 + 𝑏1(𝑁) + 𝑏0 = 0 ( 1637 ) 

Where: 

{
 
 

 
 𝑏0 =

𝑁𝑐𝑟,𝑥𝑁𝑐𝑟,𝑦𝑁𝑐𝑟,𝜑

1 − 𝑡𝑥2 − 𝑡𝑦2
, 𝑏1 =

𝑁𝑐𝑟,𝑥𝑁𝑐𝑟,𝑦 +𝑁𝑐𝑟,𝜑𝑁𝑐𝑟,𝑥 +𝑁𝑐𝑟,𝜑𝑁𝑐𝑟,𝑦

1 − 𝑡𝑥2 − 𝑡𝑦2

𝑏2 =
𝑁𝑐𝑟,𝑥𝑡𝑥

2 +𝑁𝑐𝑟,𝑦𝑡𝑦
2 − 𝑁𝑐𝑟,𝑥 − 𝑁𝑐𝑟,𝑦 −𝑁𝑐𝑟,𝜑

1 − 𝑡𝑥2 − 𝑦𝑦2
, 𝑡𝑥 =

𝑥𝑐
𝑖𝑝
, 𝑡𝑦 =

𝑦𝑐
𝑖𝑝}
 
 

 
 

 

( 1638 ) 

The smallest root of the cube equation yields the critical torsional lateral coupled load of the 

building. 
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4.8 NUMERICAL APPLICATIONS 

In order to verify the efficiency of the replacement beam models developed in this research project, 

in this section the precision and reliability analysis of the proposed methodology will be developed. 

For the comparison, the finite element programs SAP 2000 and ETABS 2016 will be used, which 

will be considered exact. A positive difference means an overestimation and a negative answer 

means an underestimation of the approximate answer compared to the answer considered exact. 

4.8.1 Shear Wall 

A total of 90 shear walls will be analyzed, consisting of ten W1-W10 walls whose height will be 

varied from five to eighty stories (5, 10, 15, 20, 25, 30, 40, 6, 80 stories). Modulus of elasticity is 

𝐸 = 25𝑥106 kN/m2, Poisson's ratio is 𝜈 =0.20, shear modulus is 𝐺 = 14.42𝑥106  kN/m2, height 

of floor is ℎ = 3.00 m, the base is 𝑏 = 0.25 m and the uniformly distributed wind load is 𝑤 =

5.00  kN/m. 

 

Figure 103. Shear walls W1-W10 for precision analysis. 

An accuracy analysis of the Timoshenko beam as a replacement beam for shear walls was 

performed. The summary of the analyzes is given in Table 10 where the term "difference range" 

refers to the difference between the approximate solution and the FEM solution. 

Tabla.10 Accuracy of Timoshenko beam (TB) for maximum deflection analysis of W1-W10 shear walls. 

Shear wall Difference Range (%) 
Average absolute difference 

(%) 
Maximum difference (%) 

continuous solution -0.035% - 0.030% 0.005% 0.035% 
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Figure 104 shows how the difference range varies as the height of the structural element increases. 

 

Figure 104. Accuracy of the Timoshenko beam (TB) as a replacement beam for shear walls. 

An analysis of table 10 and figure 105 show the excellent accuracy of the Timoshenko beam as a 

replacement beam for shear walls. The results show a range of difference between -0.035% and 

0.030%, an average absolute difference of 0.005% and a maximum difference of 0.035%. 

In order to analyze the influence of the shear effect, shear walls were also idealized as bending 

beams (EBB). The summary can be seen in table 11. 

Tabla.11 Bending Beam Accuracy (EBB) for Maximum Deflection Analysis of W1-W10 Shear Walls. 

shear walls Difference Range (%) 
Average absolute difference 

(%) 
Maximum difference 

(%) 

continuous solution -29.9% - 0.0% 29.9% 29.9% 
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Figure 105. Precision Bending Beam (EBB) as replacement beam for shear walls. 

As expected, large errors are expected for less slender walls because the shear effect is important 

and cannot be neglected. In all the cases analyzed, it is observed that the bending beam model 

(EBB) underestimates the results. The results show a difference range between -29.9% and 0%, an 

average absolute difference of 29.9% and a maximum difference of 29.9%. 

It is concluded that using the replacement beam type "Tymoshenko Beam (TB)" to analyze shear 

walls is appropriate and shows excellent precision, being considered exact. 

4.8.2 Frame 

A total of 540 frames will be analyzed. The analysis consists of 60 frames F1-F60, whose height 

will vary from five to eighty stories (5, 10, 15, 20, 25, 30, 40, 6, 80 stories) and the number of bays 

in one and four. Modulus of elasticity is 𝐸 = 25𝑥106 kN/m2, Poisson's ratio is 𝜈 =0.20, shear 

modulus is 𝐺 = 14.42𝑥106 kN/m2, height of floor is ℎ = 3.00  m, the centerline length between 

columns is 𝐿 = 6.00 m and the uniformly distributed wind load is 𝑤 = 5.00 kN/m. Table 11 shows 

the sections of the beam and column structural elements. 
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Tabla.12 Column and beam section for frames F1-F60 

Frame 
Beam Column 

Frame 
Beam Column 

b (m) h (m) b (m) h (m) b (m) h (m) b (m) h (m) 

F1 0.4 0.4 0.4 0.4 F31 0.4 0.4 0.4 1.6 

F2 0.4 0.6 0.4 0.4 F32 0.4 0.6 0.4 1.6 

F3 0.4 0.8 0.4 0.4 F33 0.4 0.8 0.4 1.6 

F4 0.4 1.0 0.4 0.4 F34 0.4 1.0 0.4 1.6 

F5 0.4 1.2 0.4 0.4 F35 0.4 1.2 0.4 1.6 

F6 0.4 0.4 0.4 0.6 F36 0.4 0.4 0.4 1.8 

F7 0.4 0.6 0.4 0.6 F37 0.4 0.6 0.4 1.8 

F8 0.4 0.8 0.4 0.6 F38 0.4 0.8 0.4 1.8 

F9 0.4 1.0 0.4 0.6 F39 0.4 1.0 0.4 1.8 

F10 0.4 1.2 0.4 0.6 F40 0.4 1.2 0.4 1.8 

F11 0.4 0.4 0.4 0.8 F41 0.4 0.4 0.4 2.0 

F12 0.4 0.6 0.4 0.8 F42 0.4 0.6 0.4 2.0 

F13 0.4 0.8 0.4 0.8 F43 0.4 0.8 0.4 2.0 

F14 0.4 1.0 0.4 0.8 F44 0.4 1.0 0.4 2.0 

F15 0.4 1.2 0.4 0.8 F45 0.4 1.2 0.4 2.0 

F16 0.4 0.4 0.4 1.0 F46 0.4 0.4 0.4 0.4 

F17 0.4 0.6 0.4 1.0 F47 0.4 0.6 0.4 0.4 

F18 0.4 0.8 0.4 1.0 F48 0.4 0.8 0.4 0.4 

F19 0.4 1.0 0.4 1.0 F49 0.4 0.4 0.4 0.8 

F20 0.4 1.2 0.4 1.0 F50 0.4 0.6 0.4 0.8 

F21 0.4 0.4 0.4 1.2 F51 0.4 0.8 0.4 0.8 

F22 0.4 0.6 0.4 1.2 F52 0.4 0.4 0.4 1.2 

F23 0.4 0.8 0.4 1.2 F53 0.4 0.6 0.4 1.2 

F24 0.4 1.0 0.4 1.2 F54 0.4 0.8 0.4 1.2 

F25 0.4 1.2 0.4 1.2 F55 0.4 0.4 0.4 1.6 

F26 0.4 0.4 0.4 1.4 F56 0.4 0.6 0.4 1.6 

F27 0.4 0.6 0.4 1.4 F57 0.4 0.8 0.4 1.6 

F28 0.4 0.8 0.4 1.4 F58 0.4 0.4 0.4 2.0 

F29 0.4 1.0 0.4 1.4 F59 0.4 0.6 0.4 2.0 

F30 0.4 1.2 0.4 1.4 F60 0.4 0.8 0.4 2.0 
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Figure 106. Frames F1-F45 of a section with cross section (base/cant) in meters for precision analysis. 
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Figure 107. Frames F1-F45 with four sections with cross section (base/superelevation) in meters for precision 

analysis. 
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 Precision Analysis of the Sandwich Beam (SWB) as a Replacement Beam 

Tabla.13 Accuracy of the sandwich beam (SWB) for the analysis of maximum deflection of frames F1-F27 

of a span for N≥5 floors 

Frames N≥5 Difference Range (%) 
Average Absolute 

Difference (%) 

Maximum Difference 

(%) 

continuous solution -1.50% - 5.33% 1.37% 5.33% 

Tabla.14 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of frames F1-F27 of a 

span N≥10 stories 

Frames N≥10 Difference Range (%) 
Average Absolute 

Difference (%) 

Maximum Difference 

(%) 

continuous solution -0.49% - 1.79% 0.43% 1.79% 

Tabla.15 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of frames F1-F27 of a 

span N≥15 floors 

Frames N≥15 Difference Range (%) 
Average Absolute 

Difference (%) 
Maximum Difference 

(%) 

continuous solution -0.49% - 0.53% 0.17% 0.53% 

 

Figure 108. Precision sandwich beam (SWB) as a replacement beam for frames F1-F45 of a span. 
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Tabla.16 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of the four-span 

frames F1-F27 for N≥5 floors. 

Frames N≥5 Difference Range (%) 
Average Absolute 

Difference (%) 

Maximum Difference 

(%) 

continuous solution -5.61% - 2.95% 2.09% 5.61% 

Tabla.17 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of the four-span 

frames F1-F27 for N≥10 stories. 

Frames N≥10 Difference Range (%) 
Average Absolute 

Difference (%) 

Maximum Difference 

(%) 

continuous solution -5.61% - 0.44% 1.89% 5.61% 

Tabla.18 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of the four-span 

frames F1-F27 for N≥15 floors. 

Frames N≥15 Difference Range (%) 
Average Absolute 

Difference (%) 
Maximum Difference 

(%) 

continuous solution -5.61% - 0.14% 1.83% 5.61% 

 

Figure 109. Precision sandwich beam (SWB) as replacement beam for frames F1-F45 four spans. 

It is concluded that the use of the sandwich beam type replacement beam (SWB) to analyze the 

frames is appropriate and shows excellent precision within the engineering criteria; furthermore, 

it is observed that the error decreases drastically as the height of the building increases. 
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4.8.3 Coupled Shear Wall 

A total of 324 coupled shear walls will be analyzed. The analysis consists of 36 coupled shear 

walls CSW1-CSW36, whose height will vary from five to eighty stories (5, 10, 15, 20, 25, 30, 40, 

6, 80 stories) and the number of sections in one. Modulus of elasticity is 𝐸 = 25𝑥106  kN/m2, 

Poisson's ratio is 𝜈 =0.20, shear modulus is 𝐺 = 14.42𝑥106  kN/m2, height of floor is ℎ = 3.00 

m, the free length between shear walls is 𝐿 = 6.00 m and the uniformly distributed wind load is 

𝑤 = 5.00  kN/m. Table 18 shows the sections of the beam structural elements and shear walls.  

Tabla.19 Wall and beam section for coupled shear walls CSW1-CSW36. 

CSW 
Viga Muro 

CSW 
Viga Muro 

b (m) h (m) b (m) h (m) b (m) h (m) b (m) h (m) 

CSW1 0.4 0.4 0.4 3.0 CSW19 0.4 0.4 0.4 6.0 

CSW2 0.4 0.6 0.4 3.0 CSW20 0.4 0.6 0.4 6.0 

CSW3 0.4 0.8 0.4 3.0 CSW21 0.4 0.8 0.4 6.0 

CSW4 0.4 1.0 0.4 3.0 CSW22 0.4 1.0 0.4 6.0 

CSW5 0.4 1.2 0.4 3.0 CSW23 0.4 1.2 0.4 6.0 

CSW6 0.4 1.5 0.4 3.0 CSW24 0.4 1.5 0.4 .0 

CSW7 0.4 0.4 0.4 4.0 CSW25 0.4 0.4 0.4 7.0 

CSW8 0.4 0.6 0.4 4.0 CSW26 0.4 0.6 0.4 7.0 

CSW9 0.4 0.8 0.4 4.0 CSW27 0.4 0.8 0.4 7.0 

CSW10 0.4 1.0 0.4 4.0 CSW28 0.4 1.0 0.4 7.0 

CSW11 0.4 1.2 0.4 4.0 CSW29 0.4 1.2 0.4 7.0 

CSW12 0.4 1.5 0.4 4.0 CSW30 0.4 1.5 0.4 7.0 

CSW13 0.4 0.4 0.4 5.0 CSW31 0.4 0.4 0.4 8.0 

CSW14 0.4 0.6 0.4 5.0 CSW32 0.4 0.6 0.4 8.0 

CSW15 0.4 0.8 0.4 5.0 CSW33 0.4 0.8 0.4 8.0 

CSW16 0.4 1.0 0.4 5.0 CSW34 0.4 1.0 0.4 8.0 

CSW17 0.4 1.2 0.4 5.0 CSW35 0.4 1.2 0.4 8.0 

CSW18 0.4 1.5 0.4 5.0 CSW36 0.4 1.5 0.4 8.0 
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Figure 110. Coupled shear walls CSW 1-36 of a section with cross section (base/superelevation) in meters for 

precision analysis. 
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Precision Analysis of Sandwich Beam (SWB) as Replacement Beam 

 The local shear stiffness of shear walls is not taken into account. 

Tables 20 and 21 show the results of the structural analysis of coupled shear walls modeled as 

sandwich beams without taking into account the local shear stiffness of the shear walls. 

Tabla.20 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of the CSW1-CSW36 

coupled shear walls of a span N≥10 stories. 

CSW N≥10 Difference Range (%) 
Average Absolute 

Difference (%) 
Maximum Difference (%) 

continuous solution -23.39% - 1.21% 10.22% 23.39% 

Tabla.21 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of the CSW1-CSW36 

coupled shear walls of a span N≥15 stories. 

CSW N≥15 Difference Range (%) 
Average Absolute 

Difference (%) 
Maximum Difference (%) 

continuous solution -13.34% - 1.21% 5.83% 13.34% 

 

Figure 111. Precision Sandwich Beam (SWB) as Replacement Beam for Single Span CSW1-CSW36 Coupled 

Shear Walls. 

It is observed that not including the local shear stiffness of the shear walls in the first floors leads 

to errors that are not negligible. 
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 The local shear stiffness of the shear walls is taken into account. 

Tables 22 and 23 show the results of the structural analysis of the coupled shear walls modeled as 

sandwich beams taking into account the local shear stiffness of the shear walls. 

Tabla.22 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of the CSW1-CSW36 

coupled shear walls of a span N≥10 stories 

CSW N≥10 Difference Range (%) 
Average Absolute 

Difference (%) 
Maximum Difference (%) 

continuous solution -5.42% - 7.43% 2.19% 7.43% 

Tabla.23 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of the CSW1-CSW36 

coupled shear walls of a span N≥15 stories 

CSW N≥15 Difference Range (%) 
Average Absolute 

Difference (%) 
Maximum Difference (%) 

continuous solution -2.26% - 7.43% 1.56% 7.43% 

 

Figure 112. Precision Sandwich Beam (SWB) as Replacement Beam for Single Span CSW1-CSW36 Coupled 

Shear Walls. 

It is observed that including the local shear stiffness of the shear walls in the first floors drastically 

reduces the errors. 
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 The local shear stiffness of the shear walls is taken into account only on the first floors. 

Tables 24 and 25 show the results of the structural analysis of the coupled shear walls modeled as 

sandwich beams, taking into account the local shear stiffness of the shear walls on the first floors 

and neglecting the local shear stiffness of the walls on the lower floors. 

Tabla.24 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of the coupled shear 

walls CSW1-CSW36 of a section N≥10 stories. 

CSW N≥10 Difference Range (%) 
Average Absolute 

Difference (%) 
Maximum Difference (%) 

continuous solution -5.44% - 5.11% 1.13% 5.44% 

Tabla.25 Accuracy of the sandwich beam (SWB) for the maximum deflection analysis of the coupled shear 

walls CSW1-CSW36 of a section N≥15 floors. 

CSW N≥15 Difference Range (%) 
Average Absolute 

Difference (%) 
Maximum Difference (%) 

continuous solution -5.44% - 5.11% 0.56% 5.44% 

 

Figure 113. Precision Sandwich Beam (SWB) as Replacement Beam for Single Span CSW1-CSW36 Coupled 

Shear Walls 

The sandwich beam model that included the local shear of the walls in the first floors and ignored 

the local shear of the walls in the upper floors has shown excellent accuracy with a maximum error 

of 5% and therefore it is concluded that using sandwich beam (SWB) replacement beam for testing 

coupled shear walls is appropriate and shows excellent accuracy within engineering criteria. 

-40%
-35%
-30%
-25%
-20%
-15%
-10%

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

E
r
r
o
r
 (

%
)

Nº Floors

CSW1 CSW2 CSW3 CSW4 CSW5 CSW6

CSW7 CSW8 CSW9 CSW10 CSW11 CSW12

CSW13 CSW14 CSW15 CSW16 CSW17 CSW18

CSW19 CSW20 CSW21 CSW22 CSW23 CSW24



 

 

459 

4.8.4 Reinforced Concrete Frame 

A total of 18 frames will be analyzed. The analysis consists of two frames whose height will vary 

from five to eighty stories (5, 10, 15, 20, 25, 30, 40, 6, 80 stories) and the number of bays between 

two and three. The mechanical properties are summarized in table 26. 

 

Figure 114. Concrete frame: (a) one span (b) two span. 

Tabla.26 Structural properties and geometries of frames. 

Floor height 3 m 

Length to axes of columns 6 m 

Beam depth 0.7 m 

Beam width 0.4 m 

Column depth 0.4 m 

Column width 0.4 m 

Modulus of elasticity 25000000 kN/m2 

Mass density per unit length 50 kN/m 

Poisson's ratio 0.2 - 

Uniformly distributed load 5 kN/m 
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4.8.4.1 Static Analysis 

Figures 115 and 126 demonstrate the accuracy of the approximate solution. In general, it was found 

that the continuous solution leads to average estimates of 1.41% for the two-span frame and 2.10% 

for the three-span frame. It is important to mention that the error tends to stabilize and reduce as 

the height of the frame increases. In addition, the almost exact trend of the analysis can be observed 

with the axis length of the beams and considering the rigid zone at the nodes. 

 

Figure 115. Accuracy of the maximum displacement of the two-span frame. 

 

Figure 116. Accuracy of the maximum displacement of the three-span frame. 
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4.8.4.2 Dynamic Analysis 

The results are similar to the static case. Figures 117 and 118 demonstrate the accuracy of the 

approximate solution. In general, the continuous solution was found to lead to average estimates 

of 1.45% for the two-span frame and 1.47% for the three-span frame. It is important to mention 

that the error tends to stabilize and reduce as the height of the frame increases. In addition, the 

almost exact trend of the analysis can be observed with the axis length of the beams and 

considering the rigid zone at the nodes. 

 

Figure 117. Precision of the fundamental period of the two-span frame. 

 

Figure 118. Precision of the fundamental period of the three-span frame. 
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4.8.4.3 Stability Analysis 

Figures 119 and 120 demonstrate the accuracy of the approximate solution. In general, the 

continuous solution was found to lead to average estimates of 1.62% for the two-span frame and 

1.01% for the three-span frame. It is important to mention that only four iterations were used for 

the calculation of the critical load, a higher number of iterations would lead to a smaller error. In 

addition, it was found that as the value of the parameter α grows, a greater number of iterations 

are needed for a value closer to the exact one. 

 

Figure 119. Accuracy of the critical load of the two-span frame. 

 

Figure 120. Accuracy of the critical load of the three-span frame. 
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4.8.5 Coupled Shear Wall 

A total of 9 coupled shear walls will be analyzed. The analysis consists of a coupled shear wall 

whose height will be varied from five to eighty stories (5, 10, 15, 20, 25, 30, 40, 6, 80 stories). The 

mechanical properties are summarized in table 27. 

 

Figure 121. Coupled shear Wall. 

Tabla.27 Structural properties and geometries of the coupled shear Wall. 

Floor height 3 m 

Length to axes of shear walls 6 m 

Beam depth 0.8 m 

Beam width 0.4 m 

Shear wall depth 4.0 m 

Shear wall width 0.4 m 

Modulus of elasticity 25000000 kN/m2 

Mass density per unit length 50 kN/m 

Poisson's ratio 0.2 - 

Uniformly distributed load 5 kN/m 
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4.8.5.1 Static Analysis 

Figure 122 demonstrates the accuracy of the approximate solution. In general, it was found that 

the continuous solution leads to average estimates of -2.20% for the axis analysis of the beams and 

1.80% for the case of considering the rigid zone at the nodes. It is important to mention that for 

both cases the error tends to stabilize and reduce as the height of the shear wall increases. 

 

Figure 122. Accuracy of the maximum displacement of the coupled shear Wall. 

4.8.5.2 Dynamic Analysis 

The results are similar to the static case. Figure 123 demonstrates the accuracy of the approximate 

solution. In general, an average error of -1.01% was found for the case of axis length and 0.95% 

for the case of considering rigid zones in the nodes. It is important to mention that for both cases 

the error tends to stabilize and reduce as the height of the frame increases. 
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Figure 123. Accuracy of the fundamental period of the coupled shear Wall. 

4.8.5.3 Stability Analysis 

Figure 124 demonstrates the accuracy of the approximate solution. Only four iterations were used 

and an average error of 2.54% was found for the case of axis length and 2.84% for the case of 

considering rigid zones in the nodes. 

 

Figure 124. Precisión de la carga crítica del muro de corte acoplado 
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4.8.6 Frame Building 

A total of 9 frame buildings will be analyzed. The analysis consists of a three-story frame building 

whose height will be varied from five to eighty stories (5, 10, 15, 20, 25, 30, 40, 6, 80 stories). The 

mechanical properties are summarized in table 28. 

 

Figure 125. Frame Building. 

Tabla.28 Structural properties and geometries of the frame Building. 

Floor height 3 m 

Length to axes of columns 5 m 

Beam depth 0.6 m 

Beam width 0.4 m 

Column depth 0.4 m 

Column width 0.4 m 

Modulus of elasticity 25000000 kN/m2 

Mass density per unit length 10 kN/m2 

Poisson's ratio 0.2 - 

Uniformly distributed load 5 kN/m2 
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4.8.6.1 Static Analysis 

Figure 126 demonstrates the accuracy of the approximate solution. In general, it was found that 

the continuous solution leads to average estimates of -3.71% for the axis analysis of the beams and 

-3.88% for the case of considering the rigid zone at the nodes. It is important to mention that for 

both cases the error tends to stabilize and reduce as the height of the frame increases. 

 

Figure 126. Accuracy of the maximum displacement of the frame Building. 

4.8.6.2 Dynamic Analysis 

The results are similar to the static case. Figure 127 demonstrates the accuracy of the approximate 

solution. In general, an average error of 1.18% was found for the case of axis length and 1.13% 

for the case of considering rigid zones in the nodes. It is important to mention that for both cases 

the error tends to stabilize and reduce as the height of the frame increases. 
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Figure 127. Precision of the fundamental period of the frame building 

4.8.6.3 Stability Analysis 

Figure 128 demonstrates the accuracy of the approximate solution. An average error of 6.74% was 

found for the case of axis length and 5.76% for the case of considering rigid zones in the nodes. It 

is important to mention that only four iterations were used for the calculation of the critical load, 

a higher number of iterations would lead to a smaller error. In addition, it was found that as the 

value of the parameter α grows, a greater number of iterations are needed for a value closer to the 

exact one. 

 

Figure 128. Precisión del periodo fundamental del edificio de pórticos 
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4.8.7 Dual Frame and Shear Wall Building 

A total of 9 dual frame and shear wall buildings will be analyzed. The analysis consists of a dual 

building whose height will be varied from five to eighty stories (5, 10, 15, 20, 25, 30, 40, 6, 80 

stories). The mechanical properties are summarized in table 29. 

 

Figure 129. Dual frame and shear wall Building. 

Tabla.29 Structural properties and geometries of the dual frame and shear wall building. 

Floor height 3 m 

Length to axes of columns 5 m 

Beam depth 0.6 m 

Beam width 0.4 m 

Column depth 4.0 m 

Column and shear wall width 0.4 m 

Modulus of elasticity 25000000 kN/m2 

Mass density per unit length 50 kN/m 

Poisson's ratio 0.2 - 

Uniformly distributed load 5 kN/m 
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4.8.7.1 Static Analysis 

Figure 130 demonstrates the accuracy of the approximate solution. In general, it was found that 

the continuous solution leads to average estimates of 4.88% for the axis analysis of the beams and 

5.32% for the case of considering the rigid zone at the nodes. It is important to mention that for 

both cases the error tends to stabilize and reduce as the height of the building increases. 

 

Figure 130. Accuracy of the maximum displacement of the dual building of frames and shear walls. 

4.8.7.2 Dynamic Analysis 

The results are similar to the static case. Figure 131 demonstrates the accuracy of the approximate 

solution. In general, an average error of 2.82% was found for the case of axis length and 3.06% 

for the case of considering rigid zones in the nodes. It is important to mention that for both cases 

the error tends to stabilize and reduce as the height of the building increases. 
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Figure 131. Accuracy of the fundamental period of the dual building of frames and shear walls. 

4.8.7.3 Stability Analysis 

Figure 132 demonstrates the accuracy of the approximate solution. Only four iterations were used 

and an average error of 4.10% was found for the case of axis length and 4.65% for the case of 

considering rigid zones in the nodes. 

 

Figure 132. Precisión de la carga crítica del edificio dual de pórticos y muros de corte 
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5 DISCUSSION 

5.1 DISCUSSION OF RESULTS 

Nollet (1979) and Hoenderkamp (1983) worked on the static analysis of tall buildings using 

the continuous method. In the development of this research project it was found that deriving the 

replacement sandwich beam (SWB) equations using the continuous method with energy 

formulation lead to the same results. 

Miranda (1999), used the replacement beam consisting of the parallel coupling of the 

bending and shear beam (CTB) and developed the static analysis subject to a general lateral load 

with a general profile that depends only on one parameter. In this research project, this approach 

was generalized to all replacement beams studied. 

Potzta (2002) developed a replacement beam model for the entire building using a 

sandwich beam with an energetic approach. In this research project, this approach was generalized 

using the generalized sandwich replacement beam that additionally considers the local shear 

stiffness of the vertical elements. 

Bozdoğan (2010), used the continuous method and the transfer matrix method for the static, 

dynamic and stability analysis of the tall building by modeling the building as a replacement 

generalized sandwich beam (GSB). In the development of this research project it was found that 

deriving the equations of the replacement generalized sandwich beam (GSB) using the continuous 

method and transfer matrix with energy formulation lead to the same results. 

Hans (2002), Jigorel (2009), Chesnais (2010), Dinh (2020) and Franco (2021) developed 

the discrete periodic media homogenization method (HMPD) which consists of building a 

continuous global description of the structure based on its local properties (basic cell). In the 

development of this research project it was found that the dynamic analysis of some replacement 

beams leads to the same differential equations applying the method of homogenization of discrete 

periodic means (HMPD). 

Moghadasi, H. (2015), proposed two replacement beams (GSB and GCTB) and analyzed 

them numerically using one-dimensional finite elements for static and dynamic analysis. In this 
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research project he has continued with his investigation but solving the cases in an analytical, 

closed way and generalizing the external load profile for static analysis. 

Zalka, K. (2020), developed a comprehensive study of the global structural analysis of 

regular tall buildings. In the development of this research project, it was found that deriving the 

differential equations of the replacement sandwich beam (SWB) using the continuous method with 

energetic formulation lead to the same differential equations developed in their research. 

Additionally, in this research project the structural analysis of regular and irregular buildings in 

height has been studied. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 

In the formulation and development of this research, it was found very useful to use the energetic 

approach and the Hamilton principle for the deduction of the differential equations of the behavior 

of the replacement beams. It is important to mention that the methods of analytical calculations 

such as the one developed in this research project are fundamental because they allow to verify the 

methods considered exact and to know which structural parameters have an important influence 

on the behavior of the tall building to carry out a parametric study that in tall buildings are time 

consuming and expensive. 

The analytical formulation allows for the analysis of tall buildings that are uniform in height and/or 

that may have stepwise structural changes in height. This is achieved using two approaches within 

the overall structural analysis of the tall building. Case 1 is based on the continuous method that 

leads to analytical and closed solutions, and consists of replacing the tall building with an 

equivalent replacement beam with its characteristic stiffnesses. Case 2 is based on the joint 

application of the continuous method and the transfer matrix method to replace the tall building 

with a stepped equivalent replacement beam, where an important advantage is that the transfer 

matrix remains constant at a size of 6x6 regardless of the number of floors in the building. 

The main objective of this research is to develop a global structural analysis methodology for tall 

buildings using the continuous method and the transfer matrix method using an energy 

formulation. To this end, this research can contribute to four research areas in the structural 

analysis of tall buildings: 

 Global structural analysis of replacement beams. 

 Static structural analysis of the tall building, 

 Dynamic structural analysis of the tall building, and 

 Structural stability analysis of the tall building. 

The main characteristics of this research are summarized as follows: 



 

 

475 

1. Replacement beams for structural systems: The static, dynamic and stability structural 

analysis of various replacement beams of one, two and three fields existing in the literature 

has been developed and solved analytically and in a closed way. 

It was found that the generalized sandwich beam (GSB) allows other replacement beams 

to be easily obtained as some characteristic stiffnesses are neglected and can be applied to 

any structural system. However, the sandwich beam (SWB), widely used in the literature 

due to its simplicity, turned out to be suitable for all the usual structural systems in 

structural engineering practice. In addition, more complex beams were also studied, such 

as the parallel coupling of a tensile Timoshenko beam and a 3-field Rotation Restraint 

Beam (GCTB), which makes it possible to reproduce very well the behavior of coupled 

shear walls that have high cant and where the local shear of the shear walls is important 

and cannot be neglected. 

2. Static structural analysis of the tall building: The static structural analysis of the tall 

building has been developed and solved analytically and in a closed manner, defining 

control parameters such as the maximum displacement, interstory drift and global drift. 

The lateral load has a general profile that depends on a single parameter. The analytical 

solution allows to analyze tall buildings that are symmetric in plan (considered as buildings 

without torsion) and tall buildings that are asymmetric in one or two axes that have a strong 

lateral-torsional coupling. 

3. Dynamic structural analysis of the tall building: The dynamic structural analysis of the 

tall building has been developed and resolved analytically and in a closed manner. The 

target control parameter of this section is the fundamental period of the building. Like static 

analysis it is also possible to analyze tall buildings with strong lateral-torsional coupling. 

In addition, rotational inertia was taken into account in the analytical procedure to evaluate 

its influence on dynamic behavior. 

4. Structural stability analysis of the tall building: The structural stability analysis of the 

tall building has been developed and analytically solved. The objective control parameter 

of this section is the minimum critical load that leads to a global buckling of the building. 

Like static analysis it is also possible to analyze tall buildings with strong lateral-torsional 

coupling. 
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Numerical applications support that the analytical procedure proposed in this research project 

performs remarkably well for static, dynamic and stability structural analysis of tall building. With 

the purpose of generalizing the method, buildings with a minimum number of 5 floors were 

studied; however, the results improve markedly as we increase the height of the building. 

6.2 PERSONAL CONTRIBUTIONS 

The result of this research project will have a direct impact and benefit on the structural analysis 

of tall buildings, especially in the preliminary analysis and design phase where the structural 

engineer needs to make quick decisions, allowing the adoption of suitable replacement beam 

models without the need to resort to complex three-dimensional models that are impractical and 

expensive. The following contributions to the structural analysis of tall buildings are considered: 

 Miranda (1999) proposed a general lateral load profile dependent on the parameter a and 

solved the static structural analysis of a classic CTB-type replacement beam. In this 

research project he has continued that research by performing static structural analysis of 

thirteen replacement beams from one, two and three fields. Therefore, the approximate 

static structural analysis of the tall building subjected to lateral load with general profile 

has been solved. 

 Potzta (2002) proposed the equivalent sandwich beam to represent the tall building and 

developed the relationships that lead to the characteristic stiffnesses of the equivalent 

replacement beam. In this research project, the investigation has been continued and the 

equivalent generalized sandwich beam has been proposed to represent the tall building and 

the relationships that lead to its characteristic stiffnesses have been developed. 

 Bozdogan (2010) developed the static, dynamic and stability structural analysis of a 

generalized sandwich beam replacement (GSB1) using the transfer matrix method and 

Moghadasi (2015) developed the static and dynamic structural analysis of the replacement 

beam generalized sandwich type (GSB1) using the one-dimensional finite element method. 

In this research project, the static, dynamic and stability structural analysis of the 

generalized sandwich-type replacement beam (GSB) has been solved in a closed way using 

the continuous method. 
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 Chesnais (2010) proposed and developed the dynamic structural analysis of the generalized 

sandwich beam replacement (GSB2). In this research project, the research has continued 

and the static, dynamic and stability structural analysis of the generalized sandwich beam 

replacement (GSB2) has been developed in a closed way with the continuous method and 

the transfer matrix method has been used for buildings with structural variability in height. 

 Moghadasi (2015) proposed and developed the static structural analysis of one, two and 

three field CTB replacement beam subjected to uniformly distributed lateral load in height. 

In this research project, the investigation has continued and the static, dynamic and stability 

structural analysis of the CTB replacement beam of one, two and three fields has been 

developed in a closed form with the continuous method and the method of transfer matrix 

for buildings with structural variability in height. 

 Static, dynamic and stability structural analysis of replacement beams known in the 

literature as bending beam (EBB), shear beam (SB), Timoshenko beam (TB), bending 

beam parallel coupling has been developed and shear beam (CTB) and sandwich beam 

(SWB). In addition, the static, dynamic and stability structural analysis of beams not well 

known in the literature but presented by Bozdogan (2010), Moghadasi (2015), Migliorati 

and Mangione (2015) and Chesnais (2010) as the generalized sandwich beam (GSB1 and 

GSB2), modified generalized sandwich beam (MGSB), modified parallel coupling of two 

beams (MCTB), generalized parallel coupling of two beams (GCTB) of one, two and three 

fields. 

 The differential equations for the static analysis of the replacement beams and 

consequently of the tall building have been derived and solved. Generally, in the literature, 

equations are developed for each special case, such as the uniform load, the triangular load, 

etc.; however, in this research project the lateral load profile has been generalized. 

 The differential equations for the dynamic analysis of the replacement beams have been 

derived and solved considering the rotational inertias. A subject little studied but that has 

an important influence for dynamic analysis. 
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 The differential equations for the stability analysis of the replacement beams and 

consequently of the tall building have been derived and solved. A subject little studied but 

very important due to the high slenderness of some tall buildings. 

 A computer program has been developed to carry out the global structural analysis of tall 

buildings. This program performs the static, dynamic and stability analysis of the 

replacement beams and thus of the tall building. Subsequently, the efficiency of the 

program in numerical applications has been verified. 

6.3 RECOMMENDATIONS 

 Develop computer programs based on the global analysis of tall buildings, taking into 

account the soil-structure interaction. 

 Perform a classification of the replacement beams based on the structural parameters of the 

building that allows the engineer to choose the appropriate replacement beam for the 

analysis. This is important for buildings that present some stiffnesses that are not of the 

same order of magnitude and that can be neglected. 

 Evaluate the application of the continuous method and the transfer matrix method to the 

modeling of structures that have periodicity in their length such as railways, wooden 

structures, etc. 

 The calculation of the global shear stiffness of structural and building systems is a delicate 

subject that requires studies to obtain closed equations. An approach developed by Franco 

(2021) is the construction of a single-story numerical model. 

 Evaluate the application of static and dynamic structural analysis using the continuous 

method in confined masonry buildings with four and five floors, widely used in Peru. 

 Carry out the global structural analysis of medium and tall buildings that have energy 

dissipation devices using the continuous method and the transfer matrix method. 

 A fundamental hypothesis was to consider rigid diaphragms in the mezzanine slabs. It is 

suggested to extend the study to buildings that have mezzanine slabs with large openings 

and/or that are considered as flexible diaphragms. 
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 The global structural analysis of the replacement beams and the tall building has been 

developed in linear analysis. It is suggested to extend the study in the non-linear analysis. 

 It is known in the literature that the centers of stiffness and shear in multi-story buildings 

are generally not coincident because their location depends not only on the geometric 

characteristics but also on the lateral forces. It is suggested to study the efficiency of the 

proposed analytical procedure by locating the center of stiffness and/or shear in the 

minimum torsion center defined as the fictitious reference place where the total sum of the 

squares of the rotations of the torsion floor of the building subjected to lateral inertial forces 

is minimal. 
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8 ANNEXE 

General  Objectives Variables Dimensions Methodology 

Problem 
General 

                                                             

Independent 
Research type 

• ¿It will be possible to develop 

a global structural analysis 

methodology for tall buildings 

by the continuous method and 

the transfer matrix method using 

an energetic formulation? 

• Develop a global structural 

analysis methodology for 

tall buildings by the 

continuous method and the 

transfer matrix method 

using an energy 

formulation. 

• Continuous 

method and 

transfer matrix 

method. 

• Characteristic 

stiffness. 
• It is basic research. 

• Kinematic field. 
• The method used is 

deductive. 

• Load. 
• The level used is non-

experimental. 

Specific Specific Dependents Approach 

• ¿It will be possible to develop 

a static global structural analysis 

methodology of the tall building 

by the continuous method and 

the transfer matrix method using 

an energetic formulation? 

 

 

• Develop a methodology 

for static global structural 

analysis of the tall building 

by the continuous method 

and the transfer matrix 

method using an energy 

formulation. 

 

 

 

• Global 

structural 

analysis of tall 

buildings. 

• Static analysis. 

• In a first stage it will 

have a qualitative 

approach. 

• In a second stage it 

will have a quantitative 

approach. 

• ¿It will be possible to develop 

a dynamic global structural 

analysis methodology of the tall 

building by the continuous 

method and the transfer matrix 

method using an energetic 

formulation? 

 

• Develop a methodology 

for dynamic global 

structural analysis of the tall 

building by the continuous 

method and the transfer 

matrix method using an 

energy formulation. 

 

 

• Dynamic analysis. 

Population 

• The study population 

includes all tall 

buildings.  

• ¿It will be possible to develop 

a global structural stability 

analysis methodology of the tall 

building by the continuous 

method and the transfer matrix 

method using an energetic 

formulation? 

• Develop a global structural 

analysis methodology for 

the stability of the tall 

building by the continuous 

method and the transfer 

matrix method using an 

energy formulation. 

• Stability analysis. 

Sample 

• The study sample 

comprises a total of 

1017 structural systems. 
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