UNIVERSIDAD NACIONAL JOSE FAUSTINO SÁNCHEZ CARRIÓN – HUACHO

FACULTAD DE BROMATOLOGÍA Y NUTRICIÓN ESCUELA PROFESIONAL DE BROMATOLOGÍA Y NUTRICIÓN

Tesis

"BEBIDA DE SPIRULINA (Spirulina platensis.), CUSHURO (Nostoc commune) Y
CARAMBOLA (Averrhoa carambola L.) PARA PREVENIR LA ANEMIA EN
ESCOLARES DE LA INSTITUCIÓN EDUCATIVA LUIS FABIO XAMMAR
JURADO-DISTRITO DE SANTA MARÍA"

PARA OPTAR EL TITULO PROFESIONAL DE LICENCIADO EN BROMATOLOGÍA Y NUTRICIÓN

PRESENTADO POR:

Bach. SAENZ LOAYZA, Maria De Los Angeles Bach. VALLADARES LEON, Joneth Geanella

ASESOR: (Mo) OSSO ARRIZ, Oscar Otilio

HUACHO – PERÚ

2021

"BEBIDA DE SPIRULINA (Spirulina platensis.), CUSHURO (Nostoc commune) Y
CARAMBOLA (Averrhoa carambola L.) PARA PREVENIR LA ANEMIA EN
ESCOLARES DE LA INSTITUCIÓN EDUCATIVA LUIS FABIO XAMMAR
JURADO-DISTRITO DE SANTA MARÍA"

DEDICATORIA

En primer lugar doy gracias a Dios, por guiarme, fortalecerme para continuar en esta etapa de obtener uno de mis anhelos más deseados culminar mi carrera profesional.

A mis amados padres Antonio y Benita quienes con su amor, ejemplo, dedicación, paciencia, y esfuerzo; de no rendirme antes las adversidades, permitieron cumplir las metas que ellos se propusieron.

A mis queridos hermanos Carolyn y Antonio por su cariño y amor, por estar conmigo en todas las circunstancias y apoyo incondicional. Muy especial a Alejandro

Joneth Geanella

En primer lugar doy gracias a Dios, quien me ayudo a cumplir mis logros, A mis adorados padres Raul, Isabel, por haberme forjado como la persona que soy en la actualidad, A mi querido primo jordy que desde el cielo alumbra mi camino A mi familia, por su compañía, quienes me animaban a seguir adelante. A mis queridos docentes, por el tiempo que me brindaban sus sabios conocimientos .y a mi precioso hijo moises quien me dio fuerzas para continuar a pesar de las adversidades. Muy especial a Miguel.

Maria de los Angeles

AGRADECIMIENTO

Gracias mi Dios por permitirnos acabar con excelencia nuestros estudios, a mi familia porque con sus oraciones consejos y palabras hicieron de nosatras una mejor persona y muy especial a nuestro asesor M(o). Oscar Otilio Osso Arriz, por guiarnos en esta etapa final de nuestra carrera, a los docentes de la Facultad de Bromatología y Nutrición que nos enseñaron con sus conocimientos y sabiduría.

Joneth Geanella y Maria de los Angeles

ÍNDICE

CA	\mathbf{R}	ΔТ	H	[.A
~ 1	$\mathbf{u} \mathbf{v}$	11	\mathbf{v}	

TITULO	1
DEDICATORIA	4
AGRADECIMIENTO	5
ÍNDICE	6
RESUMEN	9
ABSTRACT	10
INTRODUCCIÓN	11
CAPITULO I: PLANTEAMIENTO DEL PROBLEMA	11
1.1. Descripción de la realidad problemática	11
1.2. Formulaciòn del Problema:	13
1.2.1. Problema General:	13
1.2.2. Problema Especifico:	13
1.3. Objetivos de la Investigación:	13
1.3.1. Objetivo General:	13
1.3.2. Objetivo Específico:	13
1.4. Justificacion de la Investigacion:	14
1.5 Delimitacion del Estudio	1./

6.2. Recomendaciones
CAPITULO VII. REFERENCIAS
7.1. Fuentes documentales
7.2. Fuentes Bibliográficas
7.3. Fuentes hemerográficas
7.4. Fuentes electrónicas84
ANEXOS
8.1. anexo1. instrumento para la toma de datos86
8.2.anexo2. Niveles de Hemoglobina inicial en varones escolares con anemia
8.3. anexo 3. Niveles de Hemoglobina inicial en mujeres escolares con anemia88
8.4.anexo 4. Niveles de Hemoglobina en escolares masculinos con anemia con dieta,
incluida la bebida funcional de spirulina , cushuro y carambola, durante tratamiento
(Grupo de casos)89
8.5 anexo5. Niveles de Hemoglobina en escolares femeninos con anemia con dieta,
incluida la bebida funcional de spirulina , cushuro y carambola, durante tratamiento (Grupo
de casos)90
8.6 anexo 6. Encuesta de opinión91
8.7.anexo 7. carta de consentimiento para los padres de familia

RESUMEN

Objetivos: Se elaboró una bebida funcional para prevenir la anemia ferropénica en escolares, determinando la proporción adecuada de spirulina en polvo, y pulpa de carambola y cushuro para preparar una bebida de buena aceptación, el aporte de nutrientes y de hierro, asimismo, los niveles de hemoglobina en los niños, antes y después del consumo de la bebida elaborada. *Muestra:* Bebida, materia prima e insumos que cumplan con requisitos del codex alimentario. Evaluación de niveles de hemoglobina en 30 escolares de 11 a 12 años de edad el I.E Luis Fabio Xammar. Huacho. 2019. *Metodos:* Diseño cuasi experimental, de corte longitudinal. La elaboración de la bebida se realizó según normas nacionales INDECOPI, el aporte de nutrientes y de hierro según métodos de la AOAC y el monitoreo de los niveles de hemoglobina se realizó durante tres meses. Resultados: La bebida elaborada con 15g% de pulpa de cushuro, 25g% de pulpa de carambola y 0,10g% de spirulina diluido con 60g% de agua, tuvo la calificación nominal de "me gusta mucho" en el 83.33%, 80%, 83,33%, 73.33% y 60% los atributos sensoriales de aroma, color, textura, sabor y aceptabilidad respectivamente; aporta 97.1 kcal%, 2.9 g%, de proteínas, 8.4 mg/L de hierro, 136,0 mg/L de calcio, asimismo, cumple con los criterios microbiológicos de coliformes, salmonellas y hongos conforme a las normas vigentes. Respecto al efecto la dosis de 350 ml por día produjo una reducción de la anemia, alcanzando niveles moderados de hemoglobina promedio, siendo mayor después del tercer mes de tratamiento. *Conclusiones:* La bebida de spirulina, cushuro y carambola tiene buena aceptación como "me gusta mucho", es un alimento hipocalórico cuya ingesta elevó los niveles de hemoglobina durante los tres meses de la aplicación. La D de Cohen mostró que el tamaño del efecto sobre los valores de la hemoglobina durante el primer mes fueron bajos (0,218), sin embargo durante el segundo mes (0.57) y en el tercer mes (0.633), el efecto fue mayor.

SUMMARY

Objectives: A functional drink was developed to prevent iron deficiency anemia in schoolchildren, determining the appropriate proportion of powdered spirulina, carambola and cushuro pulp to prepare a wellaccepted drink, the contribution of nutrients and iron, as well as the levels of hemoglobin in children, before and after the consumption of the elaborated drink. Sample: Beverage, raw material and supplies that meet the requirements of the food codex. Evaluation of hemoglobin levels in 30 schoolchildren from 11 to 12 years of age at I.E Luis Fabio Xammar. Huacho. 2019. Methods: Quasi-experimental design, longitudinal section. The elaboration of the drink was carried out according to national INDECOPI standards, the contribution of nutrients and iron according to AOAC methods and the monitoring of hemoglobin levels was carried out for three months. Results: The drink made with 15g% of cushuro pulp, 25g% of carambola pulp and 0,10g% of spirulina diluted with 60g% of water, had the nominal rating of "I like it a lot" in 73,33%, 80% and 83,33% in the sensory attributes of taste, smell, aroma and texture, respectively; It provides 13,6 kcal%, 0,10 g%, of proteins, 8,4 mg/L of iron, 136,0 mg/L of calcium, it also meets the microbiological criteria of coliforms, salmonellas and fungi according to the standards in force. Regarding the effect, the dose of 350 ml per day produced a reduction in anemia, reaching moderate levels of average hemoglobin, being higher after the third month of treatment. Conclusions: The spirulina, cushuro and carambola drink has good acceptance as "I like it a lot", it is a hypocaloric food whose intake raised hemoglobin levels during the three months of application. Cohen's D showed that the effect size on hemoglobin values during the first month was low (0.218), however during the second month (0.57) and in the third month (0.633), the effect was greater.

Keywords: Spirulina, functional drink, cushuro, anemia.

INTRODUCCIÓN

Organización Mundial de la Salud (OMS) (2020) En la actualidad se presenta un gran porcentaje de niños de todo el mundo que padecen de anemia por tal razón disminuir la anemia es uno de las metas para poner fin de todas las formas de malnutrición y tener en el futuro niños sanos y fuerte con un mejor proceso de aprendisaje. actualmente existe 280 millones de niños en todo el mundo afectados por este problema. La primera causa que produce la aenmia es por la falta de hierro; el 42% de los niños en el mundo son afectados por deficiencia nutricional..

(OMS (2020). Se presenta anemia, cuando la concentración de globulos rojos o de hemoglobina son deficientes y al no ver cantidades suficientes de hemoglobina disminuye la capacidad de transportar oxigeno dede los pulmones hasta los tejidos del organismo presentándose síntomas como: dificultad para respirar ,debilidad,cansancio ,mareos y entre otros.

"Para un nuevo estilo de vida saludable, debemos consumir bebidas de frutas naturales funcionales, ya que contribuirán a la salud humana. Deben crearse estrategias tecnológicas que permitan el incremento de nuevos productos que utilicen los recursos de la biodiversidad". (FAO) (Herrera, 2016)

INS (2021, pag. 7). En nuestro país el 28,7% de la anemia infantil afectócontar a niños y niñas de 6 a 59 meses en el año 2021 por ello se vio la necesidad de realizar una investigación para observar cuales son los factores de riesgo y para ello se elaboró una bebida de spirulina, cushuro y carambola, para prevenir la anemia ferropénica en escolares -2021, como apoyo nutricional con el fin de aprovechar los efectos del consumo de la bebida, asi mismo proveer al mercado peruano una bebida innovadora, con beneficios nutricionales, funcionales, con buenas características sensoriales, y que mejoren la calidad de vida de los niños.

CAPITULO I: PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la realidad problemática.

Segùn la Revista Cubana de Hematología, Inmunol y Hemoter (2016, pàg.6), en la dieta encontramos al hierro como hierro hemo que son la hemoglobina y mioglobina que proviene de proteína animal y se absorbe entre 15 -35 %, y hierro no hemo provenientes de los cereales frutos vegetales y legumbres, se absorbe entre 2-20%, para su absorción se necesita la vitamina A y C.

Según la Revista del Instituto Nacional de Salud (2014), El hierro es importante para el organismo, ayuda en la fabricación de hemoglobina transportadora de oxigeno de los pulmones a distintas partes del cuerpo. Se recomienda 10 mg por dia para niños comprendidos entre 4 a 8 años de edad, asimismo 8 mg para niños de 9 a 13 años de edad, 11 mg para adolescentes varones de 14 a 18 años de edad y 15 mg mujeres adolescentes de 14 a 18 años de edad.

Según Vásquez, (2003, pág. 1) La falta de hierro en el organismo es por la falta de alimentos ricos en hierro, que conlleva a la anemia ferropénica; uno de cada dos niños menores de cinco años y una de cada dos mujeres gestantes presentan anemia ferropenica, en los países industrializados los mas afectados están representadas en las mujeres embarazadas en un 18% y los preescolares en un 17%, a diferencia de los países desarrollados las mujeres embarazadas representan el 56%, los escolares 53%, y los preescolares 42%.

Monteagudo, & Ferrer (2010, pág. 245), indica que el mayor impacto en los problemas de salud es en los países menos desarrollados por la falta de hierro en el organismo, la OMS determina los valores de la hemoglobina, que definen la anemia, lactantes 11 g/dL de 6 meses a niños de 59 meses ; 11,5 g/dL niños de 6 a 11 años y 12 g/dL en niños de 12 a 14 años.

(2006) citado por Villalba, (2018, pág. 21), La spirulina es un alimento nutritivo que ayuda al tratamiento de la desnutrición por su elevadada cantidad de proteína, su contenido de aminoácidos esenciales se asemeja a la yema de huevo, estas proteínas presentes en esta alga es de fácil digestión y metabolización.

Sánchez et al (2003) citado por Energygreen (2019). El hierro es el minerales que se encuentra en la spirulina al cual se le ha prestado atención por sus beneficios terapeuticos de la anemia hipoférrica por absorverse 60% más que el sulfato ferroso y otros complementos." (pág. 1).

Por lo tanto, frente a las evidencias del alto valor nutricional de la Spirulina, especialmente en el contenido de hierro, la investigación a desarrollarse tiene el propósito de elaborar una bebida funcional a base de Spirulina, cushuro y carambola para prevenir la anemia de escolares en la Institución Educativa Luis Fabio Xammar Jurado-Distrito de Santa María.

1.2. Formulación del Problema

1.2.1. Problema General

¿Cómo elaborar bebida de spirulina (*Spirulina platensis*), cushuro (*Nostoc commune*) y carambola (*Averrhoa L.*), para prevenir la anemia ferropénica en escolares -2021?.

1.2.2. Problema Especifico

¿En que proporción se deben combinar spirulina en polvo, y pulpa de carambola y cushuro para preparar una bebida de buena aceptación?.

¿Cuál es el aporte de nutrientes y de hierro de la bebida de spirulina (*Spirulina platensis*), cushuro (*Nostoc commune*) y carambola (*Averrhoa L.*).

¿Cuáles serán los niveles de hemoglobina en los niños, antes y después del consumo de la bebida de spirulina (*Spirulina platensis*), cushuro (*Nostoc commune*) y carambola (*Averrhoa L.*)?

1.3. Objetivos de la Investigación

1.3.1. Objetivo General

Elaborar bebida de spirulina (*Spirulina platensis*), cushuro (*Nostoc commune*) y carambola (*Averrhoa L.*), para prevenir la anemia ferropénica en escolares -2021.

1.3.2. Objetivos específicos

- 1. Determinar la proporción de spirulina en polvo, pulpa de carambola y cushuro para preparar una bebida de buena aceptación.
- 2. Determinar el aporte de nutrientes y de hierro de la bebida de spirulina (*Spirulina platensis*), cushuro (*Nostoc commune*) y carambola (*Averrhoa L.*).
- 3. Evaluar los niveles de hemoglobina en los niños, antes y después del consumo de la bebida de spirulina (*Spirulina platensis*), cushuro (*Nostoc commune*) y carambola (*Averrhoa L.*).

1.4. Justificacion de la Investigacion

Cuando la hemoglobina en la sangre disminuye debido a la falta de hierro en el cuerpo, se produce anemia, debido a infecciones o enfermedades inflamatorias., debido a que en la alimentación no se encuentra este nutriente.

El Estado, a través de las universidades debe priorizar la línea de investigación que tenga relación con la reducción de los niveles de anemia en la población escolar, la misma que actualmente representa el 28,7 %. En tal sentido, el trabajo de investigación de tesis para elaborar una bebida funcional a base de Spirulina, cushuro y carambola para prevenir la anemia en escolares es importante y por lo tanto se justifica su aprobación y ejecución.

1.5. Delimitacion del Estudio

La investigación se realizó en el Colegio, Luis Fabio Xammar Jurado, distrito de Huacho, Provincia de Huaura, Región Lima Provincias, ubicado a 150 km. al norte de la ciudad Lima, durante los meses de mayo del 2019 a octubre del 2020 en una muestra conformada por 30 alumnos de edad de 11 a 12 años de edad. No es un estudio de campo clínico sino de intervención alimentaria y de medición de los niveles de hemoglobina. Los

recursos económicos fueron insuficiente para realizar la investigación con muestra más grande y mayot volumen de análisis clínicos.

CAPITULO II: MARCO TEORICO

2.1. Antecedentes de la investigación

2.1.1. Investigaciones internacionales

Barahona & Col, (2020), desarrollaron un proyecto denominado "Bebida de espirulina, maracuyá y agua de coco". Donde se plantearon con la finalidad de apoyar y elegir a los consumidores y al gobierno a suministrar una variedad de bebidas sanas. Se empleo un diseño completamente al azar (DCA) realizando 3 tratamientos con sus respectivas repeticiones, donde hubo una variación de la mezcla de 0,8%, 1,6% y 2,4 % de espirulina y 30%, 29,2% y 28 % maracuyá. Con análisis de varianza ANOVA se demostró que la combinación de espirulina y maracuyá tuvo un efecto significativo el pH y viscosidad, pero no en los sólidos disueltos. Gracias a una prueba de concepto obtenida a través de una encuesta, se recolectó información sobre el consumo de bebidas de preferencias de sabor, precios dispuestos a pagar, frecuencia de compra del producto recomendado. Con la información obtenida y los resultados hallados muestran que el tercer tratamiento que contenía 2,4 % de espirulina y 28, 4% de maracuyá, se determino según el objetivo planteado y al final se concluyo que la concentracion de espirulina determinara la aceptación de consumo y las propiedades nutricionales.

Alvarado & Cedeño, (2019), desarrollaron un proyecto denominado "Evaluación de la bebida de carambola (*Averrhoa carambola*)". Donde se plantearon con la finalidad de determinar el mayor contenido de vitamina C mediante los análisis fisicoquímicos la cual consistió en una mezcla de 50:50 (agua: pulpa), posterior se le aplicó pasteurización a 75, 80 y 85°C durante 30′, 60′ y 90′, y almacenados a 4°C por 15 días. Los resultados físicos y químicos realizados al tratamiento con mayor cantidad de vitamina C, se obtuvieron 84,37% de humedad, 0,04% cenizas, 0,1 % de proteína, grasa 0,03%, fibra bruta 0,01% y 15,45% de carbohidratos después de 15 días se efectuo nuevamente estos análisis manteniéndose estables. Cada 5 días se llevo el control de pH, grados °Brix,, asimismo análisis microbiológicos como coliformes totales y mohos y levaduras, según la norma INEN 2337:2008, los resultados h indican que la vitamina C presentó diferencias significativas entre los tratamientos, siendo el A3B1 (pasteurizado a 85°C por 30 segundos) el que obtuvo mayor contenido de ácido ascórbico de 5,02 mg/100g.luego se volvió a realizar el análisis de vitamina c después de 15 dias donde los valores obtenidos demostraron retención y pèrdida. En este sentido se cocluyo que en la aceptabilidad no se diferencio en los atributos de olor, sabor, color y apariencia durante los 15 días y la temperatura adecuada de pasteurización es de 85 °C porque no se pierde el acido ascórbico.

Calderón (2018), desarrollo un proyeto de investigación denominado "Bebida de amaranto, espirulina, piña y frutilla, edulcorada con stevia". Donde se plantearon con la finalidad de promover al mercado nacional y obtar la alternativa de consumir bebidas tradicionales con propiedades nutricionales y funcionales . El diseño empleado fue aleatorio al azar, con un arreglo factorial 3x2: se hicieron tres repeticiones con dosis de amaranto con niveles de 8, 12 y 16 g y de espirulina con niveles 1, 2 y 3 g. Mediante el análisis de ANOVA, donde la interación del amaranto con la espirulina influyeron en las variables de pH y brix. Los procedimiento se evaluaron en la escala hedónica de 5 puntos. Los resultados nos muestra que la bebida desarrollada cumplió las normas ecuatorianas y latinoamericanas, en los estándares físico-químicos, asimismo las propiedades organolépticas agradaron levemente al consumidor. Y al final se concluyo que la mezcla entre espirulina y pulpas de frutas variaran su sabor por ello deben realizarse nuevas formulaciones y nuevos estudios sensoriales con otras frutas y hortalizas.

Asero, (2014) desarrollo una investigación denominado "Adquisición de polvo de espirulina por secado al vacío para el enriquecimiento nutricional de productos alimenticios". Donde se planteò con la finalidad de reducir la desnutrición en niños obteniendo el polvo de espirulina con alto contenido de proteínas, se utilizò el diseño experimental ,donde se llevo al autoclave a vapor realizando tres presiones de vacío de 110, 136, 160 mmHg, temperaturas de 52, 56, 58 °C respectivamente y un peso de 30 g de espirulina con dos repeticiones en cada experimento. Se ha establecido que las mejores condiciones de proceso son a 52 °C, 110 mmHg de presión, obteniéndose un polvo verdoso, de apariencia agradable y olor similar al de una verdura cocida y no se observaron microorganismos nocivos, lo que la hace apta para el consumo humano. Por último, el producto mezclado con leche, jugo y maicena en forma de

pasta fue objeto de un análisis sensorial, en el que se encontró mayor aceptación entre la mezcla de sspirulina con jugo y con leche y al final se concluyò que la temperatura de adecuada es de 52 °C para obtener un producto de buena calidad. (2014, pág. 15)

Vargas (2013) desarrollo un proyecto denominado "Evaluación del estado nutricional de los niños de 1 a 5 años que asisten a los centros de salud infantil (cibv's) de la comunidad de Cangahua", donde se plantearon con la finalidad de mejorar el estado nutricional de los niños. La población es de 52 niños y niñas de 1 a 5 años, que es el principal grupo que presentan desnutrición lo cual se realizò valoraciones antropométricas y dietéticas, así como frecuencias diaria de ingesta para la población estudiada; se utilizó un método experimental de análisis transversal y observación".los resultados hallados mediante el método de frecuencia de consumo establece que hay un elevado porcentaje de niños y niñas con incorrecto hábitos alimentarios en la comunidad de Cangahua, y al final se concluyò que el personal de salud siendo los nutricionistas recomendar platillos saludable y agradables ,para obtener los valores normales de ingesta de micro y macronutrientes. (Vargas, 2013, pág. 2)

2.1.2. Investigaciones nacionales

Izquierdo & Gomero, (2018), desarrollaron un proyecto denominado "Bebida a base de limón (Citrus limon) y capulí (Prunus serótina), enriquecida con espirulina (Arthrospira platensis)" con el objetivo de prevenir la deficiencia de proteínas y hierro en niños en edad preescolar. Métodos: diseño descriptivo, explicativo, transversal. La fórmula más adecuada se evalúa en función de las características, preferencias y necesidades nutricionales relevantes, físico-químicas y sensoriales de los niños en edad preescolar. Resultados: Las bebidas de limón y capulí, enriquecidas con espirulina (anemiC-3) fueron más aceptables en la preferencia gustativa 80% (p = 0,01) que los productos "anémic-1" y "anémic-2". Aporta $6,53 \pm 0,281$ % g de proteína, 3,58% $\pm 0,2784$ g de fibra, $5,13 \pm 0,124$ mg de hierro y $84,20 \pm 2,168$ mg% de vitamina C, lo que hace que el producto sea resistente a enfermedades inflamatorias, complemento nutricional y anti ferropenia con excelente propiedades, y finalmente, se concluyó que el jugo de limón y la capulina complementan a la espirulina por su alto contenido en proteínas, hierro y vitamina C, y las propiedades nutricionales previenen la desnutrición y la anemia ferropénica.

Arhuire & Betancur, (2016) desarrollaron un proyecto denominado "Aceptabilidad y calidad nutricional de una mezcla de harina de maíz morado (Zea mays l.) enriquecida con harina de espirulina (Arthrospira platensis) para el desarrollo de API". cuya finalidad fue : determinar la aceptabilidad ,características fisicoquímicas y evaluar la calidad proteica, se utilizo un diseño experimental lo cual tomaron 5 tazas en diversas concentraciones en distintos grados, bebida 1 con 100% fécula de maíz, bebida 2 con 95% fécula de maíz y 5% polvo de espirulina, bebida 3 con 92,5% fécula de maíz y 7,5% espirulina, bebida 4 con 90% fécula de maíz y 10% espirulina y bebida 5 con 87,5% harina de maíz y 12,5% polvo de espirulina,

se evaluó a 40 panelistas para la prueba de aceptación, los resultados hallados indican que la bebida 3 fue mas aceptabley al final se concluyò que la concetración de espirulina determinar la calidad del producto.

Gutiérrez & Tello (2018) en su estudio "Evaluaron la combinación de espirulina sobre las propiedades nutricionales y organolépticas de galletas integrales y kiwicha", con el objetivo: Evaluar los efectos de la combinación de spirulina sobre las propiedades nutricionales y sensoriales de la harina de trigo y las galletas de kiwicha, para efectos del estudio, en cuatro recetas de galletas se sustituyó la harina de trigo por polvo de kiwicha hasta en un 30%. También se incorporó Spirulina al 0% (galleta control), 1% (CS1), 3% (CS2) y 5% (CS3). Se evaluaron los resultados de esta combinación en cuanto a propiedades fisicoquímicas, microbiológicas y organolépticas.

Los resultados indicaron que **las proporciones** de proteína, grasa, ceniza, humedad, hierro, calcio y sodio **se incrementaron** en las formulaciones CS-1, CS-2 y CS-3, debido a la incorporación de microalgas. Las galletas optimizadas con un 5% de espirulina obtuvieron un 15% de humedad, 10% de proteínas, 13,7% de grasas, 2,09% de cenizas, 58,6% de hidratos de carbono, en los valores minerales resultantes: 133,9 mg de calcio, 5,7 mg de hierro, 349,3 mg de sodio.(pág. 2)

Adriano (2019) en el estudio sobre "Conocimiento y aceptabilidad de los platos a base de nostoc "cushuro" como sustituto alimentario para los trabajadores de salud pública del distrito de Pueblo Libre, 2018" con el objetivo: Determinar la comprensión y aceptabilidad de platos basados en Nostoc "Cushuro" como sustituto alimentario para los trabajadores de salud pública del distrito de Pueblo Libre. La investigación es cuantitativa. Para ellos, contamos con una muestra de 65 participantes. Como resultado el 38% tuvo conocimiento bajo, el 25%

conocimiento intermedio y el 37% conocimiento alto sobre Cushuro. En cuanto a la aceptabilidad de los platos clasificados como alta, media o media y baja, prevalece la aceptabilidad media: 45 % de cushuro al natural; 65% de cushuro picante; 55% postre cushuro. La baja aceptabilidad incluye solo 20%, 8%, 17%. Finalmente, concluyeron que su aceptación se debió a su valor nutricional, capacidad de conservación y deseo de explorar nuevas alternativas alimenticias. También se concluye que el conocimiento sobre este alimento es bajo, menos de 4 de cada 10 personas lo conocen y solo 2,5 personas han oído hablar de él.(pág. 7)

Leiva & Sulluchuco, (2018) desarrollaron un proyecto denominado "Evaluacion de la aceptabilidad del Cushuro (Nostoc sphaericum) en preparaciones culinarias saladas y dulces, por estudiantes universitarios", donde se plantearon con la finalidad de determinar la aceptabilidad, se utilizo un diseño no experimental de corte transversal y tipo descrptivo la población fueron 125 estudiantes universitarios, los deliciosos platos culinarios con Cushuro, chupe con Cushuro, Empanada con Cushuro y api con Cushuro. Entre ellos, se han aceptado presentaciones culinarias en un 74 %. Las preparaciones de sal son 69% y dulces al 89% por estudiantes de esta universidad. De estos, la empanada es la más aceptada entre las preparaciones saladas, y el api con cushuro es el más aceptado en las preparaciones dulces. En cuanto a las características organolépticas, la característica más aceptada en las preparaciones saladas es la textura, mientras que en la elaboración dulce, el color es la más aceptable. Con esto, y al final se llegò a la conclusión de que si queremos que la población acepte más platos a base de cushuro, entonces los platos dulces deben ser la primera opción.

2.2. Bases Teóricas:

2.2.1 Spirulina (Spirulina Platensis).

2.2.1.1 Historia

Según Ponce (2013), "El lago de Tenochtitlán es el lugar donde los antiguos aztecas recolectaban la spirulina, luego eran secadas y comercializadas en el mercado de la ciudad. En determinadas épocas del año eran recolectadas en canoas usando finas redes, secadas al sol y convertidas en tortillas, que sabían a queso. Complementaban la alimentación de frejoles, cebollas, ají y maíz". (pág. 1)

2.2.1.2 Composición Química

Según Ponce (2013), "Con la Spirulina la absorción es muy eficiente por parte del sistema digestivo, entre 85 y 95%". (pág. 2).

Roxana & Ramírez (2006) citado por Cárdenas, Díaz, & Vizcaíno, (2010) , mencionan: "La spirulina es un alimento con un gran aporte nutricional a la dieta de ser humano. Su alto contenido de proteína hace de este un excelente complemento alimenticio, además de eso, aporta una cantidad de aminoácidos esenciales para el hombre, como también aminoácidos no esenciales. A lo anterior se puede agregar que las proteínas presentes en esta cianobacterias son de fácil digestión y metabolización, ayudando con esto al tratamiento de la desnutrición" (págs. 14, 15).

Cárdenas, Díaz, & Vizcaíno, (2010), refieren: "El aporte proteico de la spirulina es muy significativo para la dieta del ser humano además de su fácil absorción y asimilación". (pág. 15).

Tabla 1.

Composición de los aminoácidos esenciales y no esenciales de la espirulina deshidratada.

Compuesto	g/100g	g/4g	g/6 g	g/8g
Triptófano	0,929	0,037	0,056	0,074
Treonina	2,97	0,119	0,178	0,238
Isoleucina	3,209	0,128	0,193	0,257
Leucina	4,947	0,198	0,297	0,396
Lisina	3,025	0,121	0,181	0,242
Metionina	1,149	0,046	0,069	0,092
Fenilalanina	2,777	0,111	0,167	0,222
Valina	3,512	0,141	0,211	0,281
Tirosina	2,584	0,103	0,155	0,207
Cisteína	0,662	0,027	0,04	0,053
Arginina	4,147	0,166	0,249	0,332
Histidina	1,085	0,043	0,065	0,087
Alanina	4,515	0,181	0,271	0,361
Ácido aspártico	5,793	0,232	0,348	0,463
Ácido glutámico	8,386	0,336	0,503	0,671
Glicina	3,099	0,124	0,186	0,248
Prolina	2,382	0,095	0,143	0,191
Serina	2.998	0,12	0,18	0,24

Fuente: Adaptado de USDA (United States Department of Agriculture, Agricultural Research Service .National Nutrient Database for Standard Reference, citado por Bohórquez (2017, pág. 35)

Tabla 2: Composición de vitaminas de la espirulina deshidratada.

Nutrientes	Unidad	100 g	4 g	6 g	8 g
Vitamina C	mg	10,1	0,4	0,6	0,8
Tiamina	mg	2,38	0,095	0,143	0,19
Riboflavina	mg	3,67	0,147	0,22	0,294
Niacina	mg	12,82	0,513	0,769	1,026
Ácido Pantoténico	mg	3,48	0,139	0,209	0,278
Vitamina B ₆	mg	0,364	0,015	0,022	0,029
Folato total	μg	94	4	6	8
Folato, Alimento	μg	94	4	6	8
Folato, DFE	μg	94	4	6	8
Colina, total	mg	66	2,6	4	5,3
Vitamina A	μg	29	1	2	2
Caroteno, beta	μg	342	14	21	27
Vitamina A,	IU	570	23	34	46
Vitamina E	mg	5	0,2	0,3	0,4
Vitamina K	μg	25,5	1	1,5	2

Fuente: Adaptado de USDA, citado por Bohórquez (2017, pág. 35)

Tabla 3:

Composición de lípidos de la espirulina deshidratada.

Nutrientes	g/100 g	g/4 g	g/6 g	g/8 g
Acidos grasos saturados	2,65	0,106	0,159	0,212
Acido miristico	0,075	0,003	0,004	0,006
Acido palmítico	2,496	0,1	0,15	0,2
Acido esteárico	0,077	0,003	0,005	0,006
A grasos monoinsaturados	0,675	0,027	0,04	0,054
Acido palmitoleico	0,328	0,013	0,02	0,026
Acido oleico	0,347	0,014	0,021	0,028
A. grasos poliinsaturados	2,08	0,083	0,125	0,166
Acido linoleico	1,254	0,05	0,075	0,1
Àcido linolènico.	0,823	0,033	0,049	0,066

Fuente: Adaptado de USDA, citado por Bohórquez (2017, pág. 36)

Tabla 4:

Composición de minerales de la espirulina deshidratada.

Nutrientes	Unidad	100g	4g	6g	8g
Calcio ·	mg	120	5	7	10
Hierro	mg	28.5	1,14	1,7	2,28
Magnesio	mg	195	8	12	16
Fósforo	mg	118	5	7	9
Potasio	mg	1363	55	82	109
Sodio	mg	1048	42	63	84
Zinc	mg	2	0,08	0,12	0,16
Cobre	mg	6,1	0,24	0,37	0,49
Manganeso	mg	1,9	0,08	0,11	0,15
Selenio	μg	7,2	0,3	0,4	0,6

Fuente: Adaptado de USDA, citado por Bohórquez, (2017, pág. 36)

Tabla 5 .

Composición de macronutrientes de la espirulina en 100, 8,6 y 4 gramos de producto deshidratado.

Nutriente	Unidad	100g	4g	6g	8g
Agua	g	4,68	0,19	0,28	0,37
Energía	keal	290	12	17	23
Energía	kJ	1213	49	73	97
Proteínas	g	57,47	2,3	3,45	4.6
Lípidos totales	g	7,72	0,31	0.46	0,62
Carbohidratos	g	23,9	0,96	1,43	1,91
Fibra	g	3,6	0,1	0,2	0,3
Azúcares totales	g	3,1	0,12	0,19	0.,5

Fuente: Adaptado de USDA, citado por Bohórquez, (2017, pág. 36)

La spirulina aporta proteínas, carbohidratos lípidos, vitaminas, pigmentos, Se ha estudiado toda la gama de nutrientes que aporta. (Cárdenas, Díaz, & Vizcaíno, 2010, pág. 18)

Tabla 6:

Contenido de carbohidratos y pigmentos

Compuestos	Contenido(%)
Carbohidratos.	15-20
Glicerol.	7,4
Glucosa	7,5
Ramnosa	17,1
Fucosa	3,3
Ribosa	8,1
Xilosa	4,5
Manosa	1,9
Galactosa	8,2
D-Glucosamina	2,12
No Identificados	2,6
Pigmentos 6 Clorofila	0,8-1,5
Carotenoides	0,648
B-Caroteno	15
Equinenona	11-13
B-Criptoxantina	6-8
3'-Hidroxiequinenona	7-11
Zeaxantina	25
Diatoxantina	5
Cantaxina	5
Mixoxantofila	13-17
Oscillaxantina	3-5
No Identificados	3-4
Ficocianina	16-20

Fuente: Modificado de Cohen (1997), Sasson y Sanchez et al. (2003) citado por (Cárdenas, Díaz, & Vizcaíno, 2010, pág. 17)

2.2.1.3 Caracteristicas

Ponce (2013), refiere: La espirulina es un cultivo ideal para las regiones desérticas, debido a que el agua salada no es apta para la agricultura convencional y puede absorber los elementos necesarios para la supervivencia, esta alga puede realizar la fotosíntesis, debido a que almacena nutrientes, prospera en ambientes de agua alcalina y salobre, menor posibilidad de contaminarse. Lo pueden consumir personas y animales. (pág. 136)

2.2.1.4 Importancia

Bohórquez, (2017, pág. 37), mencionó que la espirulina tiene protección inmunológica, antioxidante, antiviral, anticancerígena, retención de metales pesados ya que es un agente antitóxico. La espirulina es rica en vitamina E y vitamina B1 (tiamina), que son importantes para la producción de acetilcolina. La vitamina B12 es importante para el buen funcionamiento normal del tejido nervioso.

También mencionó que la espirulina ha recibido mucha atención científica debido a sus posibles beneficios para la salud; desde niños con anemia, personas con diabetes tipo 2, enfermedad pulmonar crónica, dislipidemia hasta personas que viven con el VIH, todos tienen un efecto positivo en varios indicadores metabólicos, como la glucosa, lípidos, actividad antioxidante e inmunológica. Bohórquez, (2017, pág. 10).

2.2.1.5 Clasificación Taxonómica

Ramírez & Olvera, (2006, pág. 657), señala "El término "Spirulina" presenta dos géneros: Arthrospira Stizenberger 1852 y Spirulina Turpin 1829. Y las dos especies de cianobacterias: S. platensis Geitler 1932 y S. maxima Geitler 1925".

Tabla 7:

Principales características que separan a los géneros arthrospira stizenberger 1852 y spirulina turpin 1829

CARÁCTER	Arthrospira stizenberger	Spirulina turpin
Diámetro de tricoma.	2,5-16µm	0,5-5μm
Tipo de hélice.	Hélice abierta	Hélice cerrada
Septos.	visibles al microscopio de luz	Invisible al microscopio de luz.
Patron de los poros de la pared celular.	Una fila alrededor del tricoma.	Varias filas en la parte cóncava de la hélice.
Tipo de fragmentación.	intracelular (necridio)	Intercelular
Cuerpos cilíndricos.	Presentes.	Ausentes
Fotosíntesis anoxigènicas.	ausentes	
C-ficoeritrina.	no encontrada.	presente en algunas cepas Presente en algunas cepas.
Ácido γ-linoleico (GLA).	Presente.	Ausentes.

Modificado de Vonshak y Tomaselli (2000) citado por Ramírez & Olvera, (2006, pág. 658)

Tabla 8: Especies del género arthrospira stizenberger

Especies	Primera descripción	
A.Fusiformis	Estepa Siberiana, Rusia, Lago Tunatan	
A.Gomontiana	Amèrica Del Norte, Agua Estancada	
A. Indica	Madurai, India, Estanque Natural.	
A. <u>Jenneri</u>	Europa, Agua Estancada	
A. Khannae	Rangoon, Myanmar, Estanque Natural	
A. Massartii	Luxemburgo, Agua De Manantial	
A. Maxima	A. <u>Maxima</u> Oakland, California, Poza Salina	
A. Platensis	Montevideo, Uruguay, Agua Estancada	
A. Spirulinoides	<u>Dides</u> Lahore, Pakistán, Agua De Lluvia Estancada	
A. <u>Tenuis</u>	Bengala, India, Estanque Artificial	
Modificado de Vonshak v Tomaselli (2000) citado por Ramírez & Olvera (2006 pág		

Modificado de <u>Vonshak y Tomaselli</u> (2000) citado por Ramírez & Olvera, (2006, pág. 658)

2.2.2 Cushuro (Nostoc commune)

2.2.2.1 Historia

Ponce (2013, pág. 115), Desde la época precolombina ha sido un suplemento dietético de los pueblos andinos. Su consumo fue recomendado a todos los vasallos durante la época del Imperio Inca, para fortalecer dientes y huesos, pero fue rechazado por los conquistadores españoles, restringiendo su consumo a los habitantes de los Andes.

2.2.2.2 Composicion Quimica

Tabla 9: Cuadro informativo nutricional del cushuro deshidratado

Nutriente	Valor
Energía (Kcal)	242
Agua (g)	15,1
Proteínas (g)	29,0
Grasa (g)	0,5
Carbohidratos (g)	46,9
Calcio (mg)	147
Fósforo (mg)	64
Hierro (mg)	83,60
Tiamina (mg)	0,20
Riboflavina (mg)	0,41

Fuente: CENAN (2017), citado por Adriano (2019, pág. 20)

Tabla 10: Diferencia de macronutrientes y minerales de Chile y Perù en diferentes anàlisis quìmicos proximales.

Análisis químico proximal	Chile (1)	Perú ⁽²⁾
Proteina	25.4 g	29 g
Carbohidrato	62.4	46.9 g
Agua	6.3g	15.1 g
Lípidos	0.8 g	0.5 g
Cenizas	5.1 g	8.5 g
Fosforo	258 mg	64mg
Calcio	1.076 mg	147 mg
Hierro	19.6 mg	83.6 mg

Fuente: (1) (Gantar, 2008), (2) CENAN (2017) citado por Adriano (2019, pág. 20)

Tabla 11:

Contenido de aminoàcidos esenciales del cushuro e ingesta diaria de aminoàcidos esenciales.

Aminoácidos esencial	Contenido (Mg/gprot.)	Recomendación (mg/g
		prot.)
Histidina	1,3	15
Isoleucina	19,2	30
Leucina	26,4	59
Lisina	26.5	45
Metionina + cisteína	27,4	22
Fenilalanina +tirosina	11,4	38
Treonina	0,07	23
Triptófano	ND	6
Valina	35,1	39
Total de aminoácidos	147	277
esenciales		

Fuente: Galetovic et al. (2017) N.D.: No detectado citado por Adriano (2019, pág. 26)

Nota: calculado en base a un contenido de 30% de proteínas de Cushuro deshidratado.

2.2.2.3 Caracteristicas

Según Ponce (2014, pág. 116), "el Nostoc está formado por colonias de cianobacterias verde azuladas, verde oliva o marrón; el color verde proviene de su contenido de clorofila; el azul, de un pigmento denominado ficocianina, que tiene relación con la fotosíntesis, mientras que algunos contienen ficoeritrina, pigmento rojo, que al mezclarse con los otros generan la coloración marrón".

Delgado, (2004) citado por Adrian (2018, pág. 12) "Las denominaciones encontradas para referirse al Nostoc sp son llullucha, yuyucho, murujutu, cusuro, cushuro rubio, cushuro verde, crespito, ccochayuyu, chuño, jugadores, llallucha,

llucllucha, murmunta, murmuntu, machamacha, ova de los ríos, rachapa, shugur, ululuma, ururupsha, ururupa macho, ururupa hembra".

(Vilchez, 2017, pág. 40) "En su estructura morfológica, presentan filamentos no ramificados torcidos, formando tricomas sencillos; además de presentar células vegetativas con algunos heterocistos presentes en el medio de estos filamentos; también posee filamentos cortos y móviles denominados hormogonios. Además, se ha identificado que, en situaciones de limitación de nutrientes, pueden desarrollar estructuras similares a las esporas denominados acinetos".

2.2.2.4 Importancia

Ugás, (2014) citado por Adrian (2018, pág. 12) "Análisis del Ministerio de Salud muestran que el cushuro deshidratado tiene considerablemente más proteínas, calcio y hierro que la carne de cuy, y que ésta tiene bastante más fósforo".

Ponce (2014) citado por Adrian (2018, pág. 12) "El Nostoc andino de forma esférica contiene por cada 100 g de producto desecado 25,4 g de proteínas, 62,4 g de glúcidos, 0,80 g de lípidos, 6,30 g de agua, 5,10 g de ceniza, 258 mg de fósforo, 1,076 g de calcio, 19,6 mg de hierro y 10 μg de vitamina A. De acuerdo con estas informaciones se demuestra que el Nostoc sí es un nutriente valioso, que añade proteínas a las comidas andinas, además de calcio, que según la tradición incaica protege la dentadura".

Ponce (2014) citado por Adrian (2018, pág. 12) Se han determinado propiedades curativas del Nostoc, por ejemplo la de inhibir la formación de colesterol y tumores

cancerosos por su contenido de nostocarbolina (es una betacarbolina aislada de la

cianobacteria de agua dulce.).

Castellanos (2013) Adrian (2018, págs. 12, 13) En el Cusco la llullucha macerada

y en líquido es 13 usada para tratar "calor interno" (fiebre), sirve para detener el

flujo menstrual excesivo, reduce la inflamación de los ojos y de los testículos,

previene la gota y no engorda. Ayuda a aliviar el dolor de riñones o las etapas

finales de un parto difícil, pero también se ha encontrado en diversas especies de

Nostoc concentraciones importantes de aminoácidos inusuales, que pueden afectar

la función nerviosa y están vinculados con enfermedades como las de Parkinson o

Alzheimer.

2.2.2.5 Clasificación Taxonómica

Según Zumaeta (2016) citado por Adrian (2018):

El Nostoc. commune (cushuro) pertenece al reino monera que por sus características se

ha clasificado de la siguiente manera:

División: Cyanobacteria

Clase: Cyanophyceae

Orden: Nostocales Familia Nostocaceae

Género: Nostoc

Especies: N. calcicola, N. commune, N. cycadae, N. desertorum, N. edaphicum, N.

ellipsosporum, N. entophytum, N. flagelliforme, N. indistinguenda, N. lichenoides,

N. linckia, N. muscorum, N. paludosum, N. piscinale, N. punctiforme, N. sphaericum, N.

trichormus. (pág. 11).

34

Aldave (2015) citado por Adrian (2018, pág. 11) "asegura que el "cushuro" se desarrolla en ecosistemas que tiene cloruro de calcio, sulfatos de magnesio y otros elementos que están en forma natural en las lagunas y que existen medios de cultivo para industrializar el Nostoc en laboratorio".

2.2.3 Carambola (Averrhoa Carambola).

2.2.3.1 Historia

Calzada (1980) citado por Solis (2010, pág. 4), "La carambola, es originaria de Asia tropical, específicamente de la India o Indonesia. Fue introducida al Brasil en 1817 por Paul Germain en Pernambuco y en el Perú vía la Amazonia, por viajeros que hacían ruta por el Brasil, extendiéndose después a los departamentos de Huánuco, Madre de Dios y el Cusco. En el Perú, esta fruta se desarrolla en zonas subtropicales, en lugares como Chanchamayo y Satipo (Junín), Tingo María (Huánuco)".

2.2.3.2 Composicion Quimica

FAO (2006, pág. 1), El fruto de "la carambola es una baya de 8 a 15 cm de longitud, de color amarillo, que presenta entre 3 y 5 costillas bien marcadas, con forma ovoide o elipsoidal y de sección transversal estrellada. La cáscara es lisa y cerácea. Su pulpa es jugosa, crocante, de color amarillo claro, y de sabor ácido, posee pocas semillas. Su peso oscila entre 100 y 200 g cuando esta apta para la comercialización".

(Eroski Consumer) "Su mayor componente es agua también contiene pequeñas cantidades de hidratos de carbono simples, su valor calórico es muy bajo.

La pulpa es rica en oxalato de calcio y fibra soluble. Contiene una cantidad moderada de provitamina A y de vitamina C "

Tabla 12:

Composición Química Proximal del fruto de la carambola (averrhoa carambola L.)

Componenetes	Unidad	Carámbola
Calorías	Cal.	36,0
Agua	g	90,0
Proteína	g	0,5
Grasa	g	0,3
carbohidratos	g	9,0
Fibra	g	0,6
Ceniza	g	0,4
Vitamina A	mg	90,0
Vitamina B1	mg	0,04
Vitamina B2	mg	0,02
Vitamina B6	mg	0,30
Vitamina C	mg	35,0
Ca	Mg	5,0
p	Mg	18,0
Fe	Mg	0,40

Fuente: calzada B. J, (1980) citado por Solis (2010, pág. 9)

2.2.3.3 Importancia

Para (Eroski Consumer) Informa que las propiedades nutricionales de la

carambola:

Provitamina A o p-caroteno se convierten en vitamina A en nuestros cuerpos

cuando es necesario. Esta vitamina es necesaria para la visión, el buen estado de la

piel, el cabello, las mucosas, los huesos y estimula el funcionamiento normal del

sistema inmunitario. La vitamina E interviene en la formación de colágeno, huesos

y dientes, glóbulos rojos y favorece la absorción del hierro de los alimentos y la

lucha contra las infecciones. El potasio es necesario para la transmisión y

generación de impulsos nerviosos y el funcionamiento normal de los músculos.

(pág. 1).

2.2.3.4 Clasificación taxónomica

Brack (2001) citado por Solis (2010, pág. 5); determinó la siguiente

clasificación sistemática para la carambola:

DIVISIÓN: Fanerógamas

SUBDIVISIÓN : Angiosperma

CLASE: Dicotiledónea

ORDEN: Oxalidacea

FAMILIA: Oxalidaceae

GENERO: Averrhoa

ESPECIE :carambola

NOMBRE COMÚN: Carambola.

37

2.2.3.5 La Anemia

Definición:

Ministerio De Salud Del Perú (2017, pag . 7) La anemia en los niños peruanos ocurre durante los períodos de desarrollo y diferenciación de las células cerebrales, como los primeros 2 meses de vida y el embarazo. Estos períodos tienen altos requerimientos nutricionales para el desarrollo del feto y del niño pequeño. Esta situación convierte a la anemia en nuestro país en un grave problema de salud pública, según la OMS. Sus determinantes son muchos y se dan en distintas etapas de la vida de una persona, aunque sus efectos persisten a lo largo del ciclo vital. La anemia ferropénica se produce por comer menos alimentos que contengan este mineral.

Porcentaje de anemia en el Perú.

INS (2021, pag. 7) "La anemia infantil afecta al 32% de los niños y niñas de 6 a 35 meses de edad y afecta el 28.7 % de los niños y niñas de 6 a 59 meses en el año 2021".

MINSA (2017, pag. 7) Es más común en niños de 6 a 18 meses, un área donde 6 de cada 10 niños son anémicos. La desnutrición infantil ha disminuido en los últimos años, pero aún afectaba al 13,1% de los niños menores de 5 años en 2016; las zonas rurales alcanzaron el 26,5% y las zonas urbanas el 7,9%. Durante la última década, nuestro país ha logrado avances notables en la reducción de la desnutrición infantil crónica, las desigualdades persisten en regiones y regiones pobres, lo que requiere acciones continuas para cerrar estas brechas.

Tabla 13:

Anemia en niños entre 6 a 59 meses que accedieron al establecimiento de salud segun DIRESA /Gere Período Enero- Marzo, 2021.

DIRESA /	N° DE	ANEMIA TOTAL	L	ANEMIA LEVE	\	ANEMIA MODER		ANEMIA SEVERA	
GERESA / DIRIS	EVALUADOS	N° DE CASOS	%	N° DE CASOS	%	N° DE CASOS	%	N° DE CASOS	%
Amazonas	5 224	860	16,5	640	12,3	216	4,1	4	0,1
Ancash	13 518	4 474	33,1	2 753	20,4	1 688	12,5	33	0,2
Apurimac	7 088	2 193	30,9	1 210	17,1	968	13.7	15	0,2
Arequipa	7 297	2 106	28,9	1 311	18,0	773	10.6	22	0,3
Ayacucho	13 425	3 489	26,0	2 334	17,4	1 140	8.5	15	0,1
Cajamarca	21 297	4 578	21,5	3 330	15,6	1 232	5.8	16	0,1
Callao	4 534	1 162	25.6	805	17,8	354	7.8	3	0,1
Cusco	11 266	4 163	37,0	2314	20,5	1 768	15.7	81	0,7
Huancavelica	3 723	1 520	40,8	818	22,0	668	17.9	34	0,9
Huanuco	9 646	1 905	19,7	1 267	13,1	632	6.6	6	0,1
Ica	6 219	1 408	22,6	1009	16,2	397	6.4	2	0,0
Junin	13 655	4 726	34,6	2 716	19,9	1 944	14.2	66	0,5
La Libertad	14 902	4 949	33,2	2 822	18,9	2 081	14.0	46	0,3
Lambayeque	8 619	2 777	32,2	1 812	21,0	944	11.0	21	0,2
Lima	9 399	2 110	22,4	1 320	14,0	768	8.2	22	0,2
Lima Diris Centro	10 304	2 339	22,7	1 738	16,9	599	5.8	2	0,0
Lima Diris Este	6 216	2 279	36,7	1 630	26,2	646	10.4	3	0,0
Lima Diris Norte	13 382	4 308	32,2	3 222	24,1	1 081	8.1	5	0,0
Lima Diris Sur	14 942	4 774	32,0	3 531	23,6	1 234	8.3	9	0,1
Loreto	9 057	2 806	31,0	1 929	21,3	870	9.6	7	0,1
Madre De Dios	2 047	784	38,3	513	25,1	270	13.2	1	0,0
Moquegua	1 265	290	22,9	193	15,3	96	7.6	1	0,1
Pasco	3 377	1 523	45,1	752	22,3	674	20.0	97	2,9
Piura	21 285	3 870	18,2	2 962	13,9	904	4.2	4	0,0
Puno	11 792	4 647	39,4	2 686	22,8	1 878	15.9	83	0,7
San Martin	10 050	2 444	24,3	1918	19,1	522	5.2	4	0,0
Tacna	2 670	633	23,7	477	17,9	151	5.7	5	0,2
Tumbes	25 403	706	29,4	492	20,5	214	8,9		
Ucayali	4 030	1 621	40,2	1065	26,4	552	13,7	4	0,1
PERÚ	262 632	75 444	28,7	49 569	18,9	25 264	9,6	611	0,2

Fuente : Sistema de informacion SIEN –HIS/ INS-CENAN (2021)

Tabla 14:

Anemia en niños entre 6 a 35 meses que accedieron al establecimiento de salud.

DIRESA/Gere. Período Enero –Marzo. 2021

	N° DE	ANEMIA 7	ГОТАL	ANEMIA LEVE		ANEMIA MODERADA		ANEMIA SEVERA	
DEPARTAMENTO	EVALUADOS	N° DE CASOS	%	N° DE CASOS	%	N° DE CASOS	%	N° DE CASOS	%
Amazonas	3,103	620	20.0	453	14.6	164	5.3	3	0.1
Ancash	9,511	3,576	37.6	2,185	23.0	1,362	14.3	29	0.3
Apurimac	4,791	1,690	35.3	947	19.8	729	15.2	14	0.3
Arequipa	5,897	1,897	32.2	1,179	20.0	699	11.9	19	0.3
Ayacucho	8,988	2,767	30.8	1,865	20.7	889	9.9	13	0.1
Cajamarca	13,540	3,461	25.6	2,448	18.1	999	7.4	14	0.1
Callao	4,257	1,133	26.6	783	18.4	347	8.2	3	0.1
Cusco	8,596	3,481	40.5	1,895	22.0	1,521	17.7	65	0.8
Huancavelica	2,407	1,089	45.2	588	24.4	475	19.7	26	1.1
Huanuco	5,967	1,369	22.9	900	15.1	465	7.8	4	0.1
Ica	5,419	1,342	24.8	947	17.5	393	7.3	2	0.0
Junin	10,753	3,936	36.6	2,249	20.9	1,624	15.1	63	0.6
La Libertad	11,766	3,950	33.6	2,274	19.3	1,639	13.9	37	0.3
Lambayeque	7,399	2,546	34.4	1,662	22.5	865	11.7	19	0.3
Lima	49,247	15,194	30.9	10,957	22.2	4,198	8.5	39	0.1
Loreto	6,426	2,369	36.9	1,585	24.7	778	12.1	6	0.1
Madre De Dios	1,609	690	42.9	444	27.6	245	15.2	1	0.1
Moquegua	968	264	27.3	174	18.0	89	9.2	1	0.1
Pasco	2,400	1,205	50.2	581	24.2	539	22.5	85	3.5
Piura	15,724	3,330	21.2	2,509	16.0	817	5.2	4	0.0
Puno	8,140	3,770	46.3	2,055	25.2	1,636	20.1	79	1.0
San Martin	6,925	2,031	29.3	1,569	22.7	458	6.6	4	0.1
Tacna	2,046	531	26.0	406	19.8	121	5.9	4	0.2
Tumbes	1,973	642	32.5	439	22.3	203	10.3	-	-
Ucayali	3,342	1,465	43.8	954	28.5	508	15.2	3	0.1
PERÚ	201,194	64,348	32.0	42,048	20.9	21,763	10.8	537	0.3

Fuente : Sistema de información SIEN-HIS,2021.

Tabla 15:

Principales causas de anemia

INCREMENTO DE NECESIDADES Y/O BAJOS DEPÓSITOS DE HIERRO

BAJO APORTE DE HIERRO

- · Bebés prematuros (considerado el grupo de mayor riesgo debe ser la máxima prioridad) y/o Bebés con bajo peso al nacer v/o gemelos.
- Recién nacidos a término y/o con buen peso al nacer.
- Niños menores de 2 años.
- · Niños con infecciones frecuentes
- · Embarazadas (especialmente en el segundo trimestre).
- · Parto: Pinzamiento precoz del cordón umbilical, 1 minuto antes.
- · Adolescentes, en su mayoría mujeres.
- Mujeres en edad fértil.

- No comer lo suficiente o no lo suficiente.
- Complemento alimenticio para el déficit de hierro hemo a partir de los 6 meses con o sin leche materna.
- Alimentación complementaria tardía (a partir de los 6 meses de edad).
- Falta de acceso a alimentos ricos en hierro de origen animal (hierro hemo).
- Falta de consumo de alimentos ricos en hierro hemo.
- La dieta se basa principalmente en lácteos (leche de vaca y otros >= 24 oz/día) y carbohidratos
- Las dietas vegetarianas son principalmente ricas en fitatos y taninos.

DISMINUCIÓN DE LA ABSORCIÓN

PÉRDIDAS SANGUÍNEAS

- Factores dietéticos que inhiben la absorción de hierro: taninos que se refrescos: los fitatos se encuentran en la fibra y el calcio en los productos • Parásitos: Anquilostomiasis, Giardia, Plasmodium. lácteos.
- Enfermedades gastrointestinales como diarrea, síndromes de malabsorción, gastritis crónica, ausencia de duodeno tras cirugía.
- Fármacos que disminuyen la absorción de hierro: Omeprazol. Ranitidina, Carbonato de Calcio, etc.

- Hemorragia: intrauterina, perinatal, gastrointestinal,
- Menorragia (adolescentes)
- encuentran en el té, café, refrescos y Dar leche de vaca en el primer año de vida puede causar bacteriemia

 - · Infecciones causadas por bacterias como Helicobacter pylori.
 - · Patología: Ciertas anemias hemolíticas intravasculares, por ejemplo, en el caso de la malaria y otras condiciones que producen hemólisis, u operaciones quirúrgicas, entre otras.
 - Hemorragias nasales repetidas, sangre en la orina, hemoptisis, hemorroides, pérdida de sangre en las heces, etc.
 - Uso crónico de antiinflamatorios no esteroideos (AINE) y Aspirina, causas de pérdida patológica de hierro a nivel gastrointestinal.

Fuente: Adaptado por el Ministerio de Salud de las referencias bibliográficas (5, 6, 8).

Tabla 16.

Valores normales de concentración de hemoglobina y niveles de anemia enNiños, Adolescentes,
Mujeres Gestantes y Puérperas (hasta 1,000 msnm)

Población	Con Anemia	Según niveles de (g/dL)	Sin anemia según niveles de Hemoglobina	
Niños				
Niños Prematuros				
1ª semana de vida		≤13.0		>13.0
2ª a 4ta semana de vida		≤ 10.0		>10.0
5ª a 8va semana de vida		≤ 8.0		>8.0
Niños Nacidos a Término				
Menor de 2 meses		< 13.5		13.5-18.5
Niños de 2 a 6 meses cumplidos		< 9.5		9.5-13.5
	Severa	Moderada	Leve	
Niños de 6 meses a 5 años cumplidos	< 7.0	7.0 - 9.9	10.0 - 10.9	≥ 11.0
Niños de 5 a 11 años de edad	< 8.0	8.0 - 10.9	11.0 - 11.4	≥11.5
Adolescentes				
Adolescentes Varones y Mujeres de 12 - 14 años de edad	< 8.0	8.0 - 10.9	11.0 - 11.9	≥ 12.0
Varones de 15 años a más	< 8.0	8.0 - 10.9	11.0 - 12.9	≥ 13.0
Mujeres NO Gestantes de 15 años amás	< 8.0	8.0 - 10.9	11.0 - 11.9	≥ 12.0
Mujeres Gestantes y Puérperas				
Mujer Gestante de 15 años a más ^(*)	< 7.0	7.0 - 9.9	10.0 - 10.9	≥11.0
Mujer Puérpera	< 8.0	8.0 - 10.9	11.0 - 11.9	≥ 12.0

Fuente: OMS.2011. Concentraciones de hemoglobina para diagnosticar la anemia y evaluar su gravedad. Ginebra.

Fuente: OMS. 2001. El uso clínico de la sangre en Medicina General, Obstetricia, Pediatría y Neonatología, Cirugía y Anestesia,trauma y quemaduras. Ginebra

^(*) En el segundo trimestre del embarazo, entre la semana 13 y 28, el diagnóstico de anemia es cuando los valores de hemoglobina están por debajo de 10.5 g/dl

2.3. Bases filosóficas

Platón, un filósofo griego, fue el primero en comparar la filosofía con la comida y así es como la Academia de Platón proclamó el momento de comer, un momento crucial.

Estudiantes y profesores se reúnen alrededor de la comida para comerla.(Leiva L., 2015)

Muchos productos, desde la antigüedad, se han utilizado como alimento y medicina, como el jengibre, la menta, el ajo, el azafrán. La filosofía "la comida es medicina" es la base del modelo de alimentación funcional.(Hassler, 1996)

Tomando como base estos criterios, la investigación sobre Elaborar bebida de spirulina (*Spirulina platensis*), cushuro (*Nostoc commune*) y carambola (*Averrhoa L.*), para prevenir la anemia ferropénica en escolares -2021, forman parte del sistema donde interaccionan los procesos biológicos, psíquicos y sociales, de un estado patológico de distintas manifestaciones clínicas (obesidad, hipercolesterolemia, hipertensión arterial, hipertrigliceridemia y diabetes mellitus, debido a la mala absorción de los alimentos por parte de los organismos, consecuencia del comportamiento moral y ético que se manifiesta en forma de hábitos y costumbres arraigados en el subconsciente de las personas a través de comportamientos adquiridos en la niñez, niñez y adolescencia, en parte porque el comportamiento ético se manifiesta en forma de hábitos y costumbres, e incluso sustenta cambios sociales masivos que están protegidos por el peso de la tradición.(Colectivo de autores, 1997).

2.4. Definición de términos básicos

Spirulina (Spirulina platensis)

Ponce (2013) "La Spirulina es una microalga que contiene un alto contenido proteico, ácidos grasos esenciales, minerales y vitaminas. Es un cultivo ideal para zonas desérticas y más aún donde el agua es alcalina". (pág. 1).

Cushuro (Nostoc commune)

Vilchez (2017), "son procariotas heterocísticos fijadores de nitrógeno atmosférico. Que han sido utilizado como complemento alimenticio y medicinal por diversas culturas a nivel mundial, tanto en Asia (China y Japón), África (Chad), y América (México, Bolivia, Ecuador y Perú) por miles de años". (pág. 39).

Carambola (Averrhoa carambola)

Pinzon (2005) citado por Solis (2010), "La carambola (Averrhoa carambola L.), es una fruta exótica, originaria de regiones tropicales de países asiáticos; Adaptada y explotada vegetativamente durante la última década en la región amazónica de los Estados Unidos continentales, esta fruta es ampliamente aceptada por sus características organolépticas, energéticas, nutricionales y de forma debido a su forma de estrella al corte horizontal, conocida como "Carambola" en el mercado internacional. ". (pág. 1).

Anemia

"La anemia es un trastorno de la sangre. La sangre es un líquido esencial para la vida que el corazón bombea constantemente por todo el cuerpo a través de las venas y las arterias. Cuando hay algo malo en la sangre, puede afectar la salud y la calidad de vida" (U.S. Department of health and Human Services, 2011).

Bebida

"Las bebidas son productos que poseen componentes fisiológicos que complementan su aporte nutricional y que representan un beneficio extra para la salud de las personas". (Makymat, s. f.)

Análisis Sensorial

"Es el examen de las propiedades organolépticas de un producto realizable con los sentidos humanos. Dicho de otro modo, es la evaluación de la apariencia, olor, aroma, textura y sabor de un alimento o materia prima". (García, s. f.)

2.5. Hipótesis y variables de la investigación

2.5.1. Hipotesis General

H₁: La bebida de spirulina, cushuro y carambola es bien aceptado por los escolares de la I.E Luis Fabio Xammar. Huacho, y aporta cantidades significativas de hierro para elevar los niveles de hemoglobina en sangre.

2.5.2. Hipotesis Especificas

He₁: La bebida de spirulina , cushuro y carambola buena aceptabilidad.

He₂: La bebida por su capacidad antioxidante y aporte de hierro, eleva los niveles de hemoglobina en sangre escolares de la I.E Luis Fabio Xammar. Huacho. 2019.

2.6. Operacionalización de las variables

En la tabla 17 se indican las variables.

Variable independiente:

 \bullet X₁: Niveles de spirulina, cushuro y carambola en la bebida funcional.

Variable dependiente:

- Y₁: Aportes de proteínas y hierro de alto valor biológico.
- Y2: Aumento de vlores de hemoglobina en sangre

Variable Interviniente:

- Sexo y edad de los escolares.
- Tiempo de ingesta de bebida funcional de spirulina, cushuro y carambola

Variable de Exclusión:

- Càpsula de espirulina : Otra variedad, de dudosa procedencia.
- Càpsula de espirulina sin Registro Sanitario.

Tabla 17: Operacionalización de Variables e Indicadores

Variables	Dimensiones	Indicadores	Categorías	Técnica	Instrumento
<u>Independiente:</u>	Nivel de mezcla	Cual es la mezcla más	Porcentaje	Flujo operaciones	Balanza y utensilios
Elaboración de		adecuada.			
bebida de	Comp. química	Aporte de nutrientes	Porcentaje	Análisis AOAC	Equipos y material de
spirulina,					laboratorio
cushuro y	Inocuidad	-BPM	Conforme	Análisis ICMSF	Cultivos y material de
carambola		-T° de cocción	75°C		laboratorio
Dependiente	Atributos	Aroma, color, textura,	1: Me disgusta mucho	Prueba afectiva	Escala de likert
Aceptabilidad	sensoriales	sabor	2: Me disgusta poco		
			3: No me gusta, ni		
			disgusta		
Anemia			4: Me gusta poco		
ferropénica			5. Me gusta mucho		
	Reducción de	Aporte de hierro	Porcentaje	Análisis AOAC	Equipos y material de
	Anemia	Aumento de	mg/dL	Dosaje bioquímico	laboratorio.
	ferropénica	hemoglobina			Hemoglobinómetro
Interviniente	-Edad	Edad del escolar	Años	Documental	Partida de nacimiento
	-Sexo	Género del escolar	1: Varón	Documental	Partida de nacimiento
			2: Mujer		
	-Temporalidad	Tiempo de tratamiento	Meses	Documental	Calendario

CAPITULO III: METODOLOGIA

3.1. Diseño metodológico

Es un estudio de tipo tecnológico, de nivel correlacional, longitudinal y de diseño

cuasiexperimental, porque se elaboró la bebida rica en hierro, se midió su aceptabilidad

y se trabajó con un grupo de escolares con pre y pos-test, donde la variable dependiente

se midió en tres momentos, con el objetivo de determinar la variación de los niveles de

hemoglobina en los escolares que recibieron la bebida funcional de spirulina, cushuro

y carambola, durante tres meses consecutivos y evaluar el efecto sobre los niveles de

hemoglobina en sangre de escolares del I.E Luis Fabio Xammar Jurado.

3.2. Población y Muestra de la investigación.

3.2.1. Población:

a) Bebida de spirulina, cushuro y carambola

Materia prima e Insumos : calidad comercial, certificación de proveedores.

Requisitos: según Codex Alimentario.

b) Evaluación de niveles de hemoglobina

30 escolares de ambos sexos del I.E Luis Fabio Xammar. Huacho. 2019.

3.2.2. Muestra:

a)Bebida de spirulina, cushuro y carambola

48

Materia prima:

- 12 Kg de Cushuro (*Nostoc commune*).
- 6 Kg de Carambola (Averrhoa carambola).
- 100 capsulas x 500 mg de Spirulina (Spirulina platensis)

Insumos:

- Edulcorante stevia250 g
- Agua carbonatada..... 50 L.
- Ácido ascórbico (Tabletas efervescentes de 1g c/u)...50 comprimidos

b) Evaluación de niveles de hemoglobina

Muestra no probabilística, se evaluaron los niveles de hemoglobina de 30 escolares de 11 a 12 años de edad del I.E Luis Fabio Xammar. Huacho. 2019, seleccionados por convenencia, de acuerdoa los criterios de inclusión y exclusión.

• Criterios de inclusión

- Esolares con anemia leve y moderada con tratamiento ambulatorio bajo supervisión médica
- Escolares con anemia leve y moderada que no se encuentren en tratamiento con sulfato ferroso
- Escolares que viven en la zona de estudio con anemia leve y moderada entre 11 a 12 años de edad.
- Los estudiantes que aceptaron participar en el estudio presentaban anemia leve y moderada, con consentimiento expreso.

• Criterios de exclusión

- Escolares con anemia leve y moderada con tratamiento ambulatorio sin supervisión médica
- Escolares con anemia leve y moderada que se encuentren en tratamiento con sulfato ferroso
- Escolares menores de 11 años de edad con anemia leve y moderada
- Escolares con anemia leve y moderada que no cuenten con el consentimiento informado.

3.3. Procedimientos

Se elaboró un producto alternativo a las bebidas funcionales convencionales denominado bebida de spirulina, cushuro y carambola, para prevenir la anemia ferropénica en escolares, que aporta hierro no hem y que va a producir un efecto positivo sobre la reducción de la anemia ferropénica. En la bebida funcional de spirulina, cushuro y carambola se realizarón los análisis mediante los siguientes métodos:

Tabla 18.

Ensayos y Métodos utilizados para el análisis proximal de la bebida funcional de spirulina, cushuro y carambola.

Ensayos	Métodos utilizados			
% KCAL Carbohidratos	Por calculo MS-INN Collazos 1993			
% KCAL Grasas	Por calculo MS-INN Collazos 1993			
% KCAL Proteinas	Por calculo MS-INN Collazos 1993			
Cenizas	AOAC 940-26 Cap. 37 pag. 7. 21 th			
	Editión 2019			
Energia total	Por calculo MS-INN Collazos 1993			
Proteínas	AOAC 920-152 Cap. 37 pag. 10. 21 th			
	Editión 2019			
Carbohidratos	Por diferencia MS-INN Collazos 1993			
Grasa	AOAC 905.02 Cap. 33 pag. 18. 21 th			
	Editión 2019			
Humedad	AOAC 925.45 Cap. 44 pag. 1, 21 th Editión			
	2019			
Hierro	AOAC 975.03 Cap. 3 pag. 5-6, . 21 th			
	Editión 2019			
Calcio	AOAC 985.35 Cap. 3 pag. 7-8, . 21 th			
	Editión 2019			

Experimentación de la bebida de spirulina (*Spirulina platensis*), cushuro (*Nostoc commune*) y carambola (*Averrhoa L.*), para prevenir la anemia ferropénica en escolares -2021.

Para la elaboración de la bebida se utilizó pulpas de cushuro, con certificación de la carambola y cápsulas de espirulina, según los métodos de la norma nacional recomendados por INDECOPI.

El experimento se llevó a cabo en un ambiente acondicionado. Las formulaciones preliminares se realizaron manteniendo constantes las cantidades de espirulina, stevia (edulcorante sin calorías), CMC (agente formador de gel) y ácido ascórbico (agente

formador de ácido), mientras que las cantidades de cushuro y carambola en pula (BCCS) se mantuvieron constantes. La estabilización del pH (pH 3,5) y la viscosidad de la bebida se logra con ácido ascórbico y CMC respectivamente. Las tablas 19 y 20 muestran los niveles más aceptables de mezclas de ingredientes de bebidas:

Tabla 19: Bebida base de bebida de spirulina, cushuro y carámbola

Bebida	BCCS		
	(g%)		
Cushuro (pulpa)	15,0		
Carámbola (Pulpa)	25,0		
Spirulina (capsulas)	0,10		
Agua (csp)	60,0		

Tabla 20: Aditivos complementarios en las bebidas formuladas

Aditivos	BCCS
	(g%)
Stevia	0,30
Sucralosa	6,00
CMC	0,20
Ácido ascórbico	0,10
Total	6,60

Preparación final de la bebida.

Se ha elaborado la bebida funcional de espirulina, cushuro y carambola, estándar de INDECOPI. NTP 203.110:2009. Zumos de fruta procesados, pulpas y concentrados.

Recepción de la materia prima.

Se utilizo el método no probabilistico para la toma de muestra

Seleccionado y pesado.

Materias primas certificadas de primera calidad. Se realizó un pesaje para tener en cuenta las pérdidas de procesamiento.

Desinfección y lavado.

Solución de cloro min 20 ppm y lavado por arrastre.

Acondicionado de materia prima.

El cuchillo se usa para quitar la pulpa, separar las frutas magulladas con signos de daño, prestar atención a la madurez de la fruta para evitar la contaminación microbiana.

Mezclado y homogenizado.

La fruta de pasta se mezcla con la concentración especificada en la tabla de fórmulas. (Tablas 19 y 20).

Pasteurizado.

La mezcla homogeneizada se normalizó con la adición de edulcorante stevia y se concentró en caliente hasta que la concentración de sólidos solubles alcanzó el 12,0%. La temperatura media será de 95°C y el tiempo será de unos 5 minutos. Luego se retirará del fuego y se agregará CMC.

Envasado y sellado.

La bebida se envasó en caliente a 80°C , con el objetivo que forme vacío para garantizar la conservación del producto. Se sellaron con tapa roscas.

Enfriado y refrigerado.

El producto se somete a un choque térmico bajo un chorro de agua fría para inducir la plasmólisis de las células en los microorganismos y asegurar su conservación; luego se enfría de 1 - 4 °C.

Etiquetado.

Los envases están etiquetados con los **ingredientes** utilizados en la preparación, composición química, propiedades naturales, fecha de preparación y vida útil.

Almacenado.

Las bebidas se mantienen refrigeradas entre 1 y 4°C durante 90 días; Durante esta fase, se realizan controles de calidad y pruebas de aceptabilidad en niños en edad preescolar mediante fichas faciales de degustación.

Lugar: Univ. Nac. José Faustino Sánchez Carrión Producto: Bebida de spirulina, cushuro y carambola.	OPERACIONES	SÍMBOLOS Operación Operación - Inspección Transporte	NÚMERO 04 04	
Inicia: Compras Termina: Almacenado		Espera Almacenado	06 02	
OPERACIONES	SÍMB	dolos	OBSERVACIONES	
Recepción de materia prima			Adquisición en Centro Comercial	
Seleccionado y pesado			Buena calidad comercial	
Desinfección y lavado	•		Sol. Clorada 20 ppm	
Acondicionado	04	•	Pulpa de carambola y cushuro. Spirulina polvo	
Mezclado y homogenizado	0		"BCCS".	
Pasteurizado	•		95°C por 5 min.	
Envasado y sellado	•		Botellas de plástico con tapa roscas	
Enfriado y refrigerado			T° 1°C – 5°C.	
Etiquetado			Etiquetado nutricional.	
Almacenado		-0	T° refrigeración (1°C-5°C) x 30 días	

Figura 1: Flujo de proceso de bebida de spirulina, cushuro y carambola.

3.4. Técnicas de recolección de datos

a) Método de Entrevista – Interrogatorio:

Aplicación de la escala de Likert para niños en edad preescolar en la investigación para determinar el nivel de aceptación y sabor de los productos.

b) Métodos analíticos de control de calidad:

Métodos oficiales de la AOAC para bebidas y concentrados de frutas y criterios microbiológicos de higiene.

c) Método de análisis de hemoglobina:

Medición cuantitativa de hemoglobina con Hemoglobinòmetro.

3.4.1. Instrumentos de recolección de datos.

- Entrevista para recoger datos de la evaluación sensorial de la bebida "BCCS".
- Protocolos de análisis de producto terminado.
- Formatos para registrar datos.
- Programa estadístico SPSS v. 20

3.4.2. Descripción de los instrumentos

Para realizar la investigación, la materia prima que se utilizó fue càpsulas de spirulina, cushuro y carambola, acompañado de otros aditivos. Para la elaboración se utilizaron los siguientes equipos: 2 cocina industrial, 1 cilindro de gas, 1 balanza, refrigeradora, licuadora, termómetro digital y pHmetro digital, además de materiales con los que debe contar el lugar de trabajo como una mesa y utensilios de procesamiento, 3 ollas grandes, 1 paquete de cucharas, 2 cucharones. 1 cuchillo, 2 jarras medidoras, 1 caja de fosforo, 3 bols, 2 cooler, 10 docenas de vasos de vidrio y como medida de higiene y protección se utiliza mandil, gorra, mascarilla, guantes, papel de toalla, lejía, lavavajillas, esponja, trapo secador y detergente.

Se utilizó como instrumento la prueba de aceptación- escala de Likert de 5 puntas que comprende de una degustación en el cual cada escolar, evaluó las

muestras representados con códigos y ordena según la muestra de mayor agrado a la que le disgusto más, según su aroma, color, textura y sabor.

3.5. Técnicas para el procesamiento de la información

Una vez que los datos se recopilan con la herramienta, se registran, tabulan y cifran. El análisis se realizó con el programa estadístico SPSS versión 22, y R, para organizar y presentar los datos e información recolectada de los estudiantes IE Luis Fabio Xamar. Se utilizó Microsoft Excel 2020, para elaborar tablas y gráficos estadísticos.

• Prueba de aceptabilidad

La evaluación de las propiedades sensoriales de la bebida se elaboró a través de pruebas de sabor. Para la evaluación sensorial, se utilizarón fichas de calificación por puntos de cuatro puntas.

- 1 = Me disgusta mucho.
- 2 = Me disgusta poco.
- 3 = No me gusta, ni disgusta
- 4 = Me gusta poco
- 5 = Me gusta mucho

Los datos se recopilaron mediante pruebas de sabor en 30 estudiantes...

 Diferencias significativas entre variables: Bebida funcional* aumento de hemoglobina.

Contrastación de hipótesis.

ANOVA

Hipótesis nula

 H_o = No existen diferencias significativas en los valores de la hemoglobina en los escolares de la I.E Luis Fabio Xammar. Huacho. 2019, al inicio, primer mes, segundo y tercer mes de tratamiento con dieta y bebida funcional de spirulina, cushuro y carambola (BCCS).

Hipótesis alterna

Ha = Si, existen diferencias significativas en los valores de la hemoglobina en los escolares de la I.E Luis Fabio Xammar. Huacho. 2019, al inicio, primer mes, segundo y tercer mes de tratamiento con dieta y bebida funcional de spirulina, cushuro y carambola (BCCS).

Prueba de signos con rangos de Wicoxon y corregido con la prueba de Bonferroni.

Hipótesis nula

H_o= El aumento de los niveles de hemoglobina en los escolares de la I.E Luis Fabio Xammar. Huacho. 2019, por la ingesta de bebida funcional de spirulina, cushuro y carambola (BCUS) durante los tres meses de tratamiento, no es significativo.

Hipótesis alterna

Ha = El aumento de los niveles de hemoglobina en los escolares de la I.E Luis
 Fabio Xammar. Huacho. 2019, por la ingesta de bebida funcional de spirulina, cushuro y carambola (BCUS) durante los tres meses de tratamiento, si es significativo.

Efecto sobre los niveles de hemoglobina (D de Cohen)

- H_o = El efecto sobre los niveles de hemoglobina en los escolares de la I.E Luis Fabio Xammar. Huacho. 2019, por la ingesta de bebida funcional de spirulina, cushuro y carambola (BCUS) durante los tres meses de tratamiento, no es significativo.
- Ha = El efecto sobre los niveles de hemoglobina en los escolares de la I.E Luis
 Fabio Xammar. Huacho. 2019, por la ingesta de bebida funcional de

spirulina, cushuro y carambola (BCUS) durante los tres meses de tratamiento, si es significativo.

Decisión Estadística:

D de Cohen < 0,2 = Efecto de baja magnitud

D de Cohen 0,5 = Efecto de media magnitud

D de Cohen >0,5 = Efecto de alta magnitud

CAPITULO IV: RESULTADOS

4.1. Analisis de resultados

Tabla 21.

Analisis Quimico Proximal de la Bebida de Spirulina Cushuro y Carambola

Ensayos	Resultados
% Kcal Carbohidratos	97,1
% Kcal Grasas	0,0
% Kcal Proteinas	2,9
Cenizas (100 g de muestra original)	0,2
Energia total (kcal/100 g de muestra original)	13,6
Proteínas (g/100 g de muestra original)	0,1
Carbohidratos (g/100 g de muestra original)	3,3
Grasa (g/100 g de muestra original)	0,0
Humedad (g/100 g de muestra original)	96,4
Hierro (mg/L)	8,4
Calcio (mg/L)	136,0

Fuente: El autor

Tabla 22: Analisis físico-quìmico de la Bebida de Spirulina Cushuro y Carambola

Componentes	Resultados
Densidad (g/cm ³)	1,0700
рН	4,5
Acidez	0,8
Brix	12°Brix

Fuente: El autor

Tabla 23: Análisis sensorial de la Bebida de Spirulina Cushuro y Carambola

Componentes	Resultados
Color	Verde claro
Olor	Suigéneris
Sabor	Ligeramente acido
Consistencia	Liquida
Aspecto	Homogéneo
Fuente: El euter	

Fuente: El autor

Tabla24.

Análisis microbiológico "bebida de spirulina (spirulina platensis.), cushuro (nostoc commune) y carambola (averrhoa carambola l.)

Referencia	1 día	30 días	60 días
Numeración de Aerobios Mesófilos Viables	<1	<1	<1
$(UFC/ml = V^{\circ}N^{\circ} 10^4 - 10^{5*}$			
Numeración de Salmonellas	0	0	0
$(UFC/ml) = V^{\circ}N^{\circ} = <10^{3*}$			
Numeración de Coliformes	0	0	0
$(UFC/ml) = V^{\circ}N^{\circ} = <3^*$			
Numeración de Hongos	<1	<1	<1
$(UFC/ml) = V^{\circ}N^{\circ} = <10^{3*}$			

Fuente: El autor

Tabla 25: Evaluación de lo atributos de la Bebida de Spirulina Cushuro y Carambola

Atributos	Me disgusta mucho	Me disgusta poco	Ni me gusta, ni me disgusta	Me gusta poco	Me gusta mucho	Total	%
Aroma	0	0	1	4	25	30	83.33
Color	0	0	0	6	24	30	80
Textura	0	0	0	5	25	30	83.33
Sabor	0	0	4	4	22	30	73.33
Aceptab.	0	0	2	10	18	30	60

Tabla 26: Número de Alumnos escolares expuesto según genero

			Porcentaje	Porcentaje
Sexo	Frecuencia	Porcentaje	válido	acumulado
Femenino	15	50,0	50,0	50,0
Masculino	15	50,0	50,0	100,0
Total	30	100,0	100,0	

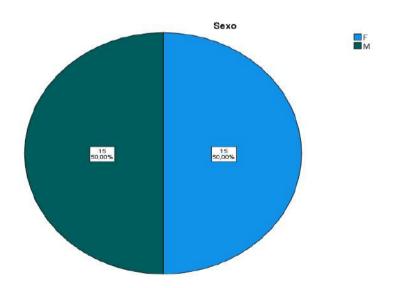


Fig.2: Alumnos escolares por genero

Tabla 27: Noveles de hemoglobina inicial en varones y mujeres escolares con anemia

				Porcentaje	Porcentaje
		Frecuencia	Porcentaje	válido	acumulado
Válido	Moderado	4	13,3	13,3	13,3
	Leve	8	26,7	26,7	40,0
	Normal	18	60,0	60,0	100,0
	Total	30	100,0	100,0	

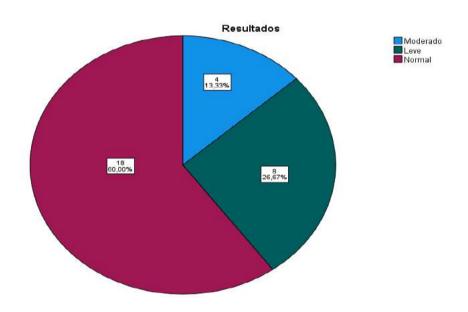


Fig. 3: Niveles de Hemoglobina inicial según género

Tabla 28.

Estadistico descriptivo de los promedios y desviación estándar de los niveles de hemoglobina al inicio en escolares femeninos y masculinos con anemia.

	Niveles de Hemoglobina (g/dL).								
N	Media	Desv. estándar	Error estándar	, , , , , , , , ,	ntervalo de oara la media	Mínimo	Máximo		
			estandar	estanuai	L. inferior	L. superior			
F	15	12,2133	1,67540	,43259	11,2855	13,1411	8,30	14,00	
M	15	12,2600	1,63261	,42154	11,3559	13,1641	8,00	14,20	
Total	30	12,2367	1,62555	,29678	11,6297	12,8437	8,00	14,20	

Se puede observar que la media promedio total de los niveles de hemoglobina en sangre al inicio de la investigación entre ambos sexo es de 12,2367; con una desviación estándar de 1,62555 respectivamente.

Fig. 3. Niveles de hemoglobina de la media promedio por género

Tabla 29. Análisis de Varianza

Fuente	G. L.	SC ajustada	MC ajustada	Valor F	Valor p
Sexo	1	0,0163	0,01633	,01	0,939
Error	28	76,6133	2,73619		
Total	29	76,6297			

Tabla 30.

Estadistico descriptivo de los promedios y desviación estándar de valores normales de concentración de hemoglobina y niveles de anemia en los escolares.

	Niveles de Hemoglobinag/dL										
					95% de intervalo de confianza para la media		Mínimo	Máximo			
			Desviació	Error	Límite	Límite					
	N°	Media	n estándar	estándar	inferior	superior					
Moderado	4	9,3250	1,40089	,70045	7,0959	11,5541	8,00	10,90			
Leve	8	11,2750	,17525	,06196	11,1285	11,4215	11,00	11,40			
Normal	18	13,3111	,70451	,16606	12,9608	13,6615	11,80	14,20			
Total	30	12,2367	1,62555	,29678	11,6297	12,8437	8,00	14,20			

Se puede observar que la media promedio de anemia moderado , leve y normal es 9,3250 mg/dL; 11,2750 mg/dL y 13,3111 mg/dL, respectivamente; siendo la media total de 12,2367 mg/dL , con una desviación estándar en la anemia moderada 1,40089 mg/dL, leve de 0,17525 mg/dL y normal de 0,70451mg/dL, siendo el total de la desviación estándar de 1,62555 mg/dL.

Tabla 31.

Tabla cruzada de los valores normales de concentración de hemoglobina y niveles de anemia en los escolares según género, al inicio.

		-			Total					
		M	oderado	Lev	Leve		Normal			
		N	%	N	%	N	%	N	%	
Carro	F	2	50,0%	5	62,5%	8	44,4%	15	50,0%	
Sexo	M	2	50,0%	3	37,5%	10	55,6%	15	50,0%	
Total		4	100,0%	8	100,0	18	100,0%	30	100,0	
					%				%	

Se puede observa al inico de la investigación que la anemia moderada es de 50% en ambos sexo; teniendo el sexo femenino 62,5 % de anemia leve, asi como un 37;5 % en el sexo masculino; y los niveles normales de hemoglobina en sangre es de 44,4% en femenino y 55,6% en masculino.

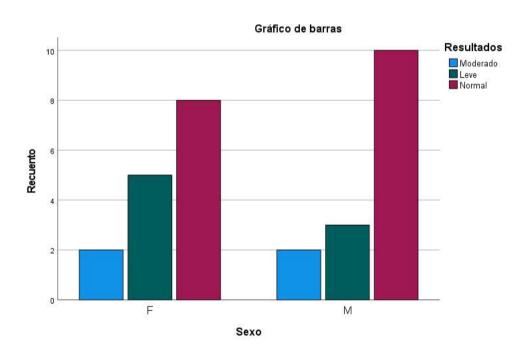


Fig. 4. Niveles de anemia, según valores de hemoglobina en los escolares por género

Tabla 32.

Estadistico descriptivo de ambos sexos con dieta y bebida funcional de spirulina, cushuro y carambola, durante tratamiento.

						95% de int	ervalo de		
						confianza	para la		
						media			
				Desv.	Error	Límite	Límite		
		N°	Media	estándar	estándar	inferior	superior	Mínimo	Máximo
Inicio	F	15	12,213	1,67540	,43259	11,2855	13,1411	8,30	14,00
	M	15	12,2600	1,63261	,42154	11,3559	13,1641	8,00	14,20
	Total	30	12,236	1,62555	,29678	11,6297	12,8437	8,00	14,20
1er mes	F	15	12,313	1,6928	,4371	11,376	13,251	8,0	14,0
	M	15	12,440	1,5315	,3954	11,592	13,288	8,5	14,3
	Total	30	12,377	1,5874	,2898	11,784	12,969	8,0	14,3
2do	F	15	12,673	1,1634	,3004	12,029	13,318	10,5	14,0
mes	M	15	12,813	1,1122	,2872	12,197	13,429	10,4	14,2
	Total	30	12,743	1,1206	,2046	12,325	13,162	10,4	14,2
3er mes	F	15	13,087	,9410	,2430	12,566	13,608	11,4	14,2
	M	15	13,213	,9643	,2490	12,679	13,747	11,4	14,4
	Total	30	13,150	,9384	,1713	12,800	13,500	11,4	14,4

Se puede observa que durante el tratamiento con dieta y bebida funcional que la media promedio total de los niveles de hemoglobina en sangre entre ambos sexos es de 13,150 mg/dL; con una desviación estándar de 0,9384 mg/dL, respectivamente.

Tabla 33.
Estadísticos Descriptivos

	Ini	cio	Prime	er mes	Segun	do mes	Terce	er mes
	\mathbf{F}	\mathbf{M}	\mathbf{F}	\mathbf{M}	\mathbf{F}	\mathbf{M}	${f F}$	M
Válido	15	15	15	15	15	15	15	15
Moda	11.4	13.5	11.6	11.8	13.9	13.6	13.5	12.3
Mediana	12.8	12.5	12.9	12.5	12.9	12.8	13.3	13.5
Media	12.213	12.26	12.313	12.44	12.673	12.813	13.087	13.213
Desviación Típica	1.675	1.633	1.693	1.531	1.163	1.112	0.941	0.964
Coeficiente de Variación	0.137	0.133	0.137	0.123	0.092	0.087	0.072	0.073
Mínimo	8.3	8	8	8.5	10.5	10.4	11.4	11.4
Máximo	14	14.2	14	14.3	14	14.2	14.2	14.4
25th percentile	11.35	11.35	11.55	11.8	11.9	12	12.4	12.3
50th percentile	12.8	12.5	12.9	12.5	12.9	12.8	13.3	13.5
75th percentile	13.65	13.5	13.7	13.55	13.75	13.6	13.9	13.95

^a Existe más de una moda, solo se informa de laprimera

Tabla 34.

Contraste de Normalidad (Shapiro-Wilk)

		W	p
Inicio -	Primer mes	0,883	,003
Inicio -	Segundo mes	0,711	< ,001
Inicio -	Tercer mes	0,821	< ,001

La comprobación del supuesto de normalidad (Shapiro-Wilk) es significativa, sugiriendo que las diferencias apareadas no tienen una distribución normal, por lo que se analizara usando la prueba no paramétrico, la prueba de rangos con signo de Wilcoxon.

Las figuras 5, 6 y 7 y la estadística descriptiva en las tablas 35 y 36, muestran que hubo un aumento en la hemoglobinal tras seguir la dieta y la ingesta de la bebida funcional spirulina, cushuro y carambola durante 3 meses.

Inicio - Primermes

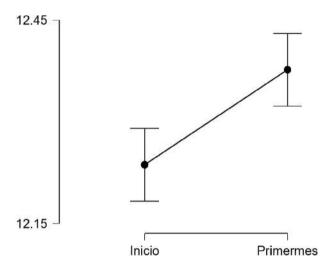


Fig. 5: Variación de los valores de hemoglobina durante el primer mes

Inicio - Segundo mes

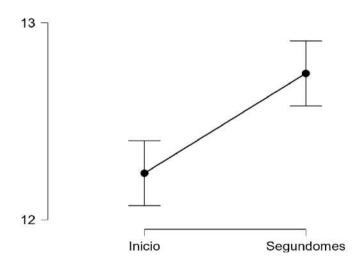


Fig. 6: Variación de los valores de hemoglobina durante el sgundo mes

Inicio – Tercer mes

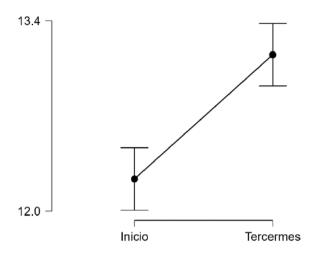


Fig. 7: Variación de los valores de hemoglobina durante el tercer mes

Tabla 35.

Análisis de varianza de los efectos dieta y bebida funcional de spirulina, cushuro y carambola sobre los valores de hemoglobina de los escolares

Casos	Corrección de esfericidad	Suma de cuadrados	gl	Cuadrado medio	F	p	ω^2
Tiempo	Greenhouse- Geisser	15.063	1.204	12.51	24.305	< .001	0.062
Residuals	Greenhouse- Geisser	17.972	34.917	0.515			

Hay una diferencia significativa entre las medias de los valores de la hemoglobina de los escolares durante los tres meses de tratamiento (pvalor <,001).

Tabla 36.

Descriptivos de los valores de hemoglobina de los escolares durante los tres meses de tratamiento con dieta y bebida funcional de spirulina, cushuro y carambola

Tiempo	Media	DT	N°
Inicio	12.237	1.626	30
Primer mes	12.377	1.587	30
Segundo mes	12.743	1.121	30
Tercer mes	13.15	0.938	30

El análisis descriptivo sugiere que los niveles de hemoglobina en sangre fueron más altos en el tercer mes (13,15), comparados con los obtenidos al inicio y el primer y segundo mes.

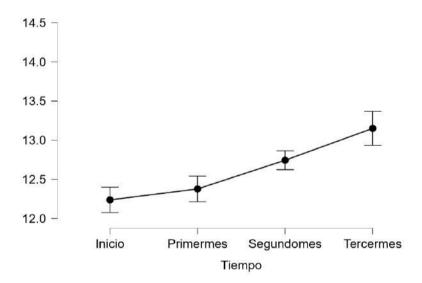


Fig. 8: Variación de los valores de hemoglobina durante los tres meses

4.2. Contrastación de Hipótesis

Tabla 37.

Descriptivos de los valores de hemoglobina delos escolares según prueba de Bonferroni y

D de cohen durante los tres meses de tratamiento con dieta y bebida funcional de

spirulina, cushuro y carambola

		Diferencia Media	ET	t	D de Cohen	$\mathbf{p}_{ ext{holm}}$
Inicio	Primer mes	-0.14	0.117	-1.193	-0.218	0.236
	Segundo mes	-0.507	0.117	-4.317	-0.788	< .001
	Tercer mes	-0.913	0.117	-7.783	-1.421	< .001
Primer mes	Segundo mes	-0.367	0.117	-3.124	-0.57	0.005
	Tercer mes	-0.773	0.117	-6.59	-1.203	< .001
Segundo mes	Tercer mes	-0.407	0.117	-3.465	-0.633	0.002

El análisis post hoc usando la corrección de Bonferroni corroboró que los niveles de hemoglobina no aumentaron significativamente durante el primer mes (diferencia de las medias = 0,14 unidades, p < 0,236), pero los niveles de hemoglobina aumentaron significativamente a medida que pasó el tiempo entre los meses 1 y 2 (diferencia de las medias = 0,367 unidades, p = 0,005) y entre los meses 2 y 3 (diferencia de las medias = 0,407 unidades, p = 0,002).

Tabla 38.

Prueba de Contraste T para Muestras Emparejadas

Medida 1		Medida 2	W	p	Estimación de Hodges- Lehmann	Correlación de Rango Biserial
Inicio	-	Primer mes	35	< .001	-0.15	-0.767
Inicio	-	Segundo mes	0	< .001	-0.45	-1
Inicio	-	Tercer mes	0	< .001	-0.75	-1

Nota. Contraste de rangos con signo de Wilcoxon.

Se observa una diferencia significativa en ,los valores de la hemoglobina de los escolares al inicio del estudio y después de tres meses de tratamiento con dieta y bebida funcional de spirulina, cushuro y carambola. La estimación de Hodges- Lehmann y la D de Cohen (tabla 37) muestran que el efecto de la ingesta de la bebida funcional de spirulina, cushuro y carambola complementaria a la dieta tiene un efecto moderado sobre el aumento de los valores de la hemoglobina, y en ese sentido ,puede prevenir en los escolares el desarrollo de la anemia ferropénica.

CAPITULO V: DISCUSIÓN

La bebida funcional de spirulina, cushuro y carambola elaborada con 15g% de pulpa de cushuro, 25g% de pulpa de carambola y 0,10g% de spirulina diluido con 60g% de agua, son del agrado de los escolares cuyos atributos sensoriales de aroma y textura, alcanzaron una elevada calificación del 83,33% y en cuanto al sabor fue de 73,33%, resultados comparable a la bebida de limón y capulí, enriquecida con spirulina que tuvo unas aceptación del 80% de las preferencias de las personas que degustaron el producto, (Izquierdo & Gomero, 2018). Bebida elaborada con 92,5% de harina de maíz y 7,5% de spirulina que tuvo buena aceptabilidad (Arhuire & Betancur, 2016), y en cuanto a la utilización del cushuro en la preparación de empanadas saladas fue del 69% y en empanadas dulces fue del 89%. (Leiva & Sulluchuco, 2018)

Respecto al valor nutricional, es un alimento hipocalórico que tiene bajo contenido de proteínas y carbohidratos, no contiene grasa, sin embargo, 100 ml de la bebida funcional aporta el 20% de los requerimientos diarios de hierro. Hun significativo los resultados de hierro y calcio de la bebida funcional a base de Spirulina, cushuro y carambola para prevenir la anemia en escolares, a pesar que se encuentra diluida la muestra, nos presenta un elevado contenido de hierro y 2% de calcio, resultados que sin comparables comparado a la bebida de limón y capulí, enriquecida con spirulina que contenía $6,53 \pm 0,281\%$ g% de proteínas, $3,58\% \pm 0,2784$ g% de fibra dietaria, $5,13 \pm 0,124$ mg% de hierro y $84,20 \pm 2,168$ mg% de vitamina C, con propiedades para prevenir la anemia ferropénica (Izquierdo & Gomero, 2018) y bebida con 92,5% de harina de maíz y 7,5% de spirulina que contenía 13,4 g de proteína, 4,24g de grasa ,69,41g de carbohidratos ,3,71 g de fibra y 369,44 Kcal. (Arhuire & Betancur, 2016)

En cuanto al hierro Sánchez et al (2003) citado por Energy green (2019) detalla que el hierro que se encuentra en la spirulina, es necesario en el tratamiento de la anemia hipoférrica ya que este se absorbe 60% más que el sulfato ferroso y otros complementos. La spirulina es un alimento con un gran aporte nutricional a la dieta de ser humano, su alto contenido de proteína hace de este un excelente complemento alimenticio, además de eso, aporta una cantidad de aminoácidos esenciales para el hombre, como también aminoácidos no esenciales (Roxana & Ramírez (2006) citado por Cárdenas, Díaz, & Vizcaíno, (2010).

El Nostoc andino contiene por cada 100 g de producto desecado 25,4 g de proteínas, 62,4 g de glúcidos, 0,80 g de lípidos, 6,30 g de agua, 5,10 g de ceniza, 258 mg de fósforo, 1,076 g de calcio, 19,6 mg de hierro y 10 μg de vitamina A. De acuerdo con estas informaciones se demuestra que el Nostoc sí es un nutriente importante para mejorar la alimrentación del escolar Ponce (2014) citado por Adrian (2018, pág. 12).

El análisis post hoc muestra que hay diferencias significativas en los niveles de hemoglobina en sangre durante los tres meses de tratamiento, mientras que el valor de la D de Cohen indica que el tamaño del efecto sobre los valores de la hemoglobina durante el primer mes son bajos (0,218), sin embargo durante el segundo mes (0,57) y en el tercer mes (0,633), el efecto fue mayor, los valores de la hemoglobina en los escolares tuvieron un aumento moderado, siendo mayor después del tercer mes de tratamiento,

CAPITULO VI: CONCLUSIONES Y RECOMEDACIONES

6.1. Conclusiones

- 1. La bebida funcional de spirulina, cushuro y carambola elaborada con 15g% de pulpa de cushuro, 25g% de pulpa de carambola y 0,10g% de spirulina diluido con 60g% de agua, tiene buena aceptación por los escolares de la Institución Educativa Luis Fabio Xammar Jurado. Distrito de Santa María, con la calificación nominal de "me gusta mucho" en el 83.33%, 80%, 83,33%, 73.33% y 60% en los atributos sensoriales de aroma, color, textura, sabor y aceptabilidad respectivamente.
- 2. La bebida funcional a base de spirulina, cushuro y carambola es un alimento hipocalórico que aporta 97.1 kcal%, 2.9 g%, de proteínas, 8.4 mg/L de hierro, 136,0 mg/L de calcio, asimismo, cumple con los criterios microbiológicos de coliformes, salmonellas y hongos conforme a las normas vigentes.
- 3. Los niveles de hemoglobina en 30 escolares de ambos sexos de la Institución Educativa Luis Fabio Xammar Jurado. durante los tres meses de la aplicación de la bebida de spirulina, cushuto y carambola, tuvieron un aumento moderado, siendo mayor después del tercer mes de tratamiento, presentaron diferencias significativas en los niveles de hemoglobina en sangre durante los tres meses de tratamiento. Existen evidencias estadísticas según la el D de Cohen que el tamaño del efecto sobre los valores de la hemoglobina durante el primer mes fueron bajos (0,218), sin embargo durante el segundo mes (0,57) y en el tercer mes (0,633), el efecto fue mayor.

6.2. Recomendaciones.

- Realizar un estudio de costos y pre-factibilidad para la industrialización y comercialización de la bebida de spirulina, cushuro y carambola, para prevenir la anemia ferropénica en escolares.
- Identificar los componentes bioactivos y fitoquímicos de bebida de spirulina, cushuro y carambola, para prevenir la anemia ferropénica en escolares e investigar sus propiedades farmacológicas.
- 3. Promover el consumo de la bebida de spirulina, cushuro y carambola, para prevenir la anemia ferropénica en escolares, como una alternativa para contrarrestar los efectos secundarios de la anemia.
- Promover el uso de la bebida de spirulina, cushuro y carambola en la diversificación de productos alternativos en la prevención de las enfermedades asociadas a la anemia.

CAPÍTULO V: FUENTES DE INFORMACIÓN

- Adrian, R. (2018). Evaluación de la producción de Nostoc sp (cushuro) en cochas construídas a diferentes profundidades dentro de un ecosistema de humedal, en el sector carpa, distrito de Cátac Ancash, 2017-2018. Julio: Universidad Nacional Santiago Antúnez de Mayolo. Obtenido de file:///C:/Users/user/Downloads/T033_46924089_T%20(4).pdf
- Adriano, W. (2019). Conocimiento y aceptabilidad de platos a base de nostoc "Cushuro" como alternativa alimentaria en agentes comunitarios de salud en el distrito de pueblo libre, 2018. Lima: Universidad Nacional Federico Villarreal. Facultad de Medicina "Hipólito Unanue". Obtenido de http://repositorio.unfv.edu.pe/bitstream/handle/UNFV/3125/UNFV_ADRIANO_MACHA_WILLIAM_TITULO-PROFESIONAL_2019.pdf?sequence=1&isAllowed=y
- Alvarado, J., & Cedeño, S. (2019). Evaluación física, química, microbiológica y sensorial en bebida de Carambola (Averrhoa carambola) pasteurizada y conservada a 4°C durante 15 días. Universidad Laica Eliy Alfaro de Manabi. Manta. Manabi-Ecuador.
- Arhuire, J., & Betancur, Y. (2016). Aceptabilidad y calidad nutricional de la mezcla de harina de maíz morado (Zea mays l.) enriquecida con harina spirulina (Arthrospira platensis) para la elaboración del api, arequipa 2016. Arequipa: Universidad Nacional de San Agustin. Facultad Ciencias Biológicas. Obtenido de http://repositorio.unsa.edu.pe/bitstream/handle/UNSA/1852/NUarhujd.pdf?sequen ce=1&isAllowed=y

- Asero, L. (2014). Obtención de la espirulina en polvo por secado al vacío para el enriquecimiento nutricional de los productos alimenticios. Quito:

 Universidad Central del Ecuador. Facultad de Ingenieria Química. Obtenido de http://www.dspace.uce.edu.ec/bitstream/25000/2880/1/T-UCE-0017-82.pdf
- Barahona, D., & Col. (2020). Desarrollo de una bebida a base de espirulina, maracuyá y agua de coco. Universidad San Francisco de Quito USFQ. Ingeniería en Alimentos.
- Bohórquez, S. (2017). Efecto de la espirulina en el manejo de las alteraciones metabólicas relacionadas a la obesidad. Revisión Sistemática. Lima: Universidad San Ignacio de Loyola. Escuela de posgrado de la Unidad San. Obtenido de http://repositorio.usil.edu.pe/bitstream/USIL/2711/1/2017_Bohorquez_Efecto-de-la-espirulina.pdf
- Calderón, S. (2018). Elaboración de una bebida de amaranto (Amaranthus tricolor) y espirulina (Spirulina maxima). Tesis. Universidad San francisco de Quito-Ecuador.
- Cárdenas, J., Díaz, M., & Vizcaíno, M. (2010). *Industrialización del alga spirulina*. Cali:

 Universidad del Valle. Obtenido de
 file:///C:/Users/user/Downloads/2010Cardenasetal.IndustrializacindelalgaSpirulina
 .pdf
- Colectivo de autores. (1997). Filosofía y medicina. Editorial de Ciencias Sociales. España.
- El Tiempo. (2021). *Cushuro, más calcio que la leche y más hierro que las lentejas* .

 Obtenido de https://eltiempo.pe/cushuro-alga-promete-desnutricion-anemia-mp/

- Energygreen. (01 de febrero de 2019). *Spirulina en capsulas: Usos, Beneficios y contraindicaciones Comprar*. Obtenido de Origen de la Espirulina : https://energygreen.pe/deporte/espirulina-usos-beneficios-y-contraindicaciones/
- Eroski Consumer. (s.f.). *Carambola* . Obtenido de https://frutas.consumer.es/carambola/propiedades
- FAO. (2006). *Carambola*. Obtenido de http://www.ipcinfo.org/fileadmin/user_upload/inpho/InfoSheet_pdfs/CARAMBOL A.pdf
- García, M. (s. f.). *Análisis sensorial de Alimentos*. Universidad Autónoma del Estado de Hidalgo. Obtenido de https://www.uaeh.edu.mx/scige/boletin/icbi/n3/m1.html
- Gutierrez, K., & Tello, L. (2018). Evaluación de la incorporación de espirulina sobre las propiedades nutricionales y sensoriales de una galleta a base de harina de trigo y kiwicha. Lima: Universidad Peruana de Ciencias Aplicadas. Facultad de Ciencias de la Salud. Obtenido de https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/624916/Guti%C3 %A9rrez VK.pdf?sequence=1&isAllowed=y
- Hassler, C. (1996). Functional Food: the Western perspectives. *Nutr. Rev.*, 54(11), S6-S10.
- Herrera, M. (2016). Food and Agricultural Organization (FAO). Food losses and waste in Latin America and the Caribbean. En M. Herrera (Ed.). Boletín 3.

Instituto Nacional de Salud. (2014). Obtenido de https://web.ins.gob.pe/

Irkman, O. (2019). Effect of Spirulina Biomass Fortification for Biscuits and Chocolates.

Turkish Journal of Agriculture - Food Science and Technology, 4, 583-587.

- Izquierdo, S., & Gomero, A. (2018). Elaboraron bebida de limón (Citrus limón) y capulí (Prunus serotina) enriquecida con spirulina (Arthrospira platensis), para la prevencion de la deficiencia de proteínas y hierro, en el preescolar. Tesis. Universidad Nacional José Faustino Sánchez Carrión. Huacho-Perú.
- Leiva, C., & Sulluchuco, P. (2018). Evaluación de la aceptabilidad del cushuro (Nostoc sphaericum) en preparaciones culinarias saladas y dulces, por estudiantes universitarios, Lima 2018. Lima: Universidad Peruana Unión. Facultad de Ciencias de la Salud. Obtenido de https://repositorio.upeu.edu.pe/bitstream/handle/UPEU/1612/Percy_Tesis_Licenci atura_2018.pdf?sequence=5&isAllowed=y
- Leiva, L. (2015). Concepto de materialismo filosófico. Materialista es sencillamente aquella corriente filosófica que intenta explicar el mundo a través del mundo mismo. Recuperado el 09 de enero de 2018, de www.contrainfo.com/13412/que-es-el-materialismo-filosofico/
- Makymat. (s. f.). *Bebidas funcionales*. Obtenido de http://www.makymat.com/contenido/archivospdf/BebidasFuncionales.pdf
- Monteagudo, E., & Ferrer, B. (2010). Deficiencia de hierro en la infancia (I). Concepto, prevalencia y fisiología del metabolismo férrico. *Acta Pediatr Esp*, 68(6), 245-251. Obtenido de file:///C:/Users/Administrador/Downloads/Nutricion_Deficiencia.pdf
- Organización Mundial de la Salud. (2020). *Anemia*. Obtenido de https://www.who.int/es/health-topics/anaemia#tab=tab_1
- Organización Mundial de la Salud. (2020). Las nuevas orientaciones de la OMS ayudan a detectar la carencia de hierro y a proteger el desarrollo cerebral. Obtenido de

- https://www.who.int/es/news/item/20-04-2020-who-guidance-helps-detect-iron-deficiency-and-protect-brain-development
- Ponce, E. (enero-abril de 2013). Superalimento para un mundo en crisis: Spirulina a bajo costo. *IDESIA* (*Chile*), 31(1), 135-139. Obtenido de https://scielo.conicyt.cl/pdf/idesia/v32n2/art15.pdf
- Ponce, E. (2014). Nostoc: un alimento diferente y su presencia en la precordillera de Arica. *Idesia*, 32(2).
- Ramírez, L., & Olvera, R. (2006). Uso tradicional y actual de Spirulina sp (Arthrospira sp.).

 **Interciencia, 31(9), 657-663. Obtenido de file:///C:/Users/user/Downloads/Uso_tradicional_y_actual_de_Spirulina_sp_Arthrospi.pdf
- Solis, C. (2010). Modelamiento matemático de la transferencia de sacarosa en la deshidratación osmótica del fruto de la carambola (Averrhoa carambola L.). Puerto Maldonado: Universidad Nacional Amazonica de Madre de Dios. Obtenido de http://repositorio.unamad.edu.pe/bitstream/handle/UNAMAD/59/004-2-1-007.pdf?sequence=1&isAllowed=y
- Tarazona, M. (2020). La Espirulina una Oportunidad Como Alimento Funcional. Ingeniera de Alimentos. Profesora Asociada II, Facultad de Ingeniería, Universidad Jorge Tadeo Lozano, Bogotá.
- U.S. Department of health and Human Services. (2011). *Guía breve sobre la Anemia*.

 Obtenido de https://www.nhlbi.nih.gov/files/docs/public/blood/anemia-inbrief_yg_sp.pdf

- Vargas, M. (2013). Evaluación del estado nutricional en los niños y niñas de 1 a 5 años de edad que asisten a los centros infantiles del buen vivir (CIBV's) en la comunidad de cangahua con el fin de desarrollar un producto a base de espirulina en el primer semestre del 2012. Quito: Pontificia Universidad Católica del Ecuador. Facultad de Enfermería.

 Obtenido de http://repositorio.puce.edu.ec/bitstream/handle/22000/6003/T-PUCE6271.pdf?sequence=1
- Vásquez, E. (2003). La anemia en la infancia. *Rev Panam Salud Publica/Pan Am J Public Health*, 13(6). Obtenido de La anemia en la infancia : https://www.scielosp.org/pdf/rpsp/2003.v13n6/349-351/es
- Vilchez, H. (2017). Efecto de la temperatura sobre la capacidad antioxidante del cushuro (Nostoc commune vaucher). Lima: Universidad Alas Peruanas. Obtenido de http://repositorio.uap.edu.pe/bitstream/uap/6940/1/T059_45909723_T.pdf
- Villalba, C. (2018). Bioprospección de Arthrospira platensis nativa del chaco paraguayo como propuesta alternativa para fines alimentarios. Encarnación: Universidad Nacional de Itapúa. Facultad Paraguayo para el desarrollo de la Ciencia y Tecnología. Obtenido de https://www.conacyt.gov.py/sites/default/files/tesis_claravillalba.pdf

ANEXOS

ANEXO 01: INSTRUMENTO PARA LA TOMA DE DATOS.

UNIVERSIDAD NACIONAL JOSÉ FAUSTINO SÁNCHEZ CARRIÓN FORMATO PARA PRUEBA DE ACEPTACIÓN – ESCALA 5 PUNTOS PARA CONOCER EL GRADO DE ACEPTABILIDAD DE LA BEBIDA FUNCIONAL DE SPIRULINA, CUSHURO Y CARAMBOLA EN EDAD ESCOLAR -2019

Producto:	recha de evaluación:

PANEL	AROMA	COLO	TEXTUR	SABOR	ACEPTABILIDA
		R	A		D
1					
2					
3					
4					
•					
•					
19					
30					
Total					

Escala de Likert

1 = Me disgusta mucho	4 = Me gusta poco		
2 = Me disgusta poco	5 = Me gusta mucho		

3 = Ni me gusta, ni me disgusta

Anexo 2: Niveles de Hemoglobina inicial en varones escolares con anemia

Código	Sexo	Niveles de Hemoglobina g/dL	Resultados
PHb- 01	M	13,5	Normal
PHb - 02	M	12,5	Normal
PHb - 03	M	13,0	Normal
PHb - 04	M	11,8	Normal
PHb - 05	M	11,0	Leve
PHb - 06	M	10,9	Moderada
PHb - 07	M	12,0	Normal
PHb - 08	M	8,0	Moderada
PHb - 09	M	12,8	Normal
PHb - 10	M	13,5	Normal
PHb - 11	M	11,4	Leve
PHb - 12	M	11,3	Leve
PHb - 13	M	14,2	Normal
PHb - 14	M	14,0	Normal
PHb - 15	M	14,0	Normal

Fuente: El autor

Normal: 10

Leve: 03

Moderada:02

Anexo 3: Niveles de Hemoglobina inicial en mujeres escolares con anemia

Código	Sexo	Niveles de Hemoglobina g/dL	Resultados
PHb- 01	F	13,5	Normal
PHb - 02	F	13,2	Normal
PHb - 03	F	12,8	Normal
PHb - 04	F	11,0	Leve
PHb - 05	F	11,4	Leve
PHb - 06	F	11,3	Leve
PHb - 07	F	11,4	Leve
PHb - 08	F	13,8	Normal
PHb - 09	F	14,0	Normal
PHb - 10	F	13,9	Normal
PHb - 11	F	13,8	Normal
PHb - 12	F	11,4	Leve
PHb - 13	F	8,3	Moderada
PHb - 14	F	10,1	Moderada
PHb - 15	F	13,3	Normal

Fuente: El autor

Normal: 08

Leve: 05

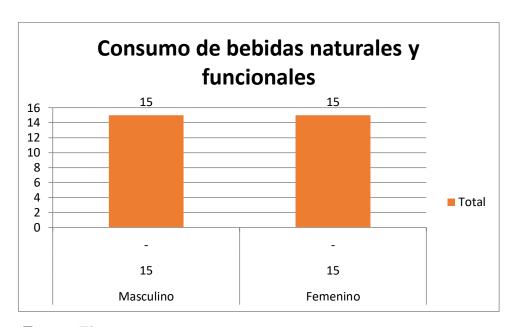
Moderada: 02

Anexo 4: Niveles de Hemoglobina en escolares masculinos con anemia con dieta, incluida la bebida funcional de spirulina , cushuro y carambola, durante tratamiento (Grupo de casos)

Código	Sexo	Niveles de Hemoglobina g/dL				
		1er mes	2do mes	3er mes		
PHb- 01	M	13,6	13,6	14,0		
PHb - 02	M	12,5	12,8	13,5		
PHb - 03	M	13,3	13,4	13,8		
PHb - 04	M	11,9	12	12,1		
PHb - 05	M	11,8	11,8	12,3		
PHb - 06	M	11,0	11,9	12		
PHb - 07	M	12,3	12,5	12,9		
PHb - 08	M	8,5	10,4	11,4		
PHb - 09	M	12,8	13,6	13,8		
PHb - 10	M	13,5	13,6	13,9		
PHb - 11	M	11,8	12,0	12,3		
PHb - 12	M	11,1	12,1	13,4		
PHb - 13	M	14,3	14,2	14,4		
PHb - 14	M	14,1	14,1	14,2		
PHb - 15	M	14,1	14,2	14,2		

Anexo 5: Niveles de Hemoglobina en escolares femeninos con anemia con dieta, incluida la bebida funcional de spirulina, cushuro y carambola, durante tratamiento (Grupo de casos)

Código	Sexo	Niveles de Hemoglobina g/dL				
		1er mes	2do mes	3er mes		
PHb- 01	F	13,6	13,6	13,9		
PHb - 02	F	13,3	13,3	13,5		
PHb - 03	F	12,9	12,9	13		
PHb - 04	F	11,3	12,0	12,6		
PHb - 05	F	11,5	11,7	12		
PHb - 06	F	11,6	12,1	13,2		
PHb - 07	F	11,6	12,1	13,3		
PHb - 08	F	13,9	13,9	14,0		
PHb - 09	F	14,0	14,0	14,1		
PHb - 10	F	13,9	13,9	14,2		
PHb - 11	F	13,8	13,9	13,9		
PHb - 12	F	11,6	11,8	12,2		
PHb - 13	F	8,0	10,9	11,5		
PHb - 14	F	10,3	10,5	11,4		
PHb - 15	F	13,4	13,5	13,5		


Anexo 6: Encuesta de opinión

Usted recibió una bebida funcional de spirulina, cushuro y carambola

a)	Califique su aroma:	:			
	Me disgusta mucho	Me disgusta poco	Ni me gusta, ni me disgusta	Me gusta poco	Me gusta mucho
b)	Califique su color: Me disgusta	Me disgusta poco	Ni me gusta, ni	Me gusta poco	Me gusta mucho
	mucho	Nie disgusta poco	me disgusta	Nic gusta poco	We gusta mucho
c)	Califique su textura				
	Me disgusta mucho	Me disgusta poco	Ni me gusta, ni me disgusta	Me gusta poco	Me gusta mucho
d)	Califique su sabor:			<u>_</u>	
	Me disgusta mucho	Me disgusta poco	Ni me gusta, ni me disgusta	Me gusta poco	Me gusta mucho
e)	Califique su aceptal	bilidad general:			
	Me disgusta mucho	Me disgusta poco	Ni me gusta, ni me disgusta	Me gusta poco	Me gusta mucho

¿Ha consumido bebidas naturales y funcionales?

Genero	Sí	No	Total
Masculino	15	-	15
Femenino	15	-	15

Fuente: El autor

¿Sabes que es el Cushuro?

	Masculino		Femenino	
Género	Si	No	Si	No
	3	12	4	11

¿Sabes que es la Spirulina?

	Masculino		Femenino	
Género	Si	No	Si	No
	1	14	2	13

¿Sabes que es la Carambola?

	Masculino		Femenino	
Género	Si	No	Si	No
	10	5	12	3

Atributos	Me disgusta mucho	Me disgusta poco	Ni me gusta, ni me disgusta	Me gusta poco	Me gusta mucho	Total
Aroma	0	0	1	4	25	30
Color	0	0	0	6	24	30
Textura	0	0	0	5	25	30
Sabor	0	0	4	4	22	30
Aceptabilidad	0	0	2	10	18	30
general						

ANEXO 7. CARTA DE CONSENTIMIENTO PARA LOS PADRES DE FAMILIA.

NOMBRE DE LA INVESTIGACION: "BEBIDA DE SPIRULINA (Spirulina platensis.),

CUSHURO (Nostoc commune) Y CARAMBOLA (Averrhoa carambola L.) PARA

PREVENIR LA ANEMIA EN ESCOLARES DE LA INSTITUCIÓN EDUCATIVA LUIS

FABIO XAMMAR JURADO-DISTRITO DE SANTA MARÍA".

INTRODUCCION:

BACHILLER: María de los Ángeles Sáenz Loayza y valladares león, joneth, están

realizando un proyecto de investigación con el objetivo del estudio es prevenir la

anemia y el estudio se está realizando en la I.E Luis Fabio Xammar jurado distrito

de santa María.

Se Evaluará:

Evaluación Clínico

Análisis De Hemoglobina

Se Brindará La Bebida De Espirulina, Cushuro Y Carambola.

El estudio no puede ser divulgado ni tampoco puede manipularse sin autorización

del personal encargado.

participación voluntaria /retiro: independientemente la firma efectuada o el

participante tiene derecho a retirarse en el momento que crea necesario.

Ante cualquier duda se puede comunicar con maría de los angeles saenz loayza y

valladares leon joneth por medio de los teléfonos 994740044 y 979707410 .

consentimiento del padre/madre o tutor para su participacion y la de su hijo(a).

firma de aceptación para que su hijo (a) participen voluntariamente en el proyecto

de investigación.

NOMBRE DEL PADRE /MADRE /TUTOR rodríquez asunción Rossmery

FECHA: 03/09/2019

FIRMA:

94

ANEXO 8. EVIDENCIAS FOTOGRAFICAS

MIEMBROS DEL JURADO

M(o) HUMBERTO CARREÑO MUNDO PRESIDENTE

Lic. WALTER JESUS (

LIO. RUBEN GUERRERO ROMERO