# UNIVERSIDAD NACIONAL JOSÉ FAUSTINO SÁNCHEZ CARRIÓN



#### FACULTAD DE INGENIERIA CIVIL

#### ESCUELA PROFESIONAL DE INGENIERIA CIVIL

#### **TESIS**

## SERVICIO DE AGUA POTABLE Y ALCANTARILLADO Y SU RELACIÓN CON LA CONDICIÓN SANITARIA DEL PASAJE CHURURO, SANTA MARIA, HUAURA

#### PRESENTADO POR:

#### **EDSON SILVA ORTEGA**

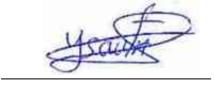
#### PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

#### **ASESOR:**

M(o). ING. SLEYTHER ARTURO DE LA CRUZ VEGA

**HUACHO - 2020** 

## SERVICIO DE AGUA POTABLE Y ALCANTARILLADO Y SU RELACIÓN CON LA CONDICIÓN SANITARIA DEL PASAJE CHURURO, SANTA MARÍA, HUAURA.


#### **Bach. EDSON SILVA ORTEGA**

Universidad Nacional José Faustino Sánchez Carrión

#### Nota del autor:

Estudiante de la facultad de Ingeniería civil, presento mi tesis para obtener el título profesional de Ingeniero civil; La cual fue desarrollada en el pasaje Chururo, Santa María quienes tuvieron el conocimiento del estudio realizado.

Así mismo agradezco las contribuciones, dedicación y asesoría del Ing. Sleyther Arturo de la Cruz Vega para el desarrollo de la presente tesis.



**PRESIDENTE** 

## Mg. JORGE ISRAEL SANTA CRUZ ALVITES

**COD: 321** 



Ing. JULIO FABIAN AMADO SOTELO

CIP: 29665

**VOCAL** 

Mg. EMERSON DAVID POZO GALLARDO

CIP: 186386

**ASESOR** 

ING. SLEYTHER ARTURO DE LA CRUZ VEGA

CIP: 207587

#### **DEDICATORIA**

Para mi madre y familia, por los apoyos permanentes para poder concluir mi carrera universitaria.

Para mi hijo Andreu Edson, quien es la razón de que me levante cada día a esforzarme en el presente y el mañana.

También a mis docentes por todos los conocimientos brindados, que me servirán para ser un profesional optimo en el ámbito laboral.

Edson Silva Ortega

#### **AGRADECIMIENTO**

A mis padres Vicente Silva Porta Y Deonicia Ortega Muños por darme el apoyo durante todo este tiempo.

A mi tutor de tesis Ing. Sleyther Arturo de la Cruz Vega por haberme guiado en la elaboración de la investigación.

A mis docentes por motivarme como un gran ser humano y futuro ingeniero.

Edson Silva Ortega

# ÍNDICE

| DEDICA | ATORIA                                  | iv  |
|--------|-----------------------------------------|-----|
| AGRAD  | DECIMIENTO                              | V   |
| RESUM  | IEN                                     | x   |
| ABSTR. | ACT                                     | xi  |
| INTRO  | DUCCIÓN                                 | xii |
| CAPÍTU | U <b>LO</b> I                           | 1   |
| PLANT  | EAMIENTO DEL PROBLEMA                   | 1   |
| 1.1.   | Descripción de la Realidad Problemática | 1   |
| 1.2.   | Formulación del Problema                | 3   |
| 1.2.1. | Problema General.                       | 3   |
| 1.2.2. | Problemas específicos.                  | 3   |
| 1.3.   | Objetivos de la Investigación           | 3   |
| 1.3.1. | Objetivo general:                       | 3   |
| 1.3.2. | Objetivos específicos:                  | 3   |
| 1.4.   | Justificación de la Investigación       | 4   |
| CAPÍTU | U <b>LO II</b>                          | 6   |
| MARCO  | O TEÓRICO                               | 6   |
| 2.1.   | Antecedentes de la Investigación        | 6   |
| 2.1.1. | Investigaciones Internacionales         | 6   |
| 2.1.2. | Investigaciones Nacionales              | 8   |
| 2.2.   | Bases Teóricas                          | 10  |
| 2.3.   | Definición Conceptual                   | 19  |
| 2.4.   | Formulación de Hipótesis                | 21  |
| 2.4.1. | Hipótesis General                       | 21  |
| 2.4.2. | Hipótesis específicos.                  | 21  |

| CAPÍT | ULO III                                          | 22 |
|-------|--------------------------------------------------|----|
| METO  | DOLOGÍA                                          | 22 |
| 3.1.  | Diseño Metodológico                              | 22 |
| 3.2.  | Población y muestra                              | 23 |
| 3.3.  | Operacionalización de Variables e Indicadores.   | 24 |
| 3.4.  | Técnicas e instrumentos de recolección de datos: | 25 |
| 3.5.  | Técnicas para la Procesamiento de información:   | 25 |
| CAPÍT | ULO IV                                           | 26 |
| RESUL | TADOS                                            | 26 |
| 4.1.  | Análisis de Resultados                           | 26 |
| CAPÍT | ULO V DISCUSIÓN                                  | 46 |
| 5.1.  | Discusión de Resultados                          | 46 |
| CAPÍT | ULO VI CONCLUSIONES Y RECOMENDACIONES            | 47 |
| 6.1.  | Conclusiones                                     | 47 |
| 6.2.  | Recomendaciones                                  | 47 |
| CAPÍT | ULO VI                                           | 49 |
| FUENT | ES DE INFORMACIÓN                                | 49 |
| 7.1.  | Fuentes Bibliográficas                           | 49 |
| 7.2.  | <b>Fuentes Documentales</b>                      | 49 |
| ANEX( | OS .                                             | 51 |
| ANEX( | 1: PANEL FOTOGRAFICO                             | 51 |
| ANEX( | 2: MATRIZ DE CONSISTENCIA                        | 57 |

# ÍNDICE DE TABLAS

| Tabla 1 Limit. máx. permisibl. Parametr. Microbiologic. y parasitologic.             | 11     |
|--------------------------------------------------------------------------------------|--------|
| Tabla 2: Procedimient. de solución                                                   | 26     |
| Tabla 3 Calculo población futura                                                     | 28     |
| Tabla 4 Caudales de diseño                                                           | 29     |
| Tabla 5 Calculo hidráulico de la red principal mediante el uso del software watercad | 30     |
| Tabla 6 Calcul. demanda agua potable                                                 | 31     |
| Tabla 7 Calculo de demanda de alcantarillado                                         | 32     |
| Tabla 8 Diseño hidraulico red de alcantarillado                                      | 33     |
| Tabla 9 Presupuesto de la propuesta                                                  | 34     |
| Tabla 11: Prueba de Shapiro Wilk de servicio agua potable y alcantarillado – conc    | dición |
| sanitaria                                                                            | 39     |
| Tabla 12: Shapiro Wilk calidad servicio agua potable - condición sanitaria           | 40     |
| Tabla 13: Prueba de Shapiro Wilk servicio de alcantarillado - condición sanitaria    | 40     |
| Tabla 14 Rango de correlación e indicador                                            | 41     |
| Tabla 15 Correl. Pearson (Servicio de agua potable y alcantarillado-condición sani   | taria) |
|                                                                                      | 41     |
| Tabla 16 Correl. Pearson (Calidad del servicio de agua potable -condición sanitaria) | 43     |
| Tabla 17 Correl, de Pearson (Servicio de alcantarillado -condición sanitaria)        | 44     |

# ÍNDICE DE FIGURAS

| Figura 1 Area del estudio                                                     | 27          |
|-------------------------------------------------------------------------------|-------------|
| Figura 2 Pasaje chururo– zona de estudio                                      | 27          |
| Figura 3 Proyección poblacional                                               | 29          |
| Figura 4: Grafica de dispersión puntos de Servicio de agua potable y alcar    | ntarillado- |
| condición sanitaria                                                           | 42          |
| Figura 5 Grafica de dispersión puntos de Calidad de Servicio de agua potable  | -condición  |
| sanitaria                                                                     | 43          |
| Figura 6 Dispersión nuntos de servicio de alcantarillado -condición sanitaria | 44          |

**RESUMEN** 

El objetivo es determinar si el servicio de agua potable y alcantarillado se relaciona

con la condición sanitaria del pasaje Chururo, Santa María, Huaura

Esta investigación es de tipo es aplicada, longitudinal, descriptiva, cuantitativa. Tiene

nivel descriptivo. El enfoque es cuantitativo. Su muestra son 24 viviendas del pasaje

Chururo, Santa María

Sus resultados indican que el servicio de agua potable y alcantarillado se relaciona con

la condición sanitaria del pasaje Chururo, Santa María, Huaura con r= 0,442 siendo

correlación moderada y sus presupuestos de materiales, mano de obra e insumos es S/

165 654,54

Palabras clave: agua, alcantarillado, condición sanitaria

 $\mathbf{X}$ 

**ABSTRACT** 

The objective is to determine if the drinking water and sewerage service is related to the

sanitary condition of the Chururo, Santa María, Huaura passage.

This research is applied, longitudinal, descriptive, quantitative. It has a descriptive level.

The approach is quantitative. His sample is 24 homes in the Chururo passage, Santa María

Their results indicate that the drinking water and sewerage service is related to the

sanitary condition of the Chururo, Santa María, Huaura passage with r = 0.442 being moderate

correlation and their budgets for materials, labor and supplies is S / 165 654.54

Keywords: water, sewer, condition sanitary

хi

## INTRODUCCIÓN

El ser humano actualmente consume grandes volúmenes de agua potable, la cual utiliza en satisfacción de necesidades (beber, lavar, cocinar, etc) y para la industria.

Y siendo este recurso tan indispensable, siempre se han buscado alternativas de conseguirlo; ya sea a través de pozos tubulares como aguas subterraneas que la extraen del sub suelo o de los ríos cercanos mediante procesos de potabilización y las cuales se extraen de las aguas continentales.

El agua que es extraída, luego de ser potabilizada pasa por una serie de tuberías y accesorios (redes de agua potable), hasta llegar a los consumidores, quienes le dan la utilidad que requieren en un tiempo determinado denominándose a este proceso servicio de agua potable.

Este tiene ciertas características del proceso de potabilización, así como en el tiempo que esta se brinda y en la cantidad distribuida. Las características que debe tener el agua potable es que debe ser inodora, incolora e insípida, además de no poseer algún elemento que pueda ser perjudicial para el ser humano.

Asimismo, en la actualidad existen áreas que aún no tienen servicio de agua apta para consumo y alcantarillado, siendo este una necesidad en el cierre de brechas. Enfocándonos en el distrito de Santa María, aun se observan que muchas de sus calles no pueden tener sistema de agua potable y alcantarillado. Afectando esto a las necesidades básicas de dicha población.

El déficit de acceso agua potable genera en las poblaciones, enfermedades infectocontagiosas producto del reducido aseo, asimismo la generación de excesivo polvo y enfermedades a la piel.

# CAPÍTULO I

#### PLANTEAMIENTO DEL PROBLEMA

#### 1.1. Descripción de la Realidad Problemática

El agua se encuentra en moléculas de Hidrogeno y Oxigeno, es el principal componente de las plantas y los animales. El agua se encuentra distribuida en los mares (agua salada) y en los continentes como ríos, lagunas, lagos, riachuelos, subsuelo, etc (agua dulce).

Alrededor del mundo, 2100 millones de habitantes, no tienen accesos a un agua que cumpla el proceso de potabilización, careciendo del saneamiento de manera óptima y segura." (OMS, 2017)

El agua es necesaria para que se puedan desarrollar los seres vivos. La ONU determinó que cada habitante necesita más de 19 a 50 l. de este recurso, el cual debe encontrarse limpio e inocuo. Asimismo, el acceso a este se considera como un derecho de los seres humanos. (INEI, 2018)

El Perú obtiene el agua dulce gracias a que, por el país, se encuentra la cordillera de los andes, la cual al deshelarse formando las lagunas y de estas nacen los ríos que alimentan los valles costeros. Asimismo, en el país, hay centros poblados que no tienen agua disponible o en el peor de los casos el agua que se consume es un agua no tratada.

En el Perú, en la zona urbanizada, el 5,6% no poseen accesibilidad a las redes públicas, utilizando cisternas un 1,3%, los pozos tubulares 1,2% y riachuelos 3,2%. teniendo dificultades para acceder a esta (INEI, 2018)

Según (INEI, 2012) En el año 2011, el 69,1% de los pobres extremos se abastecían de agua de ríos, riachuelos, etc. teniendo menos calidad.

Según (MVCS, 2015) Desde 2008, 14,3 % de las viviendas tienen problemáticas con su agua usada para cocer sus comidas. No recibiendo agua para sus necesidades cotidianas, estando contaminadas por la actividad agrónoma, siendo esta no apta para consumo-

La cuenca del río Huaura es el principal abastecedor de agua de la provincia de Huaura, dentro de la vertiente del Océano Pacífico ubicado en el centro del Perú. Con longitud 156 km. El río Huaura tiene un régimen es irregular y tormentoso.

En la ciudad de Huacho la principal empresa de este rubro es Aguas de Lima Norte S.A. que se encarga de distribuir este recurso tan indispensable hasta los lugares más lejanos del distrito de Huacho, Santa María, Hualmay, etc.

El pasaje chururo, distrito de Santa María, provincia de Huaura, el agua lo administra la municipalidad distrital Santa Maria. Que actualmente en el pasaje chururo carece de agua potable, al día solo tienen 1 a 3 horas el agua, las cuales son almacenadas para su uso. Asimismo, el servicio de alcantarillado se encuentra en pésimas condiciones, debido a la existencia de tuberías rotas y tapas de buzones abiertas.

Debido a esta situación, es necesario servicio de agua potable y alcantarillado y su relación con la condición sanitaria del pasaje Chururo, Santa María, Huaura, para así conocer y determinar la condición sanitaria que existe en el pasaje Chururo, para que todos los habitantes puedan satisfacer sus necesidades de agua continuamente y sin inconvenientes.

#### 1.2. Formulación del Problema

#### 1.2.1. Problema General.

¿De qué manera el servicio de agua potable y alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura?

#### 1.2.2. Problemas específicos.

¿De qué manera la calidad del servicio de agua potable se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura?

¿De qué manera el servicio de alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura?

#### 1.3. Objetivos de la investigación

#### 1.3.1. Objetivo general:

Determinar si el servicio de agua potable y alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

#### 1.3.2. Objetivos específicos:

Determinar de qué manera la calidad del servicio de agua potable se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

Determinar de qué manera el servicio de alcantarillado se relaciona con la condición sanitaria del pasaje Chururo

#### 1.4. Delimitación de la Investigación:

## a) Espacial

Es en el departamento de Lima, Provincia de Huaura, Distrito de Santa María, en el pasaje Chururo

#### b) Temporal

Desde Julio del 2019 hasta febrero del 2020

#### c) Social

Esta tesis involucra a las personas del pasaje Chururo

#### 1.5. Justificación de la investigación

#### Justificación por conveniencia.

Esta investigación pretende analizar el servicio de agua potable y alcantarillado con la condición sanitaria del pasaje Chururo, el cual es de mucha necesidad para la población de dicha área, por sus necesidades de redes de saneamiento para mejorar las condiciones de vida.

#### Justificación teórica.

Debido a que ampliará las definiciones sobre el tema de estudio, reforzando la carrera ingeniería civil sobre temas de saneamiento urbano.

#### Justificación Práctica

Permitirá determinar si el servicio de agua potable y alcantarillado y su relación con la condición sanitaria del pasaje Chururo, Santa María, los cuales afectan a las personas a través de enfermedades.

#### 1.6. Viabilidad de la Investigación

#### Técnica

Teniendo un enfoque técnico, este puede ser desarrollado por ingenieros civiles debido a que conocen sobre redes de agua potable y alcantarillado, dimensionamiento y procesos constructivos.

#### **Operativa**

Es operativamente viable porque se puede materializar en la zona mediante un expediente técnico, solicitando el presupuesto al gobierno distrital o provincial.

#### **Financiera**

El financiamiento será costeado por el tesista completamente. Sin necesidad de recurrir a un financiamiento externo.

# CAPÍTULO II MARCO TEÓRICO

#### 2.1. Antecedentes de la Investigación

#### 2.1.1. Investigaciones Internacionales

I.- Batres (2010) En su investigación para poder obtener el título de Ingeniero Civil titulado: Rediseño del sistema de abastecimiento de Agua Potable, Diseño del alcantarillado sanitario y de agua de lluvias para el municipio de San Luis del Carmen, departamento de Chalatenango. Teniendo el objetivo de: "Contribuir a desarrollar San Luis del Carmen, Chalatenango, realizando sus estudios en su proceso de los diseños de sus redes de agua potable y redes de alcantarillado sanitario". La metodología empleada es descriptiva, no experimental.

Llegando a las conclusiones de que con su rediseño se llega a resolver de manera satisfactoria su desabastecimiento que existe en su municipio; garantizando que sus redes cumplirán su demanda de proyecto, en unos 20 años.

Su Intensidad se realizó para 25 años, porque está en un área rural; su inversión se proyectará hacia lo que se necesita, determinándose su periodo muy grande para su rediseño de su sistema del drenaje.

II.- Arboleda (2010) En su tesis para título de magister en medio ambiente y desarrollo: Estado del Sector agua potable y saneamiento basico en la zona rural de la isla de san andres, en el contexto de la reserva de la Biosfera. Con el objetivo: "Determinar los servicios básicos (infraestructura) que forman su sector agua potable y saneamiento en el área rural de la isla de San Andrés". La metodología utilizada fue la revisión de la bibliografía, descriptiva.

Llegando a las conclusiones de que la mala gestión de la institución es causas por este sector está en dichas condiciones. El desarrollo se limita por la deficiencia de la entidad nacional y local para observar sus problemas.

Se necesita mucha voluntad en la solución de estos problemas de forma integral y buscando posibilidad de preservar y aprovechar sus recursos hidráulicos.

Sin importar la organización que da los servicios a la población, se desarrollaran las actividades empresariales y sus acciones en el marco ambiental, legal y técnica del país, con control de instituciones.

El agua y saneamiento brindan desarrollo a sectores económicos y ambiental mejorando su vida de los habitantes.

III.- Almonacid (2010) En su tesis para poder obtener el título de maestro constructor titulado: *Proyecto de agua potable rural para las comunidades de Curamin - Queten en la Comuna de Hualaihue* en la Universidad de Austral de Chile. Su objetivo: "Proponer un sistema de abastecimiento de agua potable para las localidades". Su metodología es cualitativo, descriptivo.

Llegando a las conclusiones: Estudiar su población pudo determinar 931 hab., dentro de 278 casas al 2006, incrementaran a 1471 hab en 439 casas al 2028. El rio Queten, brindaría un efluente con caudal aprox. de 60,9 l/s.

Su caudal máx. del dia considera su demanda para consumir sus habitantes como sus equipos que existen, con 3,712 l/s, caudal requerido para su aducción. Su consumo máx. de la hora 13,42 l/s.

Su tubería en aducción tiene diámetro 110mm., asimismo en su salida 160mm sus diámetros en su distribución deberán ser de 50mm a 160mm. Con vol. de 64,1 m3 y cot. 43,6 m. en su salida.

#### 2.1.2. Investigaciones Nacionales

IV.- Pasapera (2018) En su tesis para obtener el título de Ingeniero Civil titulado: Diseño hidráulico del sistema de agua potable del caserio de ranchería ex cooperativa Carlos Mariategui distrito de Lambayeque, provincia de Lambayeque – Lambayeque – noviembre 2018. Tuvo el objetivo: "evaluar su diseño técnico del sistema de agua potable en el Caserío de Ranchería Ex cooperativa Carlos Mariátegui – Lambayeque". Utilizó la metodología: aplicada, descriptiva.

Llegando a las conclusiones de que la identificación de los habitantes que mejoraron, in situ, con una relación 103 usuarios.

El diseño debe tener los parámetros del MVCS pudiendo encontrar que su acceso al agua es subterráneo por el periodo anual.

En su verificación del diseño se debe tener en cuenta la verificación utilizando sus diámetros y presiones mediante la fórmula de Manning utilizando una tubería de 2" de diám.

V.- Chirinos (2017) En su tesis para obtener el título de Ingeniero Civil titulado: Diseño del sistema de abastecimiento de agua potable y alcantarillado del Caserío Anta, Moro - Ancash 2017. Con el objetivo: "Diseñar su sistema de abastecimiento de agua potable y alcantarillado en Anta, Moro-Ancash 2017". Utilizó la metodología: Descriptiva, No experimental

Llegó a la conclusión que su captación se realiza de manantiales de la ladera tiene capacidad de satisfacción de agua. La ubicación del agua a la caseta húmeda es de 1,1m, con ancho aprox. 1,05 m y la alto 1,00 m, canastilla 2", tubo de limpieza y rebose 1 1/2" de 10 m., con 8 orificios de aprox. 1"

Su diseño es para 204 habitantes, su demanda es 100 l/hab/día, en estiaje 0,84 l/s. Determinando, Caudal máx. diario 0,37 l/s, dato que se necesita para sus diseños, sus consumos máx. de la hora es 0,57 l/s.

Su diseño es para 53 viviendas tiene 748,051 m de tubos de PVC con 20 de diámetro 160 mm, para velocidades de aprox. 0,74 m/s y pendiente mín. 55,28 %.

VI.- Concha y Guillen (2014) En su tesis para obtener el título de Ingeniero Civil titulado: *Mejoramiento del sistema de abastecimiento de agua potable Caso: Urbanización Valle Esmeralda, distrito de Pueblo Nuevo, Provincia y departamento de Ica*. Con el objetivo: "mejorar su sistema de agua potable en la Urbanización Valle Esmeralda, Ica". Utilizó la metodología: Descriptivo, transaccional.

Llegó a la conclusión que su Q=52,65 l/s. Usando verticalidad al IRHS 07 este, se encuentra algo torcido.

Su tubería ciega está degradándose por su tiempo de este pozo IRHS 07.

Su grafico geofísico permite conocer el suelo rocoso dentro de 100 metros, pudiendo hacerse hasta máximo 90 metros.

Su prueba de acuífero, tiene buenos acuíferos para obtener aguas subterráneas, siendo este constante y permanente.

Su demanda en un futuro de la urbanización su caudal de bombeo es 60 l/s en todo el día.

#### 2.2. Bases Teóricas

#### 2.2.1. Servicio de agua potable y alcantarillado

Se define como un conjunto de acciones para lograr la satisfacción de sus necesidades de un usuario. Para realizar dicho procedimiento se requiere planificar las actividades de las personas que realizan labores el sector público o empresas particulares. Fijando su expectativa en lograr sus metas.

El servicio de agua potable y alcantarillado busca brindar servicios de saneamiento, de gran calidad para lograr cubrir sus necesidades de los usuarios.

Teniendo un proceso de potabilización a través de un tratamiento:

Físico: El cual requiere la eliminación de sus turbiedades, los colores y reducción de los materiales suspendidos. El cual requiere un tratamiento inicial como coagulante, decantando y finalmente filtrando, mediante arena u otro compuesto y por ultimo desinfectando.

Químico: Consiste en la estabilización de su PH, eliminación de su dureza, reducción de sus componentes nocivos.

Bacteriológico: Consiste en su desinfección utilizando cloro o sal clorógena. Utilizando rangos de 0,5 mg/L.

#### 2.2.1.1. Calidad de servicio de agua potable

La calidad del servicio de agua potable requiere que sus características biológicas, físicas o químicas. Según el (MINSA, 2011) en el (Reglamento de la calidad de agua para consumo humano), establece que una agua apta para ser consumida cumpla la siguiente tabla.

Tabla 1 Limit. máx. permisibl. Parametr. Microbiologic. y parasitologic.

| PARAMETROS                                               | UNIDAD DE<br>MEDIDA | LIMITE<br>MAXIMO<br>PERMISIBLE |
|----------------------------------------------------------|---------------------|--------------------------------|
| 1 Bacterias Coliformes Totales                           | UFC/100 mL a 35°C   | 0                              |
| 2E. Coli                                                 | UFC/100 mL a 44,5°C | 0                              |
| 3Bacterias Coliformes Termotoler. o Fecal.               | UFC/100 mL a 44,5°C | 0                              |
| 4 Bacterias Heterotroficas                               | UFC/ mL a 35°C      | 500                            |
| 5 Huevos y lavas de Helmontos, quistes y                 |                     |                                |
| ovoquistes de protozoarios patogenos                     | N° org/L            | 0                              |
| 6 Virus                                                  | UFC/Ml              | 0                              |
| <ol><li>7 Organismos de vida libre como algas,</li></ol> |                     |                                |
| protozoarios, copépodos, etc                             | N° org/L            | 0                              |

Nota: Elaboración Minsa

#### 2.2.1.2. Servicio de alcantarillado

Consiste en la recolección de agua residual, a través de tubos, con la evacuación de las de lluvia. Pudiendo también, tratarse y darle disposición final. (CARTAGENA, s.f)

Según él (MVCS, 2006) su caudal del alcantarillado se retorna en 80 % de lo que se usa en agua potable que se consume

En su red se deberán determinar su caudal inicial y final. El valor mínimo de su caudal es 1,5 l/s.

Su pendiente de tubos deberá tener autolimpieza con tensiones tractivas de 1,0 Pa, asimismo teniendo Manning=0,013 Siendo calculado por la formula.

Somin = 
$$0.0055 \text{ Qi} - 0.47$$

Somin. = Pendient. Mín.

Qi = Caudal inic.

#### 2.2.2. Condición sanitaria

Según la (OMS, 2012) establece:

La condición sanitaria deberá tener consecuencias de manera directa sobre su salud. Para acceder sus servicios sanitarios permitirá a los habitantes aumentar su bienestar.

Siendo este el principal componente de desarrollos sostenibles y la eliminación de pobreza y buscando la equidad.

Un conjunto de salud eficiente y funcionando de manera óptima.

Accesibilidad: pudiendo ser accesible para todos sin pasar por disgustos ni malos tratos.

Muchos medicamentos y tecnología esencial para diagnosticar y tratar.

Los caudales en su prestación de sus servicios.

#### 2.2.2.1. Calidad de vida

Es la percepción del ser humano donde se enfoca su desarrollo a nivel financiero, personal y emocional. Encontrando a las principales:

Aspecto político

Aspecto económico

Aspecto de salud

Aspecto ambiental

Aspecto social

#### 2.2.2.2. Enfermedades agudas, parasitarias y diarreicas

**Enfermed. agudas:** Se define como una enfermedad que inicia y finaliza con una duración muy corta. Teniendo duraciones inferiores a los 3 meses.

Enfermed. parasitarias: Se producen por protozoos, artrópodos.

Pudiendo adquiriste por la ingesta de alimentos, por beber agua con

los parásitos o debido a las picaduras de insectos.

Enfermed. diarreicas: Se definen como infecciones del aparato

digestivo que se generan por un parasito o bacteria o virus

produciendo abundante diarrea.

2.2.3. El Agua

Se considera como recurso para la vida para que los seres vivos

puedan vivir y también puedan desarrollarse mucha de las civilizaciones en

el mundo. La historia determino que la mayoría de estos poblados y/o

culturas está muy cerca de sus ríos o fuente de agua. (SUNNAS, 2017)

Se considera como sustancias nobles en el medio ambiente.

Encontrándose como vapor, sólido o líquido y teniendo buena calidad si no

se contamina." (Auge, 2007)

Es uno de los principales recursos por lo cual existe la vida en el

planeta tierra. Se encuentra en el medio ambiente en sus distintos estados,

en los nevados, ríos, lagunas, en las nubes.

2.2.4. Características del Agua

**Color:** No debe poseer ningún tipo de color, es decir debe ser incolora.

**Sabor:** No debe poseer ningún tipo de sabor, es decir debe ser insípida.

**Olor:** No debe poseer ningún tipo de olor, es decir debe ser inodora.

Seres Vivos: No debe poseer ningún tipo de tipo de bacteria, virus o

microorganismo, es decir debe estar inocua para poder ser consumida.

13

#### 2.2.5. Fuentes del Agua:

#### a) Agua pluvial:

Es el agua procedente de las precipitaciones la cual se puede canalizar a través de los techos de viviendas o área que posea impermeable, la cual se captará y se almacena en un sistema de abastecimiento.

#### b) Agua superficial:

Se conforman por los riachuelos, lagunas, canales que trasladan el agua por la superficie de la tierra. Al estar en contacto con la intemperie y requiere tratamientos de desinfección por los microorganismos del medio ambiente.

#### c) Agua subterránea:

Se encuentran en el subsuelo. Su explotación requiere un estudio de las caracteres hidrológicos y de los acuíferos.

#### 2.2.6. Datos necesarios para el Diseño:

#### Población futura:

Según el RNE (MVCS, 2006):

La población futura debe de calcularse con la siguiente condición:

- a) Para AA.HH. que están establecidos, su crecimiento deberá guardar relación con sus programas de desarrollos de la región; si no hubiera, se tendrá en cuenta la característica de la ciudad cercana, su nivel económico, etc.
- b) En habilitación nueva se considerar su densidad de 6 hab/vivienda.

Sin embargo, es necesario saber la población futura

$$P_f = P_o (1+r)^t$$

P<sub>f</sub> = Poblac. futura

P<sub>o</sub> = Poblac. inicial

r = tasa crecimient.

t= tiemp. años

donde r es la tasa de crecimiento y se calcula con el método diferencial de crecimiento Urbano – Rural:

$$= \left[ \left( \frac{1}{0} \right) - 1 \right]$$

en el cual:

" <sub>O</sub> " y " " son las poblaciones rurales de los años censales.

#### Dotación:

Su cantidad de agua promedio diaria en el año por cada persona, tomará del estudio que tenga justificación, usando información estadística que será probada. (MVCS, 2006)

#### Coef. variación diaria:

Según el RNE (MVCS, 2006):

Para abastecer por conexión de domicilio, sus coeficientes de variaciones de consumo, debe fijarse utilizando la estadística.

Otra forma considerar el siguiente coeficiente:

- Máxim. anual demanda por dia: 1,3
- Máxim. anual demanda por hora: 1,8-2,5

#### 2.2.7. Tipos de Redes

#### Sistema Abierto o Ramificado:

Son redes para distribuir de forma de matriz ramal y con muchas ramificaciones. Se utiliza porque el terreno es difícil o no se pueden intercar sus ramales y para poblaciones que se desarrollan linealmente, o por caminos o ríos. (Vierendel, 2009)

#### Sistema Cerrado:

Son las redes interconectadas en forma de mallas. Siendo mucho más conveniente, para crear circuitos cerrados de manera permanente. Eliminando zonas muertas; en caso de una reparación, solo unas las cuadras se quedan sin agua, teniendo en cuenta sus llaves. (Vierendel, 2009)

#### 2.2.8. Calculo Hidráulico

Para el análisis hidráulico en un sistema cerrado se podrán usar métodos como el seccionamiento, Hardy cross o emplear programas como Watercad.

#### a) Método del seccionamiento:

Consiste en formar circuitos enumerados por tramos y en los circuitos se efectuaran seccionamientos y se determinaran los caudales de cada red abierta.

Las secciones ideales, deberán tener igual valor con variac. de max. 10% comparando con la presión de los nudos. De no comprobarse la condición, se variará el diámetro de la tubería del tramo afectado o se modificará el seccionamiento utilizado.

Dichas redes se determinaran para poder distribuir el consumo máx, por hora , que se puede distribuir uniformemente a lo largo de toda la tubería, o por áreas según la densidad de población.

Qunit. = 
$$\frac{Qmh}{Lon.total\ real\ (no\ incluye\ linea)}$$
$$de\ aduccion)$$

Qmh : gasto máxime horario.

Qm : gasto en marcha en lts/s

Qunit.: gasto unitario en lts/s

L : Longitud del tramo en m.

Gasto ficticio (Qfi):

Qfi. 
$$=\frac{Qinicia + Qfinal}{2}$$

Para una tubería de PVC, conde el valor de C=150; el caudal, la pérdida de carga unitaria y el diámetro quedan definidos

$$Q = 2.492xD^{2.53}xhf^{0.54}$$

$$inf = \left(\frac{Q}{2.492xD^{2.63}}\right)^{1.85}$$

#### b) Método de Hardy Cross

Es un cálculo en que se aproxima sucesivamente, donde se distribuyen los gastos y se determina su error en la perdida de carga.

En el análisis de las mallas debe de cumplir:

- -Su suma algebraica debe ser 0.
- Su flujo entrante al nudo debe igualarse al que sale del nudo.
- Su gasto ingresante a la red debe igualarse al que sale de su red.
- Sus caudales deben proporcionar una velocidad adecuada a las especificaciones reglamentarias.

#### c) Empleo de software WaterCAD

WaterCAD es un programa que permite el modelado hidráulico de un sistema de distribución de red de agua potable, determinando datos importantes como la presión, diámetro, pendiente, entre otros.

Empresas de servicios públicos, municipales y empresas utilizan WaterCAD siendo muy confiable, ahorrando dinero.

#### 2.2.9. Sistema de Saneamiento en el Perú

Según (MVCS, 2015) Desde 2008, 14,3 % de las viviendas tienen problemáticas con su agua usada para cocer sus comidas. No recibiendo agua para sus necesidades cotidianas, estando contaminadas por la actividad agrónoma, como bacterias, microorganismos siendo esta no apta

#### 2.2.10. Huacho

Conforma una de las ciudades costeras del norte chico junto con Barranca y Huaral.

El sector agrícola es la principal actividad para generar recursos como el maíz, fresa y caña azucarera, etc. Su viviendas son de material noble (ladrillo y cemento).

Huacho cuenta con muchos centros educativos a nivel inicial, primario y secundario. Las universidades licenciadas son la UCSS y la UNJFSC.

#### 2.2.11. Aguas de Lima Norte

Es una EPS. que distribuye la distribución del agua potable y alcantarillo, a toda la provincia de Huaura.

Según el (Aguas de Lima Norte S.A., s.f.) Los principales Objetivos son:

- 1.- Brindar agua potabilizada y servicio de alcantarillado de manera óptima de manera continua:
- 2.- Optimizar su actividad comercial y servicio al Cliente:
- 3.- Consolidar su autofinanciamiento en el tiempo.

## 2.3. Definición Conceptual

**Agua:** Se considera como sustancias nobles en el medio ambiente. Encontrándose como vapor, sólido o líquido) y teniendo buena calidad si no se contamina." (Auge, 2007)

**Agua potable:** Es el agua que tiene las características para ser consumida por los seres humanos, es decir es inodoro, incolora e insípida, asimismo no cuenta con ningún microorganismo.

**Aguas servidas:** Se define así, al agua que ha sido utilizada para algún proceso fisiológico, domestico, industrial y contiene muchos contaminantes.

Calidad del Agua: Esta referida con las condiciones que debe poseer el agua para satisfacer la salud del consumidor.

Calidad de vida: Se refiere al bienestar social y económico de una determinada persona, que le permite desarrollarse con comodidad.

**Caudal:** Es el volumen del fluido de trabajo que fluye por unidad de tiempo.

Condición sanitaria: La condición sanitaria deberá tener consecuencias de manera directa sobre su salud. Para acceder sus servicios sanitarios permitirá a los habitantes aumentar su bienestar. (OMS, 2012)

**Dotación:** La cantidad de agua promedio diaria en el año por cada persona, tomará del estudio que tenga justificación, usando información estadística que será probada. (MVCS, 2006)

**Diarreicas:** Está relacionada con las enfermedades que causan en el ser humano disposiciones continuas, se produce a causa de una bacteria.

**Enfermedad:** Se puede definir como la alteración del estado fisiológico de un ser vivo y se manifiesta por síntomas según su magnitud.

**Población futura:** Es la población que se determina en proyección a una fecha futura.

Ramales: Red de tuberías secundarias que derivan de una matriz (Aguero, 1997)

**Redes:** La red es un conjunto de tuberías que se encuentran conectados entre sí y permiten cumplir una función determinada.

**Saneamiento:** Es el mejoramiento de un lugar brindando condiciones sanitarias (sano), para que el ser humano se desarrolle.

**Sanitaria:** La condición sanitaria busca mejorar la calidad de vida, evitando de esta manera las enfermedades diarreicas, agudas y parasitosis. (Silva. 2021)

**Servicio:** Son actividades no materiales para satisfacer su necesidad de un usuario. Por ejemplo, el servicio de luz, agua, etc.

**Servicio de alcantarillado:** Consiste en la recolección de agua residual, a través de tubos, con la evacuación de las de lluvia. Pudiendo también, tratarse y darle disposición final. (CARTAGENA, s.f)

**Sistema abierto:** Consiste en una red principal y alimenta a conducto laterales.

**Sistema cerrado:** Son las redes interconectadas en forma de mallas. (Vierendel, 2009)

**Usuario:** Es una persona que tiene el derecho de usar un servicio, hasta satisfacer sus necesidades.

#### 2.4. Formulación de Hipótesis

#### 2.4.1. Hipótesis General

El servicio de agua potable y alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

#### 2.4.2. Hipótesis específicas.

La calidad del servicio de agua potable se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

El servicio de alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

# **CAPÍTULO III**

# **METODOLOGÍA**

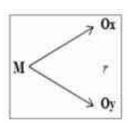
#### 3.1. Diseño metodológico

#### 3.1.1. Tipo de investigación

Debido a la finalidad, aplicada buscando tener definiciones de carácter técnica aplicados a situaciones problemáticas. (Córdova, 2013)

Debido al alcance temporal, longitudinal, analizado en un tiempo específico.

Debido a la profundidad, descriptiva porque muestra información, y utilizando sus antecedentes.


Debido a la medida, cuantitativa por la manera numérica de mostrar los resultados.

#### 3.1.2. Nivel de investigación:

Es descriptivo, debido a que no existe manipulación de su variable, el cual sera intencionalmente, más bien se analizará el fenómeno tal y como se encuentra en la situación actual.

#### 3.1.3. Diseño de la investigación:

Es correlacional, midiendo por lo menos dos variables y de estudiando la relación que puede existir.



M: 24 viviendas del pasaje Chururo

Ox : Observación del servic. de agua potab. y alcantarillad.

Oy: Observac.de la condición sanitaria

R: coeficient, de correlac.

#### 3.1.4. Enfoque de la investigación

Es cuantitativa. (Sampieri, 2014), debido a que los resultados se muestran utilizando métodos numéricos y estadística básica o inferencial.

#### 3.2. Población y muestra

#### 3.2.1. Población

La población fue en su totalidad el número de viviendas, es decir las 24 viviendas del pasaje Chururo, Santa María, Huaura

#### 3.2.2. Muestra

Siendo su población reducida n= 24 se utilizo toda su población. Con un tipo de muestreo censal N =n.

# 3.3. Operacionalización de variables e indicadores.

Variable 1

|                                                 | Definic. conceptual                                                                                         | Definic.    | Dimens.                                                                                      | Indicad.                                          |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------|---------------------------------------------------|
| V1                                              |                                                                                                             | Operacional |                                                                                              |                                                   |
| Servicio de agua<br>potable y<br>alcantarillado | satisfacer las necesidades<br>basicas de agua en<br>relación a su uso (antes) y<br>eliminación (despues) de |             | <ul> <li>calidad del servicio de agua Potable</li> <li>servicio de alcantarillado</li> </ul> | dotación, límites permisibles caudal, eliminación |

# Variable 2

| V2                  | Definic. conceptual | Definic.<br>Operacional                                               | Dimens.                  | Indicad.         |
|---------------------|---------------------|-----------------------------------------------------------------------|--------------------------|------------------|
|                     | •                   | La condición sanitaria busca<br>mejorar la calidad de vida,           | calidad de Vida          | salud, bienestar |
| Condición sanitaria | <u> </u>            | <ul> <li>enfermedades agudas,<br/>parasitosis y diarreicas</li> </ul> | diarrea, cólera, cólicos |                  |

### 3.4. Técnicas e instrumentos de recolección de datos:

## 3.4.1. Técnicas a emplear:

Se utilizó la observación y la entrevista, recopilando información de los usuarios mediante un pequeño cuestionario y tambien observando la realidad en su estado actual y natural

| Técnica    | Instrumento        |
|------------|--------------------|
| Entrevist. | Cuestionar.        |
| Observac.  | Ficha de observac. |

### **Cuestionario:**

Forma para de los componentes de las entrevistas, para poder determinar las opiniones de los pobladores.

### Ficha de observación:

Se utiliza para poder registrar las observaciones realizadas en campo y poder realizar su procesamiento en gabinete.

### 3.5. Técnicas para el procesamiento de información:

Se registraron con mucho orden y limpiezal.

Los cálculos utilizando Excel 2020

Los graficos con el uso de AutoCAD 2020

Calculo hidráulico utilizando software watercad

Su cronograma mediante MS Project 2020

La estimación de los cotos con el S10 2005

Los cálculos estadísticos con el SPSS.

# CAPÍTULO IV RESULTADOS

## 4.1. Análisis de Resultados

# 4.1.1. Procedimiento para la solución del problema

Donde se desarrolló los pasos para determinar las relaciones entre sus variables.

Tabla 2: Procedimient. de solución

| Paso | Descripción de las actividades |
|------|--------------------------------|
| 1°   | Consideraciones del estudios   |
| 2°   | Diseño hidráulico              |
| 3°   | Costos y presupuestos          |
| 4°   | Diseño de planos               |

## 4.1.2. Situación actual

Actualmente su población tiene servicio de agua potable y alcantarillado en pésimas condiciones. La calle es una vía no pavimentada, su tipo de suelo es limoso-arcilloso, con gravas. El servicio de agua potable y alcantarillado permitirá mejorar la condición sanitaria de los pobladores, como también mejoraran el ornato del centro de la ciudad.



Figura 1 Zona del estudio



Figura 2 Pasaje chururo- zona de estudio

La red de agua potable se conectará a la red matriz de la Avenida Perú, santa maría, Huaura.

El punto final del vertimiento de las aguas servidas se conectará con la red de la Av. Perú, la cual es una red existente.

Para el Pasaje Chururo se usará un periodo, su tasa de crecimiento =2.10% según el INEI,

Tabla 3 Calculo población futura

| Crecimient     | Crecimiento de la población (distrital) calculado con el método del diferencial de crecimiento urbano - rural |          |          |           |          |          |       |  |  |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------|----------|----------|-----------|----------|----------|-------|--|--|--|--|--|--|--|
|                |                                                                                                               | 2017     |          |           | 2019     |          |       |  |  |  |  |  |  |  |
| distrito       | población                                                                                                     | vivienda | densidad | población | vivienda | densidad | tasa  |  |  |  |  |  |  |  |
| Santa<br>María | 38679                                                                                                         | 13639    | 2,84     | 40321     | 14188    | 2,84     | 2,10% |  |  |  |  |  |  |  |
|                |                                                                                                               |          |          |           |          |          |       |  |  |  |  |  |  |  |

Nota: Censo de población y vivienda 2001 y 2015 - INEI

| Nº   | Año   | proy. Poblac. | proy.<br>Viviend. |
|------|-------|---------------|-------------------|
| Base | 2,019 | 120           | 24                |
| 1    | 2,020 | 123           | 25                |
| 2    | 2,021 | 125           | 25                |
| 3    | 2,022 | 128           | 26                |
| 4    | 2,023 | 130           | 26                |
| 5    | 2,024 | 133           | 27                |
| 6    | 2,025 | 136           | 27                |
| 7    | 2,026 | 139           | 28                |
| 8    | 2,027 | 142           | 28                |
| 9    | 2,028 | 145           | 29                |
| 10   | 2,029 | 148           | 30                |
| 11   | 2,030 | 151           | 30                |
| 12   | 2,031 | 154           | 31                |
| 13   | 2,032 | 157           | 31                |
| 14   | 2,033 | 161           | 32                |
| 15   | 2,034 | 164           | 33                |
| 16   | 2,035 | 167           | 33                |
| 17   | 2,036 | 171           | 34                |
| 18   | 2,037 | 174           | 35                |
| 19   | 2,038 | 178           | 36                |
| 20   | 2,039 | 182           | 36                |



Figura 3 Proyección poblacional

Para el Alcantarillado se tiene los siguientes resultados:

Tabla 4 Caudales de diseño

| Q promedio     | 0,37 | 1/s |
|----------------|------|-----|
| Q máx. diario  | 0,48 | 1/s |
| Q máx. horario | 0,74 | 1/s |

## 4.1.3. Cálculos hidráulicos

Tabla 5 Calculo hidráulic. red principal mediante el uso del software watercad



Se calculo mediante la Ecuación de Hazen y Williams

 $Q = 0.000426 C_H D^{2.69} S^{0.54}$ 

### expresión en la que

Q: gasto en litros por segundo

 $C_{\rm H}$ : coeficiente de Hazen y Williams

D : diámetro en pulgadas

S : pendiente de la línea de energía en metros por km

## COEFICIENTES DE FRICCIÓN "C" EN LA FÓRMULA DE HAZEN Y WILLIAMS

| TIPO DE TUBERÍA                         | "C" |
|-----------------------------------------|-----|
| Acero sin costura                       | 120 |
| Acero soldado en espiral                | 100 |
| Cobre sin costura                       | 150 |
| Concreto                                | 110 |
| Fibra de vidrio                         | 150 |
| Hierro fundida                          | 100 |
| Hierro fundido dúctil con revestimiento | 140 |
| Hierro galvanizado                      | 100 |
| Polietileno                             | 140 |
| Policioruro de vinilo (PVC)             | 150 |

Tabla 6 Calcul. demanda agua potable

|      | CÁLCULO DE LA DEMANDA DE AGUA POTABLE |                    |                    |        |                              |          |             |       |                      |                          |                 |                |                               |                                        |                              |                                     |                                      |                                       |             |                            |                                                            |                   |                 |                                              |                                 |                                      |                                   |                                           |                                   |
|------|---------------------------------------|--------------------|--------------------|--------|------------------------------|----------|-------------|-------|----------------------|--------------------------|-----------------|----------------|-------------------------------|----------------------------------------|------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|-------------|----------------------------|------------------------------------------------------------|-------------------|-----------------|----------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------|
|      |                                       |                    |                    | Poblac | ción servida                 | Conexio  | ones domést | icas  |                      |                          |                 |                |                               |                                        | Consu                        | ımo de agua p                       | otable                               |                                       |             |                            |                                                            | Demanda<br>diaria | a máxima<br>Qmd |                                              |                                 |                                      | Volumen<br>de Reserva<br>Total    |                                           |                                   |
| ı    | NO                                    | Población<br>total | Cobertura<br>total | Total  | Por conexión<br>domiciliaria | Antiguas | Nuevas      | Total | Viviendas<br>totales | Conex.<br>Inst.<br>Educ. | Otras<br>conex. | Total<br>conex | Consumo<br>doméstico<br>(L/s) | Consumo<br>Inst.<br>Industria<br>(L/s) | Consumo<br>Mercados<br>(L/s) | Consumo<br>Puesto de<br>Salud (L/s) | Consumo<br>Local<br>Comunal<br>(L/s) | Consumo<br>Area<br>Deportiva<br>(L/s) | Total (L/s) | Pérdidas<br>físicas<br>(%) | Demanda<br>total<br>producción<br>de agua<br>potable (L/s) | (L/s)             | (m3/h)          | Demanda<br>máxima<br>horaria<br>(L/s)<br>Qmh | Caudal<br>de<br>bombeo<br>(L/s) | Volumen de<br>Regulación<br>(m3/día) | Volumen<br>de Reserva<br>(m3/día) | Volumen<br>Contra<br>Incendio<br>(m3/dfa) | Volumen de<br>consumo<br>(m3/día) |
| Base | 2019                                  | 120                | 0%                 | 0      | 0                            | 0        | 0           | 0     | 24                   | 0                        | 0               | 24             | 0,00                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,00        | 0%                         | 0,00                                                       | 0,00              | 0,00            | 0,00                                         | 0,00                            | 0,00                                 | 0,00                              | 0,00                                      | 0,00                              |
| 1    | 2020                                  | 123                | 100%               | 123    | 123                          | 0        | 25          | 25    | 25                   | 0                        | 0               | 25             | 0,31                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,31        | 0%                         | 0,31                                                       | 0,41              | 1,47            | 0,63                                         | 0,00                            | 6,80                                 | 3,50                              | 0,00                                      | 10,30                             |
| 2    | 2021                                  | 125                | 100%               | 125    | 125                          | 0        | 25          | 25    | 25                   | 0                        | 0               | 25             | 0,32                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,32        | 0%                         | 0,32                                                       | 0,41              | 1,49            | 0,64                                         | 0,00                            | 6,90                                 | 3,60                              | 0,00                                      | 10,50                             |
| 3    | 2022                                  | 128                | 100%               | 128    | 128                          | 0        | 26          | 26    | 26                   | 0                        | 0               | 26             | 0,33                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,33        | 0%                         | 0,33                                                       | 0,42              | 1,53            | 0,65                                         | 0,00                            | 7,00                                 | 3,70                              | 0,00                                      | 10,70                             |
| 4    | 2023                                  | 130                | 100%               | 130    | 130                          | 0        | 26          | 26    | 26                   | 0                        | 0               | 26             | 0,33                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,33        | 0%                         | 0,33                                                       | 0,43              | 1,55            | 0,66                                         | 0,00                            | 7,20                                 | 3,70                              | 0,00                                      | 10,90                             |
| 5    | 2024                                  | 133                | 100%               | 133    | 133                          | 0        | 27          | 27    | 27                   | 0                        | 0               | 27             | 0,34                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,34        | 0%                         | 0,34                                                       | 0,44              | 1,58            | 0,68                                         | 0,00                            | 7,30                                 | 3,80                              | 0,00                                      | 11,10                             |
| 6    | 2025                                  | 136                | 100%               | 136    | 136                          | 0        | 27          | 27    | 27                   | 0                        | 0               | 27             | 0,35                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,35        | 0%                         | 0,35                                                       | 0,45              | 1,62            | 0,69                                         | 0,00                            | 7,50                                 | 3,90                              | 0,00                                      | 11,40                             |
| 7    | 2026                                  | 139                | 100%               | 139    | 139                          | 0        | 28          | 28    | 28                   | 0                        | 0               | 28             | 0,35                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,35        | 0%                         | 0,35                                                       | 0,46              | 1,66            | 0,71                                         | 0,00                            | 7,60                                 | 4,00                              | 0,00                                      | 11,60                             |
| - 8  | 2027                                  | 142                | 100%               | 142    | 142                          | 0        | 28          | 28    | 28                   | 0                        | 0               | 28             | 0,36                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,36        | 0%                         | 0,36                                                       | 0,47              | 1,69            | 0,72                                         | 0,00                            | 7,80                                 | 4,10                              | 0,00                                      | 11,90                             |
| 9    | 2028                                  | 145                | 100%               | 145    | 145                          | 0        | 29          | 29    | 29                   | 0                        | 0               | 29             | 0,37                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,37        | 0%                         | 0,37                                                       | 0,48              | 1,73            | 0,74                                         | 0,00                            | 8,00                                 | 4,10                              | 0,00                                      | 12,10                             |
| 10   | 2029                                  | 148                | 100%               | 148    | 148                          | 0        | 30          | 30    | 30                   | 0                        | 0               | 30             | 0,38                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,38        | 0%                         | 0,38                                                       | 0,49              | 1,76            | 0,75                                         | 0,00                            | 8,10                                 | 4,20                              | 0,00                                      | 12,30                             |
| 11   | 2030                                  | 151                | 100%               | 151    | 151                          | 0        | 30          | 30    | 30                   | 0                        | 0               | 30             | 0,38                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,38        | 0%                         | 0,38                                                       | 0,50              | 1,80            | 0,77                                         | 0,00                            | 8,30                                 | 4,30                              | 0,00                                      | 12,60                             |
| 12   | 2031                                  | 154                | 100%               | 154    | 154                          | 0        | 31          | 31    | 31                   | 0                        | 0               | 31             | 0,39                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,39        | 0%                         | 0,39                                                       | 0,51              | 1,84            | 0,78                                         | 0,00                            | 8,50                                 | 4,40                              | 0,00                                      | 12,90                             |
| 13   | 2032                                  | 157                | 100%               | 157    | 157                          | 0        | 31          | 31    | 31                   | 0                        | 0               | 31             | 0,40                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,40        | 0%                         | 0,40                                                       | 0,52              | 1,87            | 0,80                                         | 0,00                            | 8,60                                 | 4,50                              | 0,00                                      | 13,10                             |
| 14   | 2033                                  | 161                | 100%               | 161    | 161                          | 0        | 32          | 32    | 32                   | 0                        | 0               | 32             | 0,41                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,41        | 0%                         | 0,41                                                       | 0,53              | 1,92            | 0,82                                         | 0,00                            | 8,90                                 | 4,60                              | 0,00                                      | 13,50                             |
| 15   | 2034                                  | 164                | 100%               | 164    | 164                          | 0        | 33          | 33    | 33                   | 0                        | 0               | 33             | 0,42                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,42        | 0%                         | 0,42                                                       | 0,54              | 1,95            | 0,84                                         | 0,00                            | 9,00                                 | 4,70                              | 0,00                                      | 13,70                             |
| 16   | 2035                                  | 167                | 100%               | 167    | 167                          | 0        | 33          | 33    | 33                   | 0                        | 0               | 33             | 0,43                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,43        | 0%                         | 0,43                                                       | 0,55              | 1,99            | 0,85                                         | 0,00                            | 9,20                                 | 4,80                              | 0,00                                      | 14,00                             |
| 17   | 2036                                  | 171                | 100%               | 171    | 171                          | 0        | 34          | 34    | 34                   | 0                        | 0               | 34             | 0,44                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,44        | 0%                         | 0,44                                                       | 0,57              | 2,04            | 0,87                                         | 0,00                            | 9,40                                 | 4,90                              | 0,00                                      | 14,30                             |
| 18   | 2037                                  | 174                | 100%               | 174    | 174                          | 0        | 35          | 35    | 35                   | 0                        | 0               | 35             | 0,44                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,44        | 0%                         | 0,44                                                       | 0,58              | 2,07            | 0,89                                         | 0,00                            | 9,60                                 | 5,00                              | 0,00                                      | 14,60                             |
| 19   | 2038                                  | 178                | 100%               | 178    | 178                          | 0        | 36          | 36    | 36                   | 0                        | 0               | 36             | 0,45                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,45        | 0%                         | 0,45                                                       | 0,59              | 2,12            | 0,91                                         | 0,00                            | 9,80                                 | 5,10                              | 0,00                                      | 14,90                             |
| 20   | 2039                                  | 182                | 100%               | 182    | 182                          | 0        | 36          | 36    | 36                   | 0                        | 0               | 36             | 0,46                          | 0,000                                  | 0,000                        | 0,000                               | 0,000                                | 0,000                                 | 0,46        | 0%                         | 0,46                                                       | 0,60              | 2,17            | 0,93                                         | 0,00                            | 10,00                                | 5,20                              | 0,00                                      | 15,20                             |

Nota: Elaboración del autor

Tabla 7 Calculo de demanda de alcantarillado

|      | CÁLCULO DE LA DEMANDA DE ALCANTARILLADO |                                  |           |                              |                              |           |               |          |         |         |                         |             |             |           |                       |       |                   |                            |                                      |                           |
|------|-----------------------------------------|----------------------------------|-----------|------------------------------|------------------------------|-----------|---------------|----------|---------|---------|-------------------------|-------------|-------------|-----------|-----------------------|-------|-------------------|----------------------------|--------------------------------------|---------------------------|
|      |                                         | Daniel de                        |           | Moderates                    | \( \tau_1 \)                 | N° de     | Conexiones of | de Desag | üe      | Co      | onsumo de aç            | gua potable |             | D.C. III. | Demanda<br>total      |       | nanda<br>a diaria | Demanda                    | Porcentaje de                        | Caudal de<br>Contribución |
| ,    | Åño                                     | Proyección<br>de la<br>Población | Cobertura | Viviendas<br>con<br>Conexión | Viviendas<br>sin<br>Servicio | Viviendas | Conex.        | Otras    | Conex.  | Consumo | Consumo<br>de industria | Consumo     | Intal Lines |           | producción<br>de agua |       | a diaria<br>md    | máxima<br>horaria<br>(L/s) | Contribución<br>de<br>Alcantarillado | del<br>Alcantarillado     |
|      |                                         | robiación                        |           | Collexion                    | Servicio                     | Totales   | Industrias    | Conex.   | Totales | (L/s)   | (L/s)                   | (L/s)       | (L/s)       | (%)       | potable<br>(L/s)      | (L/s) | (m3/h)            | Qmh                        | %                                    | (L/s)<br>Qalc             |
| Base | 2019                                    | 120                              | 0%        | 0                            | 24                           | 24        | 0             | 0        | 24      | 0,00    | 0,000                   | 0,00        | 0,00        | 0%        | 0,00                  | 0,00  | 0,00              | 0,00                       | 80%                                  | 0,00                      |
| 1    | 2020                                    | 123                              | 100%      | 25                           | 0                            | 25        | 0             | 0        | 25      | 0,31    | 0,000                   | 0,00        | 0,31        | 0%        | 0,31                  | 0,41  | 1,47              | 0,63                       | 80%                                  | 0,50                      |
| 2    | 2021                                    | 125                              | 100%      | 25                           | 0                            | 25        | 0             | 0        | 25      | 0,32    | 0,000                   | 0,00        | 0,32        | 0%        | 0,32                  | 0,41  | 1,49              | 0,64                       | 80%                                  | 0,51                      |
| 3    | 2022                                    | 128                              | 100%      | 26                           | 0                            | 26        | 0             | 0        | 26      | 0,33    | 0,000                   | 0,00        | 0,33        | 0%        | 0,33                  | 0,42  | 1,53              | 0,65                       | 80%                                  | 0,52                      |
| 4    | 2023                                    | 130                              | 100%      | 26                           | 0                            | 26        | 0             | 0        | 26      | 0,33    | 0,000                   | 0,00        | 0,33        | 0%        | 0,33                  | 0,43  | 1,55              | 0,66                       | 80%                                  | 0,53                      |
| 5    | 2024                                    | 133                              | 100%      | 27                           | 0                            | 27        | 0             | 0        | 27      | 0,34    | 0,000                   | 0,00        | 0,34        | 0%        | 0,34                  | 0,44  | 1,58              | 0,68                       | 80%                                  | 0,54                      |
| 6    | 2025                                    | 136                              | 100%      | 27                           | 0                            | 27        | 0             | 0        | 27      | 0,35    | 0,000                   | 0,00        | 0,35        | 0%        | 0,35                  | 0,45  | 1,62              | 0,69                       | 80%                                  | 0,55                      |
| 7    | 2026                                    | 139                              | 100%      | 28                           | 0                            | 28        | 0             | 0        | 28      | 0,35    | 0,000                   | 0,00        | 0,35        | 0%        | 0,35                  | 0,46  | 1,66              | 0,71                       | 80%                                  | 0,57                      |
| 8    | 2027                                    | 142                              | 100%      | 28                           | 0                            | 28        | 0             | 0        | 28      | 0,36    | 0,000                   | 0,00        | 0,36        | 0%        | 0,36                  | 0,47  | 1,69              | 0,72                       | 80%                                  | 0,58                      |
| 9    | 2028                                    | 145                              | 100%      | 29                           | 0                            | 29        | 0             | 0        | 29      | 0,37    | 0,000                   | 0,00        | 0,37        | 0%        | 0,37                  | 0,48  | 1,73              | 0,74                       | 80%                                  | 0,59                      |
| 10   | 2029                                    | 148                              | 100%      | 30                           | 0                            | 30        | 0             | 0        | 30      | 0,38    | 0,000                   | 0,00        | 0,38        | 0%        | 0,38                  | 0,49  | 1,76              | 0,75                       | 80%                                  | 0,60                      |
| 11   | 2030                                    | 151                              | 100%      | 30                           | 0                            | 30        | 0             | 0        | 30      | 0,38    | 0,000                   | 0,00        | 0,38        | 0%        | 0,38                  | 0,50  | 1,80              | 0,77                       | 80%                                  | 0,62                      |
| 12   | 2031                                    | 154                              | 100%      | 31                           | 0                            | 31        | 0             | 0        | 31      | 0,39    | 0,000                   | 0,00        | 0,39        | 0%        | 0,39                  | 0,51  | 1,84              | 0,78                       | 80%                                  | 0,63                      |
| 13   | 2032                                    | 157                              | 100%      | 31                           | 0                            | 31        | 0             | 0        | 31      | 0,40    | 0,000                   | 0,00        | 0,40        | 0%        | 0,40                  | 0,52  | 1,87              | 0,80                       | 80%                                  | 0,64                      |
| 14   | 2033                                    | 161                              | 100%      | 32                           | 0                            | 32        | 0             | 0        | 32      | 0,41    | 0,000                   | 0,00        | 0,41        | 0%        | 0,41                  | 0,53  | 1,92              | 0,82                       | 80%                                  | 0,66                      |
| 15   | 2034                                    | 164                              | 100%      | 33                           | 0                            | 33        | 0             | 0        | 33      | 0,42    | 0,000                   | 0,00        | 0,42        | 0%        | 0,42                  | 0,54  | 1,95              | 0,84                       | 80%                                  | 0,67                      |
| 16   | 2035                                    | 167                              | 100%      | 33                           | 0                            | 33        | 0             | 0        | 33      | 0,43    | 0,000                   | 0,00        | 0,43        | 0%        | 0,43                  | 0,55  | 1,99              | 0,85                       | 80%                                  | 0,68                      |
| 17   | 2036                                    | 171                              | 100%      | 34                           | 0                            | 34        | 0             | 0        | 34      | 0,44    | 0,000                   | 0,00        | 0,44        | 0%        | 0,44                  | 0,57  | 2,04              | 0,87                       | 80%                                  | 0,70                      |
| 18   | 2037                                    | 174                              | 100%      | 35                           | 0                            | 35        | 0             | 0        | 35      | 0,44    | 0,000                   | 0,00        | 0,44        | 0%        | 0,44                  | 0,58  | 2,07              | 0,89                       | 80%                                  | 0,71                      |
| 19   | 2038                                    | 178                              | 100%      | 36                           | 0                            | 36        | 0             | 0        | 36      | 0,45    | 0,000                   | 0,00        | 0,45        | 0%        | 0,45                  | 0,59  | 2,12              | 0,91                       | 80%                                  | 0,73                      |
| 20   | 2039                                    | 182                              | 100%      | 36                           | 0                            | 36        | 0             | 0        | 36      | 0,46    | 0,000                   | 0,00        | 0,46        | 0%        | 0,46                  | 0,60  | 2,17              | 0,93                       | 80%                                  | 0,74                      |

Nota: Elaboración del autor

## Tabla 8 Diseño hidraulico red de alcantarillado

### DISENO HIDRAULICO DE RED DE ALCANTARILLADO

| BU   | ZÓN  | L     | N° DE<br>LOTES EN | COTA TERRE | ENO m.s.n.m | COTA FOND | 00 m.s.n.m | PROFU  |       | CLASE   | s     |                 | CAUDAL I         | DE DISEÑO      | )      | D   | AR <sup>2/3</sup> | v/D         | A      | R      | у     | V <sub>REAL</sub> | TU<br>AL  | 75%       | TENSIÓN<br>TRACTIVA |
|------|------|-------|-------------------|------------|-------------|-----------|------------|--------|-------|---------|-------|-----------------|------------------|----------------|--------|-----|-------------------|-------------|--------|--------|-------|-------------------|-----------|-----------|---------------------|
| DE   | Α    | m     | EL TRAMO          | INICIO     | FINAL       | INICIO    | FINAL      | INICIO | FINAL | TUBERÍA | m/km  | AGUAS<br>ARRIBA | CONT. /<br>TRAMO | AGUAS<br>ABAJO | DISEÑO | mm  | AIX               | <i>y,</i> 2 | m²     | m      | m     | m/s               | Qo<br>Lps | Vo<br>m/s | Pa                  |
| BZ-1 | BZ-2 | 26,71 | 4,00              | 70,778     | 70,664      | 69,278    | 69,064     | 1,50   | 1,60  | S-25    | 8,01  | 0,00            | 0,09             | 0,09           | 1,50   | 200 | 0,0002            | 0,1354      | 0,0025 | 0,0169 | 0,027 | 0,59              | 34,80     | 1,38      | 1,33                |
| BZ-2 | BZ-3 | 41,81 | 11,00             | 70,664     | 70,032      | 69,064    | 68,432     | 1,60   | 1,60  | S-25    | 15,11 | 0,09            | 0,25             | 0,34           | 1,50   | 200 | 0,0001            | 0,1162      | 0,0020 | 0,0146 | 0,023 | 0,74              | 47,80     | 1,89      | 2,17                |
| BZ-3 | BZ-4 | 35,06 | 10,00             | 70,032     | 69,156      | 68,432    | 67,756     | 1,60   | 1,40  | S-25    | 19,28 | 0,25            | 0,23             | 0,57           | 1,50   | 200 | 0,0001            | 0,1097      | 0,0019 | 0,0139 | 0,022 | 0,80              | 53,99     | 2,14      | 2,62                |
| BZ-4 | BZ-5 | 21,42 | 4,00              | 69,156     | 68,871      | 67,756    | 67,471     | 1,40   | 1,40  | S-25    | 13,30 | 0,23            | 0,09             | 0,67           | 1,50   | 200 | 0,0001            | 0,1198      | 0,0021 | 0,0151 | 0,024 | 0,70              | 44,85     | 1,77      | 1,97                |
| BZ-5 | BZ-6 | 24,97 | 3,00              | 68,871     | 68,849      | 67,471    | 67,249     | 1,40   | 1,60  | S-25    | 8,89  | 0,09            | 0,06             | 0,74           | 1,50   | 200 | 0,0002            | 0,1320      | 0,0025 | 0,0165 | 0,026 | 0,61              | 36,66     | 1,45      | 1,44                |

149.97 32.00

Donde: S = Pendiente

n = Coeficiente de Manning
D = Diámetro de la Tubería
r = Radio de la Tub. = D / 2
A = Área Transversal del
P = Perímetro Mojado

R = Radio Hidráulico = A / P

Nota: Elaboración del autor

# 4.1.4. Costos y Presupuesto

# Tabla 9 Presupuesto de la propuesta

| 01                      | Alcantarillado                                                  |     |        |          | 67,885.05 |
|-------------------------|-----------------------------------------------------------------|-----|--------|----------|-----------|
| 01.01                   | Red colectora de alcantarillado                                 |     |        |          | 48,446.55 |
| 01.01.01                | Obras provisionales                                             |     |        |          | 3,046.35  |
| 01.01.01.01             | Cartel de identificación de obra de 3.60mx2.40m                 | pza | 1.00   | 924.79   | 924.79    |
| 01.01.01.02             | Almacén, oficina y caseta de guardianía                         | GLB | 1.00   | 800.00   | 800.00    |
| 01.01.01.03             | Puente de madera provisional, pase peatonal sobre zanja         | und | 4.00   | 330.39   | 1,321.56  |
| 01.01.02                | Trabajos preliminares                                           |     |        |          | 2,366.50  |
| 01.01.02.01             | Trazo, nivelación y replanteo inicial P/D                       | m   | 150.00 | 1.00     | 150.00    |
| 01.01.02.02             | Trazo y replanteo final de obra, P/D                            | m   | 150.00 | 1.07     | 160.50    |
| 01.01.02.03             | Cono fibra de vidrio fosforescente p/señalización               | und | 4.00   | 26.50    | 106.00    |
| 01.01.02.04             | Cinta y malla plástica p/señalización de peligro de obra        | m   | 300.00 | 2.50     | 750.00    |
| 01.01.02.05             | Movilización y desmovilización de maquinarias y equipos         | GLB | 1.00   | 1,200.00 | 1,200.00  |
| 01.01.03                | Seguridad y salud                                               |     |        |          | 3,332.27  |
| 01.01.03.01             | equipos de protección individual                                | GLB | 1.00   | 3,332.27 | 3,332.27  |
| 01.01.04                | Corte, demolición, reposición y eliminación de veredas y        |     |        |          | 10,174.66 |
|                         | puentes                                                         |     |        |          |           |
| 01.01.04.01             | Corte y demolición de puente                                    | m3  | 3.45   | 131.57   | 453.92    |
| 01.01.04.02             | reposición de puente                                            | GLB | 1.00   | 4,000.00 | 4,000.00  |
| 01.01.04.03             | Corte y demolición de pavimento                                 | m2  | 3.60   | 14.30    | 51.48     |
| 01.01.04.04             | Reposición de pavimento c/base y asfalto                        | m2  | 3.60   | 62.23    | 224.03    |
| 01.01.04.05             | Eliminación de material excedente c/equipo, D=5 km.             | m3  | 5.19   | 28.75    | 149.21    |
| 01.01.04.06             | Demolición, extracción y eliminación de redes y buzones de      | GLB | 1.00   | 1,500.00 | 1,500.00  |
| 01.01.04.07             | sistema de alcantarillado existente                             | und | 3.00   | 1,265.34 | 3.796.02  |
|                         | Tramite y reubicación de postes de luz<br>Movimiento de tierras | unu | 3.00   | 1,203.34 | 10,686.17 |
| 01.01.05<br>01.01.05.01 |                                                                 |     |        |          | 9,401.57  |
| 01.01.05.01             | Terreno normal                                                  | m3  | 184.57 | 7.13     | 1,315.98  |
| 01.01.05.01.01          | Excavación de zanja (maq) p/tub. En t/normal                    |     | 150.00 | 3.29     | 493.50    |
| 01.01.05.01.02          | Refine y nivelación zanja en t/normal p/tubería ¢200mm          | m   | 150.00 | 7.52     | 1,128.00  |
| 01.01.05.01.05          | Prep. Cama de apoyo en t/normal p/tubería ¢200mm e= 0.10 m      | m   | 150.00 | 7.32     | 1,120.00  |
| 01.01.05.01.04          | Relleno y compactado con material de préstamo                   | m3  | 43.50  | 61.53    | 2,676.56  |
| 01.01.05.01.05          | Relleno y compactado con material propio                        | m3  | 136.57 | 19.03    | 2,598.93  |
| 01.01.05.01.06          | Elimi. De material excedente c/equipo, D=5km.                   | m3  | 60.00  | 19.81    | 1,188.60  |
| 01.01.05.02             | Acarreo de material excedente dp:60m.                           |     |        |          | 1,284.60  |
| 01.01.05.02.01          | Acarreo de material excedente para eliminación dp:60m           | m3  | 60.00  | 21.41    | 1,284.60  |
| 01.01.06                | Empalme al buzón del sistema de alcantarillado existente        |     |        |          | 250.00    |
| 01.01.06.01             | empalme al buzón del sistema de alcantarillado existente        | GLB | 1.00   | 250.00   | 250.00    |
| 01.01.07                | Suministro e instalación de tuberías pvc UF ISO 4435            |     |        |          | 5,688.60  |
| 01.01.07.01             | sum. E inst. de tub. Pvc - UF, S-25 NTP-ISO4435 ¢200mm          | m   | 150.00 | 33.41    | 5,011.50  |
| 01.01.07.02             | escarchado/anclaje de tubos pvc en llegada a buzones            | und | 10.00  | 67.71    | 677.10    |
| 01.01.08                | Prueba hidráulica                                               |     |        |          | 535.50    |
| 01.01.08.01             | doble prueba hidráulica a zanja libre, p/d                      | m   | 150.00 | 3.57     | 535.50    |
| 01.01.09                | Construcción de buzones                                         |     |        |          | 12,366.50 |
| 01.01.09.01             | Buzones en terreno normal                                       |     |        |          | 12,366.50 |
| 01.01.09.01.01          | Buzón t/normal prof. h=1.40                                     |     |        |          | 4,606.71  |
| 01.01.09.01.01.01       | excav. de zanja manual p/buzon, tn                              | m3  | 6.44   | 36.97    | 238.09    |
| 01.01.09.01.01.02       | construcción de buzón terreno normal h=1.30-1.40m               | und | 2.00   | 2,184.31 | 4,368.62  |
| 01.01.09.01.02          | Buzón t/normal prof. h=1.50 - h=1.60 m                          |     |        |          | 7,548.56  |
| 01.01.09.01.02.01       | excav. de zanja manual p/buzón, tn                              | m3  | 10.66  | 42.03    | 448.04    |
| 01.01.09.01.02.02       | construcción de buzón terreno normal h= 1.70                    | und | 3.00   | 2,366.84 | 7,100.52  |
| 01.01.09.01.03          | eliminación de material excedente                               |     |        |          | 211.23    |
| 01.01.09.01.03.01       | elimin. de material excedente c/equipo, d=5km.                  | m3  | 21.38  | 9.88     | 211.23    |
|                         |                                                                 |     |        |          |           |

| 1.00                       | One solder development of a close to the de-                            |     |        |          | 10 420 50           |
|----------------------------|-------------------------------------------------------------------------|-----|--------|----------|---------------------|
| 1.02<br>01.02.01           | Conexión domiciliaria de alcantarillado                                 |     |        |          | 19,438.50<br>379.32 |
| 01.02.01                   | Corte, demolición, reposición y eliminación de veredas y pisos          |     |        |          | 317.32              |
| 01.02.01.01                | corte y demolición de veredas y pisos de concreto                       | m2  | 4.32   | 28.35    | 122.47              |
| 01.02.01.02                | reposición de vereda y pisos de concreto                                | m2  | 4.32   | 55.13    | 238.16              |
| 01.02.01.03                | elimin. de material excedente c/equipo, d=5 km.                         | m3  | 0.65   | 28.75    | 18.69               |
| 01.02.02                   | Movimiento de tierras                                                   |     |        |          | 7,460.17            |
| 01.02.02.01                | Terreno normal                                                          |     |        |          | 6,243.01            |
| 01.02.02.01.01             | excavación de zanja (maq.) p/tub. en t/normal ¢160mm                    | m3  | 96.60  | 7.13     | 688.76              |
| 01.02.02.01.02             | excavación de zanja (c/equipo.) p/caj. de registro en t/normal          | m3  | 17.28  | 32.11    | 554.86              |
| 01.02.02.01.03             | refine y nivelación zanja en t/normal p/tuberia ¢160mm                  | m   | 117.50 | 3.29     | 386.58              |
| 01.02.02.01.04             | prep. cama de apoyo p/fondo tub. pvc, a=0.80m, hp=0.10m                 | m   | 117.50 | 7.52     | 883.60              |
| 01.02.02.01.05             | relleno y compactado con material de préstamo                           | m3  | 21.15  | 61.53    | 1,301.36            |
| 01.02.02.01.06             | relleno y compactado con material propio                                | m3  | 68.40  | 19.03    | 1,301.65            |
| 01.02.02.01.07             | elimin. de material excedente c/equipo, d=5km.                          | m3  | 56.85  | 19.81    | 1,126.20            |
| 01.02.02.02                | Acarreo de material excedente dp: 60 mts                                |     |        |          | 1,217.16            |
| 01.02.02.02.01             | acarreo de material excedente para eliminación dp: 60 m.                | m3  | 56.85  | 21.41    | 1,217.16            |
| 01.02.03                   | Suministro e instalación de tuberías pvc y accesorios                   |     |        |          | 11,179.53           |
| 01.02.03.01                | sum. e inst. de tub. pvc-uf,s-25 ntp-iso4435 ¢200mmx150mm               | m . | 117.50 | 25.02    | 2,939.85            |
| 01.02.03.02                | sum. e inst. de cachimbas tee pvc-uf,s-25 ntp-iso4435,<br>¢200x150mm    | und | 32.00  | 75.34    | 2,410.88            |
| 01.02.03.03                | emboquillado de tub. pvc en llegada a cj registro p/d                   | und | 32.00  | 29.92    | 957.44              |
| 01.02.03.04                | sum. e inst. cajas de registro, hp=1.00m, p/d                           | und | 32.00  | 152.23   | 4,871.36            |
| 01.02.04                   | Prueba hidráulica                                                       | ana | 02.00  | 102.20   | 419.48              |
| 01.02.04.01                | doble prueba hidraulica a zanja libre, p/d                              | m   | 117.50 | 3.57     | 419.48              |
| 02                         | Agua potable                                                            |     | 117.00 | 0.07     | 29,683.39           |
| 02.01                      | trabajos preliminares                                                   |     |        |          | 1,018.89            |
| 02.01.01                   | cinta y malla plastica p/señalizacion de peligro por obra               | m   | 296.62 | 2.50     | 741.55              |
| 02.01.02                   | trazos y replanteos inicial de la obra                                  | m   | 148.31 | 0.87     | 129.03              |
| 02.01.03                   | replanteo final de la obra                                              | m   | 148.31 | 1.00     | 148.31              |
| 02.02                      | Red de distribución de agua potable                                     |     |        |          | 11,963.10           |
| 02.02.01                   | Corte, demolición reposición y eliminación de pavimento                 |     |        |          | 132.80              |
|                            | flexible para red de distribución                                       |     |        |          |                     |
| 02.02.01.01                | corte y demolición de pavimento                                         | m2  | 1.60   | 14.30    | 22.88               |
| 02.02.01.02                | reposición de pavimento c/base y asfalto                                | m2  | 1.60   | 62.23    | 99.57               |
| 02.02.01.03                | elimin. de material excedente c/equipo, d=5 km.                         | m3  | 0.36   | 28.75    | 10.35               |
| 02.02.02                   | Movimiento de tierras                                                   |     |        |          | 6,299.44            |
| 02.02.02.01                | Terreno normal                                                          |     |        |          | 5,584.99            |
| 02.02.02.01.01             | excavación de zanja (maq.) p/tub. en t/normal                           | m3  | 106.78 | 7.13     | 761.34              |
| 02.02.02.01.02             | refine y nivelación zanja en t/normal p/tubería                         | m   | 148.31 | 3.01     | 446.41              |
| 02.02.02.01.03             | prep. cama de apoyo en t/normal p/tubería e=0.10 m                      | m   | 148.31 | 7.52     | 1,115.29            |
| 02.02.02.01.04             | relleno y compactado con material de préstamo                           | m3  | 17.50  | 61.53    | 1,076.78            |
| 02.02.02.01.05             | relleno y compactado con material propio                                | m3  | 80.09  | 19.03    | 1,524.11            |
| 02.02.02.01.06             | elimin. de material excedente c/equipo, d= 5 km.                        | m3  | 33.37  | 19.81    | 661.06              |
| 02.02.02.02                | Acarreo de material excedente dp: 60 mts                                | m?  | 22.27  | 21.41    | 714.45              |
| 02.02.02.02.01<br>02.02.03 | acarreo de material excedente para eliminación dp: 60 m.                | m3  | 33.37  | 21.41    | 714.45              |
| 02.02.03                   | Extracción y eliminación de redes y conexiones de agua pot. existentes  |     |        |          | 1,000.00            |
| 02.02.03.01                | extracción y eliminación de redes y conexiones de agua pot.             | GLB | 1.00   | 1,000.00 | 1,000.00            |
| 02.02.00.01                | existentes                                                              | 025 |        | 1,000.00 | 1,000.00            |
| 02.02.04                   | Suministro e instalación de tuberías                                    |     |        |          | 1,469.75            |
| 02.02.04.01                | sum. e inst. de tub. pvc-uf iso 1452 c-10 ø63 mm                        | m   | 148.31 | 9.91     | 1,469.75            |
| 02.02.05                   | Prueba hidráulica y desinfección                                        |     |        |          | 401.92              |
| 02.02.05.01                | prueba y desinfección de tuberias pvc iso uf c-10, p/agua potable       | m   | 148.31 | 2.71     | 401.92              |
| 02.02.06                   | Suministro e instalación de accesorios y valvulas                       |     |        |          | 1,659.19            |
| 02.02.06.01                | accesorios                                                              |     |        |          | 361.76              |
| 02.02.06.01.01             | sum. e inst. codo pvc uf ø63mmx22.5°-iso, c-10, incl. anclaje           | pza | 4.00   | 45.47    | 181.88              |
|                            | de concreto, p/agua potable                                             |     |        |          |                     |
| 02.02.06.01.02             | sum. e inst. tee pvc uf ø110mmx110mm-iso, c-10, incl. anclaje           | pza | 1.00   | 112.24   | 112.24              |
|                            | de concreto, p/agua potable                                             |     |        |          |                     |
| 02.02.06.01.03             | sum. e inst. reducción pvc uf ø110mmx63mm-iso, c-10, p/agua             | pza | 1.00   | 24.42    | 24.42               |
| 02.02.06.01.04             | potable<br>sum. e inst. tapón hembra pvc ø63mm iso, c-10, incl. anclaje | pza | 1.00   | 43.22    | 43.22               |
| 52.02.00.01.0 <del>1</del> | de concreto, p/agua potable                                             | PEG | 1.00   | 73.22    | 73.22               |
|                            | · · · · · · · · · · · · · · · · · · ·                                   |     |        |          |                     |

| 02.02.06.02    | Válvulas                                                                                                                                                   |            |                |                | 1,297.43             |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------|----------------------|
| 02.02.06.02.01 | sum. e inst. válvula compuerta luflex de ø63mm, incl. anclaje                                                                                              | pza        | 1.00           | 519.10         | 519.10               |
|                | de concreto, p/agua potable                                                                                                                                |            |                |                |                      |
| 02.02.06.02.02 | sum. e inst. válvula compuerta luflex de ø110mm, incl.                                                                                                     | pza        | 1.00           | 778.33         | 778.33               |
| 02 02 07       | anclaje de concreto, p/agua potable                                                                                                                        |            |                |                | 1 000 00             |
| 02.02.07       | Reparación provisional de redes de agua potable                                                                                                            | OL D       | 1.00           | 1 000 00       | 1,000.00             |
| 02.02.07.01    | reparación provisional de redes de agua potable                                                                                                            | GLB        | 1.00           | 1,000.00       | 1,000.00             |
| 02.03          | Conexiones domiciliarias de agua potable                                                                                                                   |            |                |                | 16,701.40            |
| 02.03.01       | Corte, demolición, reposición y eliminación de veredas y pisos                                                                                             |            |                |                | 458.95               |
| 02.03.01.01    | corte y demolición de veredas y pisos de concreto                                                                                                          | m2         | 4.00           | 28.35          | 113.40               |
| 02.03.01.02    | reposición de vereda y pisos de concreto                                                                                                                   | m2         | 4.00           | 55.13          | 220.52               |
| 02.03.01.03    | demolición de muros de ladrillo                                                                                                                            | m3         | 0.13           | 17.91          | 2.33                 |
| 02.03.01.04    | reposición de muro de ladrillo                                                                                                                             | m2         | 0.88           | 98.59          | 86.76                |
| 02.03.01.05    | elimin. de material excedente c/equipo, d=5 km.                                                                                                            | m3         | 1.25           | 28.75          | 35.94                |
| 02.03.02       | Movimiento de tierras                                                                                                                                      |            |                |                | 5,712.74             |
| 02.03.02.01    | Terreno normal                                                                                                                                             |            |                |                | 5,014.99             |
| 02.03.02.01.01 | excavación de zanja (maq.) p/tub. en t/normal                                                                                                              | m3         | 86.90          | 7.13           | 619.60               |
| 02.03.02.01.02 | refine y nivelación zanja en t/normal p/tubería                                                                                                            | m          | 144.83         | 3.01           | 435.94               |
| 02.03.02.01.03 | prep. cama de apoyo en t/normal p/tubería e=0.10 m                                                                                                         | m          | 144.83         | 7.52           | 1,089.12             |
| 02.03.02.01.04 | relleno y compactado con material de préstamo                                                                                                              | m3         | 17.38          | 61.40          | 1,067.12             |
| 02.03.02.01.04 | relleno y compactado con material propio                                                                                                                   | m3         | 60.83          | 19.03          | 1,157.59             |
| 02.03.02.01.06 | elimin. de material excedente c/equipo, d=5km.                                                                                                             | m3         | 32.59          | 19.81          | 645.61               |
|                | 1.1.1                                                                                                                                                      | IIIS       | 32.39          | 17.01          |                      |
| 02.03.02.02    | Acarreo de material excedente dp: 60 mts                                                                                                                   | 3          | 22.50          | 21 41          | 697.75               |
| 02.03.02.02.01 | acarreo de material excedente para eliminación dp: 60 mts.                                                                                                 | m3         | 32.59          | 21.41          | 697.75               |
| 02.03.03       | Suministro e instalación de tuberías y conexión domiciliaria                                                                                               |            | 444.00         | 0.05           | 10,137.22            |
| 02.03.03.01    | sum. e inst. tub. pvc sp ø 1/2", c-10, p/agua potable                                                                                                      | m          | 144.83         | 2.35           | 340.35               |
| 02.03.03.02    | conexión domic. c/ abraz pvc ø 63mmx1/2" p/a                                                                                                               | und        | 36.00          | 99.83          | 3,593.88             |
| 02.03.03.03    | sum. e inst. tub. pvc sp ø 3", p/forro, p/agua potable                                                                                                     | m          | 144.83         | 13.67          | 1,979.83             |
| 02.03.03.04    | sum. e inst. bateria termoplastica completa, c/niple medidor,<br>upr ¢ 1/2", p/agua potable<br>sum. e inst. caja de registro termoplastica, p/agua potable | pza<br>und | 36.00<br>36.00 | 50.17<br>67.14 | 1,806.12<br>2,417.04 |
| 02.03.04       | Prueba hidráulica y desinfección                                                                                                                           | una        | 30.00          | 07.11          | 392.49               |
| 02.03.04.01    | prueba hidráulica y desinfección de tub. pvc sp ø 1/2" y 3/4" c-                                                                                           | m          | 144.83         | 2.71           | 392.49               |
|                | 10 (conexión domiciliaria), p/agua potable                                                                                                                 | 111        | 144.00         | 2.71           |                      |
| 03             | mitigación e impacto ambiental                                                                                                                             |            |                |                | 2,200.00             |
| 03.01          | plan de mitigación ambiental de agua potable                                                                                                               | GLB        | 1.00           | 1,000.00       | 1,000.00             |
| 03.02          | plan de impacto ambiental de agua potable y alcantarillado                                                                                                 | GLB        | 1.00           | 1,200.00       | 1,200.00             |
| 04             | implementación de programa sanitario y capacitación                                                                                                        |            |                |                | 2,000.00             |
| 04.01          | programa sanitario                                                                                                                                         | GLB        | 1.00           | 1,000.00       | 1,000.00             |
| 04.02          | capacitación a la población                                                                                                                                | GLB        | 1.00           | 1,000.00       | 1,000.00             |
|                | costo directo                                                                                                                                              |            |                |                | 101,768.44           |
|                | gastos generales (13.5%)                                                                                                                                   |            |                |                | 13,738.74            |
|                | utilidades (7%)                                                                                                                                            |            |                |                | 7,123.79             |
|                |                                                                                                                                                            |            |                |                |                      |
|                | sub total                                                                                                                                                  |            |                |                | 122,630.97           |
|                | igv (18%)                                                                                                                                                  |            |                |                | 22,073.57            |
|                | total de presupuesto                                                                                                                                       |            |                | -              | 144,704.54           |
|                | expediente tecnico                                                                                                                                         |            |                |                | 12,500.00            |
|                | supervision                                                                                                                                                |            |                |                | 8,450.00             |
|                | supervision ========                                                                                                                                       |            |                |                | 0,430.00             |
|                | presupuesto final son: ciento sesenta y cinco mil seiscientos                                                                                              |            |                |                | 165,654.54           |

cincuenta y cuatro y 54/100 nuevos soles

Nota: Elaboración del autor

### 4.1.5. Resultados del servicio de agua potable y alcantarillado

## 4.1.5.1. Resultados del servicio de agua potable

La calidad del servicio de agua potable desde el punto de vista del análisis del agua refleja que el agua del pozo subterraneo cercano tiene concentraciones por debajo del ECA para agua Categoría 1 A1, excepto la Conductividad que registro 2 479,0 µs/cm; Aceites y Grasas que registro <1,0; Cloruros, que registro 343,7 mg/L Cl-1; los Coliformes Fecales y E. Coli, ambos registraron 2 NMP/ mL. Estos parámetros sobrepasaron el valor del ECA-Agua Categoría 1 A1 según el monitoreo de la calidad del Agua elaborado por la empresa RAMMSAC.S.A.C para la municipalidad distrital de Santa María. Recomendando realizar el tratamiento convencional para que el agua pueda ser apta para el consumo humano.

La calidad del servicio de agua potable desde el punto de vista del servicio con respecto a las horas de caudal, tiempo de cobertura, no se van a resolver con la presente propuesta, debido a que se necesitan alternativas como las canalizaciones del río para poder obtener un mejor caudal y por consiguiente tener mayor cantidad de horas de cobertura.

#### 4.1.5.2. Resultados del servicio de alcantarillado

El servicio de alcantarillado desde el punto de vista de la capacidad de recepción de aguas servidas(Caudal), es óptima, debido a que las redes instaladas se conectaran con un colector principal que permitirá desechar toda el agua que provengan de las viviendas.

Con respecto al tratamiento de las aguas servidas, este problema requiere un análisis mucho más profundo por parte de la empresa prestadora de servicio, para evitar contaminar el medio ambiente. Y proponer una planta de tratamiento de aguas servidas, reduciendo la contaminación del mar de Huacho.

### 4.1.6. Resultados de la condición sanitaria

#### 4.1.5.3. Resultados de la calidad de vida

Al mejorar el servicio de agua potable y alcantarillado se mejora la higiene del lugar debido a que los alimentos pueden tener un lavado mucho más prolongado, se reduce el riesgo de consumir y utilizar agua de acequia, río o riachuelo, sin ser tratada previamente.

Asimismo la búsqueda de acceso al agua se reduciría, debido a que podría contar con suministro diario, pero limitado.

### 4.1.5.4. Resultados de las enfermedades agudas, parasitosis y diarreicas.

Al mejorar el servicio de agua potable y alcantarillado reducirá la proliferación de enfermedades infectocontagiosas como cólicos, cólera, diarrea, alergias, etc.

Asimismo las enfermedades como el zika, dengue se reduciría por que las personas ya no tendrán la necesidad de tener agua en baldes, tinas o recipientes.

Asimismo las personas podrían realizar actividades de higiene más constante, debido al acceso al agua. Estas actividades son lavar las frutas constantemente, lavado de manos, riego, etc.

# 4.1.7. Resultados metodológicos

### ANALISIS DE NORMALIDAD

**Shapiro Wilk** = Se realiza cuando la muestra es n< 50

**Kolmorov Smirnov :** Se realiza cuando la muestra es n > 0

Siendo la muestra 24 se determina la aplicación de Shapiro Wilk

# A) Normalidad del servicio de agua potable y alcantarillado y condición sanitaria

Tabla 10: Prueba de Shapiro Wilk de servicio agua potable y alcantarillado – condición sanitaria

|                                  | Shaj        | Shapiro-Wilk |      |   |  |  |  |  |  |
|----------------------------------|-------------|--------------|------|---|--|--|--|--|--|
|                                  | Estadístic. | gl           | Sig. |   |  |  |  |  |  |
| SERVIC. AGUA Y<br>ALCANTARILLAD. | ,970        | 14           | ,876 | ( |  |  |  |  |  |
| CONDIC. SANIT.                   | ,948        | 14           | ,529 | ( |  |  |  |  |  |
|                                  |             |              |      |   |  |  |  |  |  |

Como > 0,05 determinado que es normal utilizando correlación paramétrica (Pearson)

# B) Normalidad de calidad del servicio de agua potable y condición sanitaria

Tabla 11: Shapiro Wilk calidad servicio agua potable - condición sanitaria

|                                 | Shapiro-Wilk |    |      |  |  |  |  |  |
|---------------------------------|--------------|----|------|--|--|--|--|--|
|                                 | Estadístic.  | gl | Sig. |  |  |  |  |  |
| CALIDAD SERVIC. AGUA<br>POTABLE | ,891         | 14 | ,084 |  |  |  |  |  |
| CONDICIÓN SANITARIA             | ,948         | 14 | ,529 |  |  |  |  |  |

Como > 0,05 determinado que es normal utilizando correlación paramétrica (Pearson)

# C) Modelamiento de servicio de alcantarillado y condición sanitaria

Tabla 12: Prueba de Shapiro Wilk servicio de alcantarillado - condición sanitaria

|                               | Shapiro-Wilk |    |                   |  |  |  |  |  |
|-------------------------------|--------------|----|-------------------|--|--|--|--|--|
|                               | Estadístico  | gl | Sig.              |  |  |  |  |  |
| SERVICIO DE<br>ALCANTARILLADO | ,883         | 14 | ,064 <sup>C</sup> |  |  |  |  |  |
| CONDIC. SANITARIA             | ,948         | 14 | ,529              |  |  |  |  |  |

Como > 0,05 determinado que es normal utilizando correlación paramétrica (Pearson)

# EVALUACIÓN DE CORRELACIÓN CON PEARSON

Para sig < 0,05 Se acepta su hipótesis alterna y rechazamos su nula

Si sig > 0,05 Se acepta su hipótesis nula y rechazamos su alterna

Tabla 13 Rangos e indicadores

| Rango       | Indicadores                   |
|-------------|-------------------------------|
| 0,00 0,19   | Correlación nula              |
| 0,20-0,39   | Correlación baja              |
| 0,40 - 0,69 | Correlación moderada          |
| 0,70 - 0,89 | Correlación alta              |
| 0,90 - 0,99 | Correlación muy alta          |
| 1,00        | Correlación grande y perfecta |

Nota: (Herrera, 1998)

# A) Modelamiento del servicio de agua potable y alcantarillado y condición sanitaria

Tabla 14 Correl. Pearson (Servicio de agua potable y alcantarillado-condición sanitaria)

|                     |             | SERVICIO DE | CONDICIÓN |
|---------------------|-------------|-------------|-----------|
|                     |             | AGUA Y      | SANITARIA |
|                     |             | ALCANTARILL |           |
|                     |             | ADO         |           |
| CEDVICIO DE ACITA   | Correlac.   | 1           | ,442      |
| SERVICIO DE AGUA    | Pearson     | 1           |           |
| Y<br>ALCANTARILLADO | Sig. (bil.) |             | ,114      |
| THE THUTTHRILLING   | N           | 14          | 14        |
|                     | Correlac.   | ,442        | 1         |
| CONDICIÓN           | Pearson     |             | <b>-</b>  |
| SANITARIA           | Sig. (bil.) | ,114        |           |
|                     | N           | 14          | 14        |

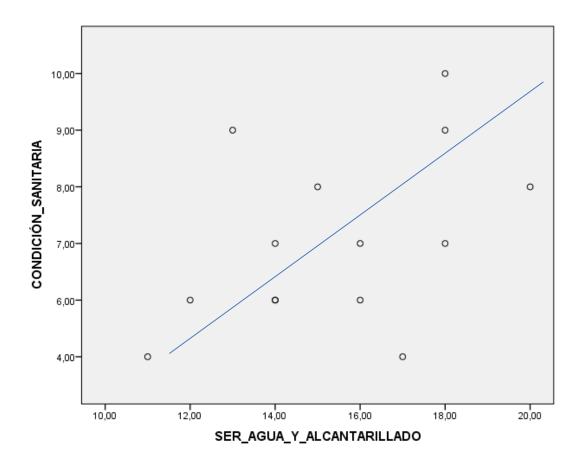



Figura 4: Grafica de dispersión puntos de Servicio de agua potable y alcantarillado-condición sanitaria

**H**<sub>0</sub>: El servicio de agua potable y alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

**H**<sub>1</sub>: El servicio de agua potable y alcantarillado no se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

Como sig = 0,114 y sig > 0,05 aceptamos  $H_0$  y desechamos  $H_1$ . Tambien, r = 0,442 es moderada teniendo que el servicio de agua potable y alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

La Figura  $N^{\circ}$  4 indica que la dispersión de puntos en la que no tiene distanciamiento evidente y es linealmente de forma ascendiente.

# B) Modelamiento de calidad del servicio de agua potable y condición sanitaria

Tabla 15 Correl. Pearson (Calidad del servicio de agua potable -condición sanitaria)

|                     |                         | CALIDAD<br>SERVICIO AGUA<br>POTABLE | CONDICIÓN<br>SANITARIA |
|---------------------|-------------------------|-------------------------------------|------------------------|
| CALIDAD SERVICIO    | Correlac. de<br>Pearson | 1                                   | ,487                   |
| AGUA POTABLE        | Sig. (bil.)             |                                     | ,320                   |
|                     | N                       | 14                                  | 14                     |
| ,                   | Correl. de<br>Pearson   | ,487                                | 1                      |
| CONDICIÓN SANITARIA | Sig. (bilat.)           | ,320                                |                        |
|                     | N                       | 14                                  | 14                     |

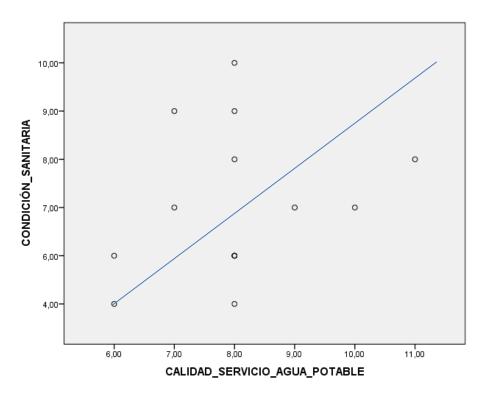
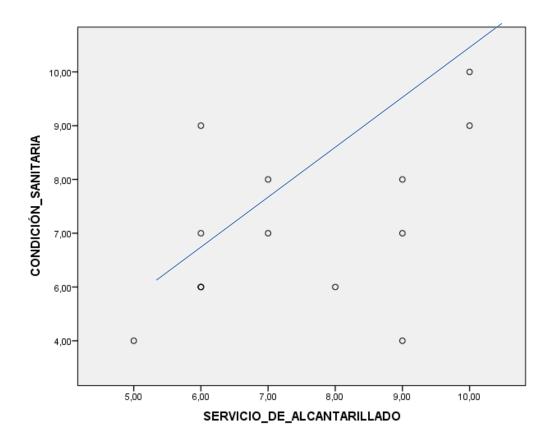



Figura 5 Grafica de dispersión puntos de Calidad de Servicio de agua potable -condición sanitaria

**H0:** La calidad del servicio de agua potable se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

**H1:** La calidad del servicio de agua potable no se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura


Como  $\mathbf{sig} = \mathbf{0,320} \ \mathbf{y} \ \mathbf{sig} > \mathbf{0,05}$  aceptamos  $H_0$  y desechamos  $H_1$ . Tambien, r = 0,487 es moderada encontrando que la calidad del servicio de agua potable se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

Su Figura  $N^{\circ}$  5 indica que la dispersión de puntos en la que no tiene distanciamiento evidente y es linealmente de forma ascendiente.

# C) Modelamiento de servicio de alcantarillado y condición sanitaria

Tabla 16 Correl. de Pearson (Servicio de alcantarillado -condición sanitaria)

|                |                         | SERVICIO DE COM<br>ALCANTARILL SAM<br>ADO |      |
|----------------|-------------------------|-------------------------------------------|------|
| SERVICIO DE    | Correlac. de<br>Pearson | 1                                         | ,445 |
| ALCANTARILLADO | Sig. (bil.)             |                                           | ,111 |
|                | N                       | 14                                        | 14   |
| CONDICIÓN      | Correlac. de Pearson    | ,445                                      | 1    |
| SANITARIA      | Sig. (bil.)             | ,111                                      |      |
|                | N                       | 14                                        | 14   |



**H**<sub>0</sub>: El servicio de alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

 H<sub>1</sub>: El servicio de alcantarillado no se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

Como sig = 0,115 y sig > 0,05 aceptamos  $H_0$  y desechamos  $H_1$ . Como r = 0,445 es moderada observando que el servicio de alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura

Su Figura  $N^{\circ}$  6 indica que la dispersión de puntos en la que no tiene distanciamiento evidente y es linealmente de forma ascendiente.

# CAPÍTULO V DISCUSIÓN

### 5.1. Discusión de Resultados

Según la tabla N° 15 y Figura N° 4 el servicio de agua potable y alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura concordando con (Batres, 2010) que indica que con su rediseño se llega a resolver de manera satisfactoria su desabastecimiento que existe en su municipio; garantizando que sus redes cumplirán su demanda de proyecto, en unos 20 años.

Según la tabla N° 16 y Figura N° 5 La calidad del servicio de agua potable se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura. Concordando con (Concha & Guillen, 2014) que menciona que de acuerdo Su demanda en un futuro de la urbanización de caudal de bombeo es 60 lt/seg en todo el día. y con (Chirinos, 2017) que indica que su consumo máximo por cada hora es igual a 0,57 lt/seg.

Según la tabla N° 17 y Figura N° 6 El servicio de alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura, Concordando con (Arboleda, 2010) que menciona brindan desarrollo a muchas actividades económicas y ambientales mejorando su calidad de sus usuarios.

# CAPÍTULO VI CONCLUSIONES Y RECOMENDACIONES

#### **6.1.** Conclusiones

- La calidad del servicio de agua potable se encuentra dentro de los límites permitidos que se establecen para un agua potable, excepto la conductividad que registro 2 479,0 μs/cm; aceite y grasas que registro <1,0; los coliformes fecales y E. Coli, ambos registraron 2 nmp/ml.
- 2) El servicio de alcantarillado tiene dimensiones de 6" de diámetro y servirá para eliminar las aguas servidas de dicho lugar.
- 3) La calidad de vida se mejora debido al mejoramiento de las condiciones sanitarias que pueden existir debido al proyecto.
- 4) Las enfermedades agudas, parasitosis y diarreicas se reducen debido al acceso al agua potable y al servicio de alcantarillado proyectado.

### **6.2.** Recomendaciones:

Referente a los resultados de calidad de agua obtenida en la estación de Pozo subterráneo San Lorenzo, se recomienda realizar el tratamiento convencional para ser agua potable.

Continuar con los monitoreos de la calidad de agua, dando el seguimiento a la variación de los parámetros ya evaluados en los siguientes monitoreos, de acuerdo a la normativa vigente.

Tener en cuenta las normas sobre sistema de agua y alcantarillado, para reducir errores del diseño del sistema.

Sus costos deben actualizarse antes de la iniciación del proyecto.

# CAPÍTULO VI FUENTES DE INFORMACIÓN

### 7.1. Fuentes Bibliográficas

- Aguas de Lima Norte S.A. (s.f.). *Ámbito de la EPS*. Obtenido de http://www.aguasdelimanorte.com/sitio/index.php/explore/ambito-de-la-eps
- Almonacid, A. (2010). Proyecto de agua potable rural para las comunidades de Curamin Queten en la Comuna de Hualaihue. Valdivia, Chile.
- Arboleda, G. (2010). Estado del Sector agua potable y saneamiento basico en la zona rural de la isla de san andres, en el contexto de la reserva de la Biosfera. San Andres Isla.
- Auge, M. (2007). Agua fuente de Vida.
- Batres, J. (2010). Rediseño del sistema de abatecimiento de Agua Potable, Diseño del alcantarillado sanitario y de agua de lluvias para el municipio de San Luis del Carmen, departamento de Chalatenango. Mexico.
- Batres, J. (s.f.). Rediseño del sistema de abatecimiento de Agua Potable, Diseño del alcantarillado sanitario y de agua de lluvias para el municipio de San Luis del Carmen, departamento de Chalatenango. Mexico.
- CARTAGENA, A. D. (s.f). ¿En qué consiste el servicio de alcantarillado? . Obtenido de https://www.acuacar.com/Oficina-virtual/Informaci%C3%B3n-general/guiadelusuario/ArticleID/47/%C2%BFEn-qu%C3%A9-consiste-el-servicio-de-alcantarillado
- Chirinos, S. (2017). Diseño del sistema de abastecimiento de agua potable y alcantarillado del Caserío Anta, Moro Ancash 2017. Chimbote, Peru.
- Concha, J., & Guillen, J. (2014). Mejoramiento del sistema de abastecimiento de agua potable (
  Caso: Urbanización Valle Esmeralda, distrito de Pueblo Nuevo, Provincia y departamento de Ica). Lima, Peru.
- INEI. (2012). Informe Técnico: Evolución de la pobreza Monetaria 2009 –2015.

INEI. (2018). Peru: Formas de acceso al agua y saneamiento basico. . Lima, Peru.

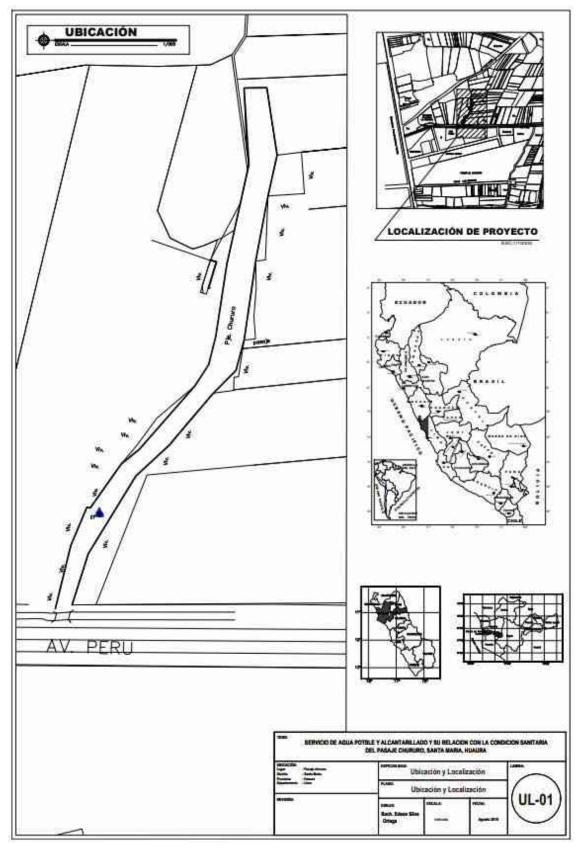
MINSA. (2011). Reglamento de la calidad de agua para consumo humano. Lima, Peru.

MVCS. (2006). Reglamento Nacional de Edificaciones. Lima, Peru.

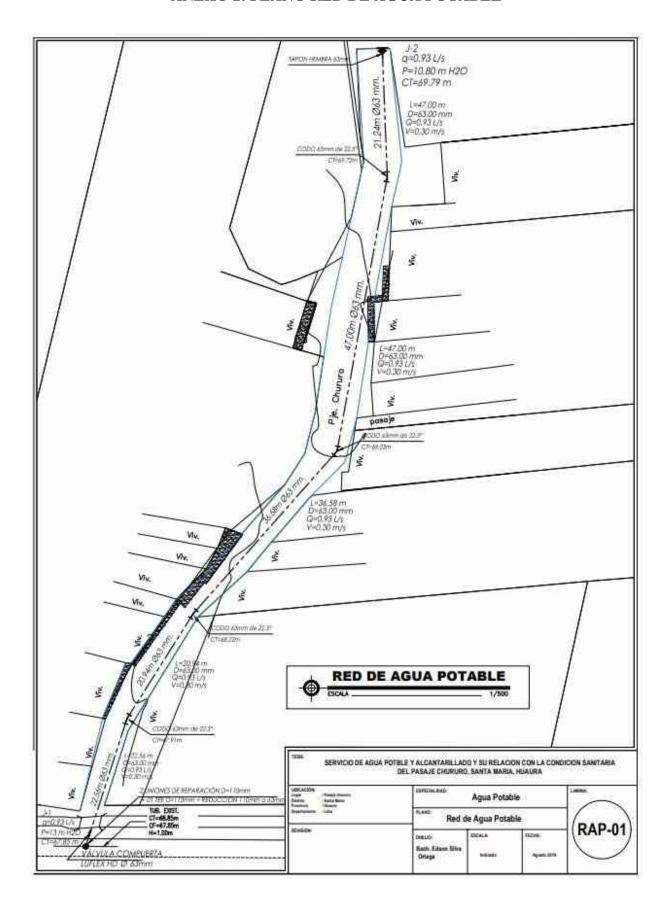
OMS. (22 de 10 de 2012). ¿Qué es la cobertura sanitaria universal? Obtenido de https://www.who.int/features/qa/universal\_health\_coverage/es/

OMS. (2017). 2100 millones de personas carecen de agua potable en el hogar y más del doble no disponen de saneamiento seguro. Obtenido de https://www.who.int/es/news-room/detail/12-07-2017-2-1-billion-people-lack-safe-drinking-water-at-home-more-than-twice-as-many-lack-safe-sanitation

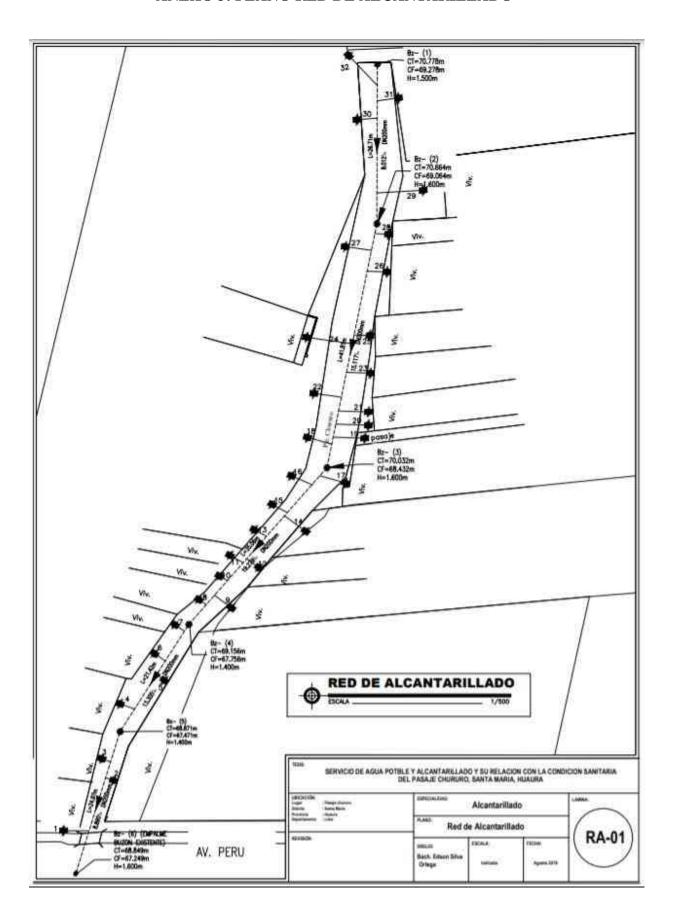
Pasapera, K. (2018). Diseño hidráulico del sistema de agua potable del caserio de ranchería ex cooperativa Carlos Mariategui distrito de Lambayeque, provincia de Lambayeque – Lambayeque – noviembre 2018. Piura, Peru.


Sampieri, H. (2014). Metodologia de la Investigación. Mexico.

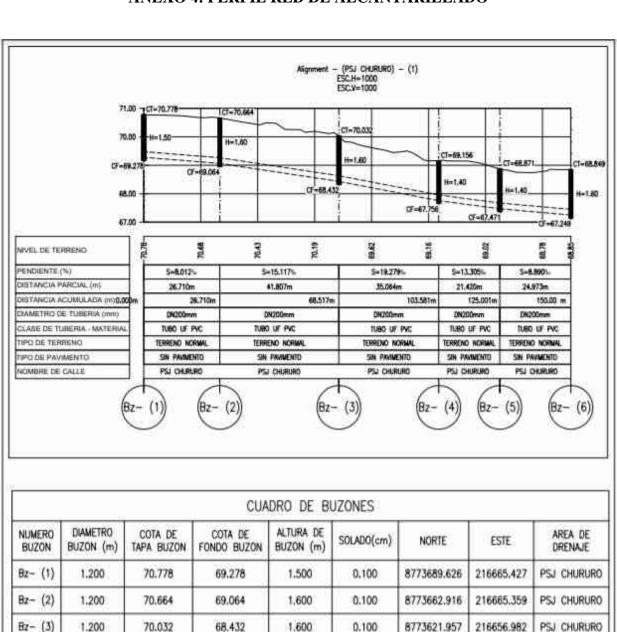
SUNNAS. (2017). La calidad del agua en el Peru. Lima, Peru.


Vierendel, F. (2009). Abastecimiento de Agua y Alcantarillado. Lima, Peru.

# **ANEXOS**


# ANEXO 1: PLANO DE UBICACIÓN

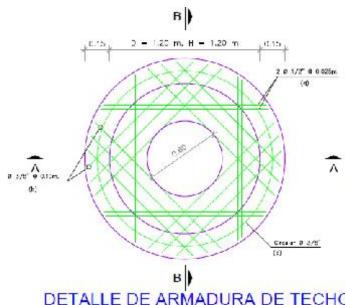



# ANEXO 2: PLANO RED DE ÁGUA POTABLE

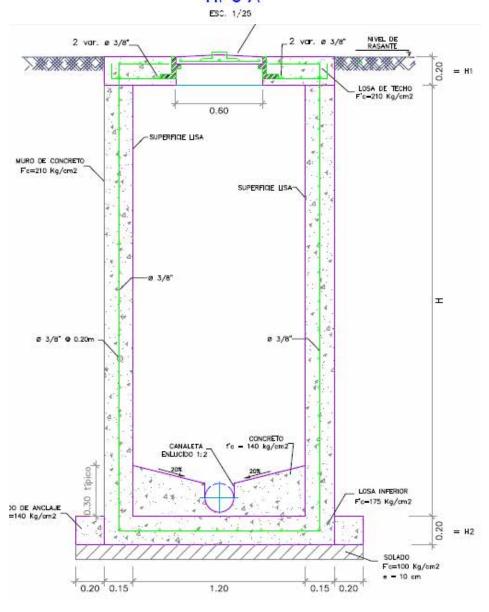


# ANEXO 3: PLANO RED DE ALCANTARILLADO

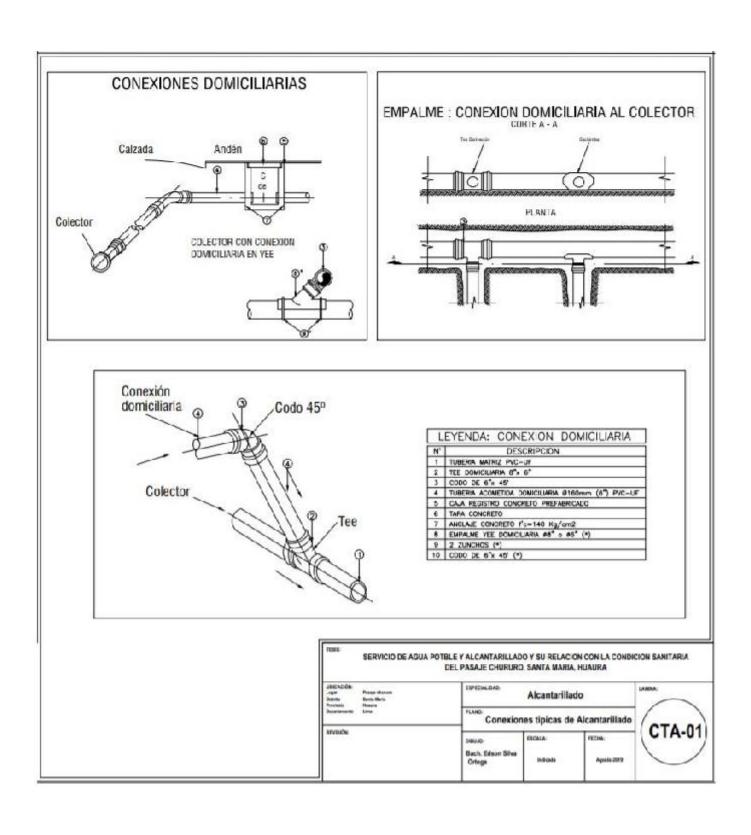



### **ANEXO 4: PERFIL RED DE ALCANTARILLADO**




| CUADRO DE BUZONES |                       |                       |                        |                        |            |             |            |                    |  |  |  |
|-------------------|-----------------------|-----------------------|------------------------|------------------------|------------|-------------|------------|--------------------|--|--|--|
| NUMERO<br>BUZON   | DIAMETRO<br>BUZON (m) | COTA DE<br>TAPA BUZON | COTA DE<br>FONDO BUZON | ALTURA DE<br>BUZON (m) | SOLADO(cm) | NORTE       | ESTE       | AREA DE<br>DRENAJE |  |  |  |
| Bz- (1)           | 1.200                 | 70.778                | 69.278                 | 1.500                  | 0.100      | 8773689.626 | 216665,427 | PSJ CHURURO        |  |  |  |
| Bz- (2)           | 1.200                 | 70.664                | 69.064                 | 1,600                  | 0.100      | 8773662.916 | 216665,359 | PSJ CHURURO        |  |  |  |
| Br- (3)           | 1.200                 | 70.032                | 68.432                 | 1,600                  | 0.100      | 8773621.957 | 216656,982 | PSJ CHURURO        |  |  |  |
| Bz- (4)           | 1.200                 | 69.156                | 67.756                 | 1.400                  | 0.100      | 8773595.641 | 216633,809 | PSJ CHURURO        |  |  |  |
| Bz- (5)           | 1,200                 | 68.871                | 67.471                 | 1,400                  | 0.100      | 8773577.600 | 216622.263 | PSJ CHURURO        |  |  |  |
| Bz- (6)           | 1.200                 | 68.849                | 67.249                 | 1.600                  | 0.100      | 8773553.756 | 216614.837 | PSJ CHURURÓ        |  |  |  |

| TEBS.                     | SERVICIO DE AGUA                     | POTELE Y ALCANTARILLAD<br>DEL PASAJE CHURURO |                |                        | ICION SANTARIA |  |  |  |
|---------------------------|--------------------------------------|----------------------------------------------|----------------|------------------------|----------------|--|--|--|
| SHLADEAL<br>Lyge<br>Yorks | Principle allessions<br>Stocks Works | COMPANSAD                                    | Alcantarillado |                        |                |  |  |  |
| Processor Processor       | TORR.                                | Ferfit - Re                                  | ed de Alcant   | arillado               | (              |  |  |  |
|                           |                                      | Bach, Edison Silva<br>Orlega                 | MAIA.          | Million.<br>Agree 2010 | PRA-0          |  |  |  |


# ANEXO 5: PLANO DE BUZÓN

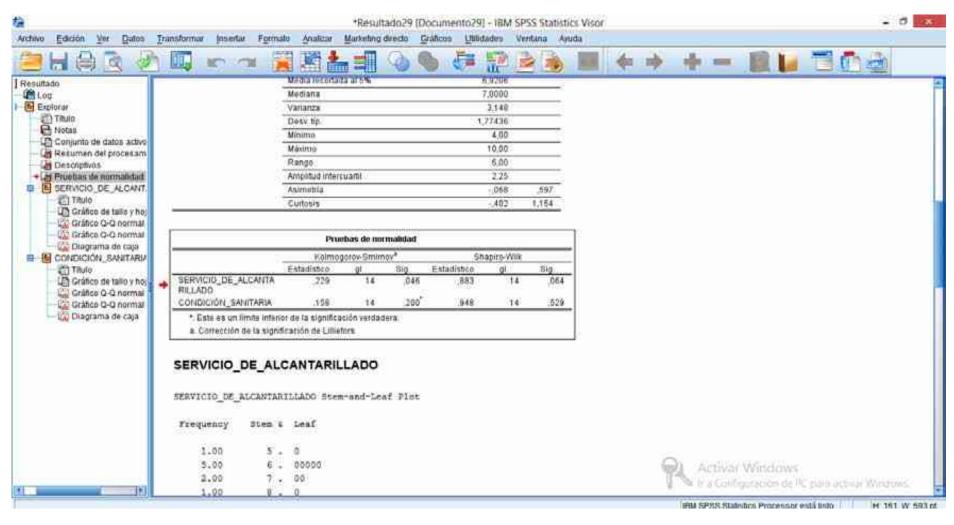


# DETALLE DE ARMADURA DE TECHO TIPO A



## ANEXO 6: CONEXIONES TIPICAS DE ALCANTARILLADO




# **ANEXO 7: MATRIZ DE CONSISTENCIA**

| PROBLEMA                                                                                                                                                                                                                                                               | OBJETIVO                                                                                                                                                                                                                                                                                | HIPOTESIS                                                                                                                                                                                                                                | VARIABLE                                              | DIMENSIONES                                                           | METODOLOGIA                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problema General ¿De qué manera el servicio de agua potable y alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura?  Problemas Específicos                                                                                   | Objetivo General Determinar de qué manera el servicio de agua potable y alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura  Objetivos Específicos                                                                                           | Hipótesis General El servicio de agua potable y alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura  Hipótesis Específicos                                                                    | Variable 1  Servicio de Agua Potable y alcantarillado | Calidad del servicio de<br>agua potable<br>Servicio de alcantarillado | Diseño de Investigación:<br>Correlacional                                                                                                                                                                                                                              |
| ¿De qué manera la calidad del servicio de agua potable se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura?  ¿De qué manera el servicio de alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura? | Determinar de qué manera la calidad del servicio de agua potable se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura Determinar de qué manera el servicio de alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura | La calidad del servicio de agua potable se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura.  El servicio de alcantarillado se relaciona con la condición sanitaria del pasaje Chururo, Santa María, Huaura. | Variable 2<br>Condición<br>Sanitaria                  | Calidad de Vida<br>Enfermedades diarreicas,<br>agudas y parasitosis.  | Tipo de Investigación: Aplicada, longitudinal, Descriptiva, cuantitativa. Población: La población serán la totalidad de las viviendas, es decir las 24 viviendas del pasaje Chururo, Santa María, Huaura Muestra: La muestra n= 24 se trabajará con toda la población. |

# **ANEXO 8: INGRESO DE DATOS EN SPSS**

| ta<br>Anabia |        | ź- V-         | . D-     |      | T   | · • · · · · · · | - ^- | -1:  | Mari |        |         |             |      |      |      |       | os0] - IBM SPSS St                    | atistics Editor de c | latos |             |        |           | -              | □ ×          |
|--------------|--------|---------------|----------|------|-----|-----------------|------|------|------|--------|---------|-------------|------|------|------|-------|---------------------------------------|----------------------|-------|-------------|--------|-----------|----------------|--------------|
| Archivo      | Edicio | ón <u>V</u> e |          |      |     | sforma          |      |      |      | keting | directo | <u>G</u> rá |      |      |      | Venta |                                       | ABS                  |       |             |        |           |                |              |
| 25 : P2      |        |               |          |      |     |                 |      |      |      |        |         |             |      |      |      |       |                                       |                      |       |             |        |           | Visible: 19 de | 19 variables |
|              | N      | lombre        | P1       | P2   | P3  | P4              | P5   | P6   | P7   | P8     | P9      | P10         | P11  | P12  | P13  | P14   | CALIDAD_SERVICI<br>O_AGUA_POTABL<br>E |                      |       |             | var    | var       | var            | var          |
| 1            | Jl     | ULIO L        | 2,00     | 1,00 | 1,0 | 1,00            | 1,00 | 1,00 | 1,0  | 1,00   | 1,00    | 1,00        | 1,00 | 1,00 | 1,00 | 1,00  | 6,00                                  | 5,00                 | 4,00  | 11,00       |        |           |                | _            |
| 2            | L      | UIS           | 2,00     | 2,00 | 1,0 | 2,00            | 1,00 | 1,00 | 2,0  | 1,00   | 1,00    | 1,00        | 1,00 | 1,00 | 1,00 | 3,00  | 8,00                                  | 6,00                 | 6,00  | 14,00       |        |           |                |              |
| 3            | A      | NDR           | 1,00     | 2,00 | 1,0 | 3,00            | 1,00 | 2,00 | 2,0  | 2,00   | 1,00    | 2,00        | 1,00 | 1,00 | 1,00 | 1,00  | 8,00                                  | 9,00                 | 4,00  | 17,00       |        |           |                |              |
| 4            | В      | ORI           | 1,00     | 2,00 | 1,0 | 3,00            | 1,00 | 1,00 | 2,0  | 2,00   | 1,00    | 1,00        | 1,00 | 1,00 | 4,00 | 2,00  | 8,00                                  | 7,00                 | 8,00  | 15,00       |        |           |                |              |
| 5            | N.     | IANC          | 1,00     | 2,00 | 1,0 | 3,00            | 1,00 | 1,00 | 2,0  | 1,00   | 1,00    | 1,00        | 1,00 | 2,00 | 1,00 | 2,00  | 8,00                                  | 6,00                 | 6,00  | 14,00       |        |           |                |              |
| 6            | J      | ORG           | 1,00     | 2,00 | 1,0 | 3,00            | 1,00 | 1,00 | 2,0  | 3,00   | 1,00    | 1,00        | 1,00 | 3,00 | 1,00 | 1,00  | 8,00                                  | 8,00                 | 6,00  | 16,00       |        |           |                |              |
| 7            | Ll     | UISA R        | 2,00     | 2,00 | 1,0 | 4,00            | 2,00 | 1,00 | 3,0  | 1,00   | 1,00    | 3,00        | 3,00 | 2,00 | 2,00 | 1,00  | 11,00                                 | 9,00                 | 8,00  | 20,00       |        |           |                |              |
| 8            | D      | ORI           | 2,00     | 2,00 | 1,0 | 3,00            | 1,00 | 2,00 | 3,0  | 1,00   | 1,00    | 2,00        | 3,00 | 1,00 | 2,00 | 1,00  | 9,00                                  | 9,00                 | 7,00  | 18,00       |        |           |                |              |
| 9            | A      | NEL D         | 1,00     | 2,00 | 1,0 | 3,00            | 1,00 | 1,00 | 3,0  | 4,00   | 1,00    | 1,00        | 3,00 | 3,00 | 2,00 | 2,00  | 8,00                                  | 10,00                | 10,00 | 18,00       |        |           |                |              |
| 10           | Jl     | ULIA R        | 1,00     | 3,00 | 1,0 | 3,00            | 2,00 | 1,00 | 2,0  | 1,00   | 1,00    | 1,00        | 3,00 | 2,00 | 1,00 | 1,00  | 10,00                                 | 6,00                 | 7,00  | 16,00       |        |           |                |              |
| 11           | E      | VA R          | 1,00     | 1,00 | 2,0 | 2,00            | 2,00 | 1,00 | 2,0  | 3,00   | 1,00    | 3,00        | 3,00 | 2,00 | 1,00 | 3,00  | 8,00                                  | 10,00                | 9,00  | 18,00       |        |           |                |              |
| 12           | Jl     | UAN           | 2,00     | 1,00 | 1,0 | 1,00            | 2,00 | 1,00 | 2,0  | 1,00   | 1,00    | 1,00        | 1,00 | 2,00 | 2,00 | 4,00  | 7,00                                  | 6,00                 | 9,00  | 13,00       |        |           |                |              |
| 13           | K      | ŒIK           | 1,00     | 2,00 | 1,0 | 1,00            | 2,00 | 1,00 | 3,0  | 1,00   | 1,00    | 1,00        | 1,00 | 2,00 | 1,00 | 3,00  | 7,00                                  | 7,00                 | 7,00  | 14,00       |        |           |                |              |
| 14           | K      | ARO           | 1,00     | 1,00 | 1,0 | 1,00            | 2,00 | 1,00 | 2,0  | 1,00   | 1,00    | 1,00        | 1,00 | 1,00 | 1,00 | 3,00  | 6,00                                  | 6,00                 | 6,00  | 12,00       |        |           |                |              |
| 15           |        |               |          |      |     |                 |      |      |      |        |         |             |      |      |      |       |                                       |                      |       |             |        |           |                |              |
| 16           |        |               |          |      |     |                 |      |      |      |        |         |             |      |      |      |       |                                       |                      |       |             |        |           |                |              |
| 17           |        |               |          |      |     |                 |      |      |      |        |         |             |      |      |      |       |                                       |                      |       |             |        |           |                |              |
| 18           |        |               |          |      |     |                 |      |      |      |        |         |             |      |      |      |       |                                       |                      |       |             |        |           |                |              |
| 19           |        |               |          |      |     |                 |      |      |      |        |         |             |      |      |      |       |                                       |                      |       |             |        |           |                |              |
| 20           |        |               |          |      |     |                 |      |      |      |        |         |             |      |      |      |       |                                       |                      |       |             |        |           |                |              |
| 21           |        |               |          |      |     |                 |      |      |      |        |         |             |      |      |      |       |                                       |                      |       |             |        |           |                | -            |
|              | 4      |               |          |      |     |                 |      |      |      |        |         |             |      |      |      |       | 222                                   |                      |       | Autivar     | Window |           |                | <b>•</b>     |
| Vista de     | datos  | Vista o       | de varia | bles |     |                 |      |      |      |        |         |             |      |      |      |       |                                       |                      |       | Ir a Config |        | e PC para | activar Wind   |              |

#### ANEXO 9: PRUEBA DE NORMALIDAD



# ANEXO 10: ANALISIS DEL AGUA

| PARAM          | ETROS           | UNIDAD       | ESTACION DE<br>MONITOREO<br>SAN<br>LORENZO | E.C.A.<br>D.S.N°015-2015<br>MINAM<br>Categoría                                                                     |  |
|----------------|-----------------|--------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| Nitrito        |                 | mg/L NO2-    | <0.006                                     | 3                                                                                                                  |  |
| Nitrato        |                 | mg/L NO3-    | 23.14                                      | 50                                                                                                                 |  |
| DBO(5)         |                 | mg/L O2      | <2.0                                       | 3                                                                                                                  |  |
| Ph             |                 | Unidad de pH | 7.6                                        | 6,5 -8,5                                                                                                           |  |
| Conductividad  | l Especifica    | μs/cm        | 2 479.0                                    | 1 500                                                                                                              |  |
| Aceites y Gras | os              | mg/L         | <1.0                                       | 0,5                                                                                                                |  |
| Fluoruro       |                 | mg/L         | 0.61                                       | 1,5                                                                                                                |  |
| Colifornes Fed | ales            | NMP/100ml    | 2.0                                        | 0                                                                                                                  |  |
| Escherichia co | li              | NMP/100ml    | 2.0                                        | 0                                                                                                                  |  |
| Cloruros       |                 | mg/LCI-1     | 343.7                                      | 250                                                                                                                |  |
| Dureza Total   |                 | mg/L CaCO3   | 416.1                                      | 500                                                                                                                |  |
|                | Boro            | mg/L         | 1.4227                                     | 2,4                                                                                                                |  |
|                | Berilio         | mg/L         | <0.0006                                    | 0,012                                                                                                              |  |
|                | Aluminio        | mg/L         | 0.0027                                     | 0,9                                                                                                                |  |
|                | Fosforo         | mg/L         | 0.0281                                     | 0,1                                                                                                                |  |
| 53             | Cromo           | mg/L         | 0.0047                                     | 0,05                                                                                                               |  |
| METALES        | Manganeso       | mg/L         | 0.0099                                     | 0,4                                                                                                                |  |
| ×              | Niquel          | mg/L         | <0.0004                                    | 0,07                                                                                                               |  |
|                | Cobre           | mg/L         | 0.0022                                     | 2                                                                                                                  |  |
|                | Zinc            | mg/L         | 0.0059                                     | 3                                                                                                                  |  |
|                | <u>Arsénico</u> | mg/L         | 0.0038                                     | 6,5 - 8,5<br>1 500<br>0,5<br>1,5<br>0<br>0<br>250<br>500<br>2,4<br>0,012<br>0,9<br>0,1<br>0,05<br>0,4<br>0,07<br>2 |  |
|                | Selenio         | mg/L         | 0.0197                                     | 0,04                                                                                                               |  |

# ANEXO 11: ANALISIS DEL ESTABLECIMIENTO DE SALUD

# Establecimientos de salud:

| Establecimiento<br>de salud por<br>entidad<br>administradora | Establecimientos de salud |                       |                                     |                             |          |
|--------------------------------------------------------------|---------------------------|-----------------------|-------------------------------------|-----------------------------|----------|
|                                                              | Centro<br>de<br>Salud     | Puesto<br>de<br>Salud | Consulto<br>rio<br>Odontoló<br>gico | Casa de<br>Reposo/<br>Asílo | Farmacia |
| Total                                                        | 01                        | 04                    | 03                                  | 01                          | 03       |
| Publico                                                      | 01                        | 04                    | 00                                  | 00                          | 00       |
| Privado                                                      | 00                        | 00                    | 03                                  | 01                          | 03       |

Nota: INEI, Registro Nacional de Municipalidades, 2007